18 ACTA BOT. CROAT. 77 (1), 2018 Acta Bot. Croat. 77 (1), 18–27, 2018 CODEN: ABCRA 25 DOI: 10.1515/botcro-2017-0016 ISSN 0365-0588 eISSN 1847-8476 Diversity and gradients of vegetation of Sivrihisar Mountains (Eskişehir-Turkey) Neslihan Balpinar1*, Ali Kavgaci2, M. Ümit Bingöl3, Osman Ketenoğlu3 1 Mehmet Akif Ersoy University, Faculty of Arts and Science, Department of Biology, 15030, Burdur, Türkiye 2 Southwest Anatolia Forest Research Institute, 07022 Antalya, Türkiye 3 Ankara University, Faculty of Science, Department of Biology, 06100, Ankara, Türkiye Abstract – This study was carried out to determine the plant communities and understand the main topograph- ical driving factors of floristic differentiation in the Sivrihisar Mountains (Eskişehir Province). Vegetation sam- plings were carried out according to the Braun-Blanquet approach. The relevés were stored in the TURBOVEG database management program. Hierarchical classification was carried out in PC-ORD program with Ward’s method and Euclidean distance as a resemblance measure. The diagnostic species were identified by a fidelity measure in the JUICE program. The results of the classification were visualized by ordination techniques in the CANOCO package by using principal component analysis. In conclusion, except for the degraded forest com- munity, all the 7 steppe and 1 scrub plant communities studied were identified and described as new associa- tions. Also, a syntaxonomical scheme for the vegetation of Sivrihisar Mountains was suggested. Keywords: classification, numeric analysis, ordination, phytosociology, steppe vegetation * Corresponding author, e-mail: nerdogan@mehmetakif.edu.tr Introduction Steppes, which face habitat loss, fragmentation and deg- radation, are among the most endangered biomes of the world. Treeless vegetation dominated by perennial xeroph- ilous grass and herbs is typical of these types of formation (Török et al. 2016). The Central Anatolian Plateau has a dis- tinctive plant cover on the account of its isolation, due in turn to the high surrounding mountains and special nature (Aksoy and Hamzaoğlu 2006). Steppe vegetation is the main vegetation type, as it is in East and parts of South Anatolia, as a result of precipitation insufficient for the growth of trees under arid and semi-arid variants of Mediterranean climate (Atalay and Efe 2010). Numerous genera such as Acantho- limon, Astragalus, Centaurea, Cousinia or Verbascum have their evolutionary origin and main centre of diversity in this region (Kürschner and Parolly 2012). The Central Anatolian steppe is generally typically surrounded by steppic woods and forest formations (Hamzaoğlu and Duran 2004). Al- though the floristic richness in the Central Anatolian steppe vegetation is very high, showing high levels of endemism, it is threatened by overgrazing pressure, intensive farming, and other management practices (Aydoğdu et al. 2004, Kurt et al. 2006, Kaya et al. 2011). Even though this steppe, forming the Central Anatolian Province of Irano-Turanian Region, has long been studied by many botanists (Louis 1939, Krause 1940, Walter 1956, Birand 1961, 1970; Çetik 1985, Akman et al. 1985, Ketenoğlu et al. 1983, 2000; Hamzaoğlu and Duran 2004), much of its ecological diversity is understudied and more studies are needed. This study was carried out in this context, to determine plant communities and their structural components, to de- fine ecological and geographical gradients and to examine the floral diversity in the Sivrihisar Mountains in Turkey. We expect that this classification will guide future phytosocio- logical studies and will serve as a base for various prospec- tive studies. Materials and methods Study area Sivrihisar Mountains is a mountain chain extending from the Sakarya arc in the southeast corner of Eskişehir Province, in the SE-NW direction towards Kaymaz district, located between 39° 28' 00" latitude and 31° 34' 60" longitude (Fig. 1). The study area is mainly covered by steppe vegeta- mailto:nerdogan@mehmetakif.edu.tr VEGETATION OF SIVRIHISAR MOUNTAINS ACTA BOT. CROAT. 77 (1), 2018 19 tion but also by degraded shrub and forest vegetation. The vegetation in the study area was intensely affected by over- grazing, agricultural activities and the expansion of stone and marble quarrying. The altitude ranges from 1000 m a.s.l. to 1415 m a.s.l. The study area, within the Irano-Turanian phytogeographi- cal region and placed in the B3 square according to the grid system of Davis (1965–1985), is represented by the “East- Mediterranean Precipitation Regime Type II” according to Emberger’s classification (Akman 1990) (see On-line Suppl. Tab. 1). The area does not have any protection status. Large- ly the Paleozoic rocks are exposed in Sivrihisar Mountains in Eskişehir, while Mesozoic and Tertiary outcrops are also encountered. Vegetation samplings and data analysis The field work was carried out between 2003 and 2005. Homogenous sampling plots with an area of 50 m2 were se- lected for steppe vegetation, the dominant vegetation type in the area, 100 m2 for scrub vegetation and 150 m2 for the de- graded forest vegetation. The protocol for each plot includ- ed general, topographic and other data of individual plots, such as altitude, inclination, aspect, vegetation cover (total and of individual layers) and a list of all vascular plants, in which a cover value was assigned to each species according to the nine degree Braun-Blanquet scale (Braun-Blanquet 1964, Westhoff and Van Der Maarel 1973). The samples (hereinafter relevés) were stored in the TURBOVEG database management program (Hennekens and Schaminée 2001). Hierarchical classification of the data set was carried out in the computer program PC-ORD (Mc Cune and Meffords 2006). The Euclidean distance was used as a resemblance measure for analysis and Ward’s Method for dendrogram construction. Various levels of division were accepted in the dendrogram, resulting in nine clusters inter- pretable in terms of ecology. Additionally, the diagnostic spe- cies of the accepted clusters were identified by a fidelity mea- sure in the JUICE program (Tichý 2002). The threshold of the phi value was subjectively selected at 0.50 for a species to be considered as diagnostic (Chytrý et al. 2002). Besides, the constant and dominant species of the clusters were defined in JUICE. Species that had a more than 50% occurrence fre- quency for a given community were defined as constant spe- cies, while species attaining a cover higher than 30% in more than 70% of the relevés were accepted as dominant species. The results of the classification were visualized by ordi- nation techniques in the CANOCO 4.5 package (Ter Braak and Šmilauer 2002). Principal component analysis (PCA), which is an indirect ordination method assuming a unimod- al response of species to the environment, was run due to the high heterogeneity in the matrix of species (Lepš and Šmilauer 2003). Topographical variables were passively pro- jected on the ordination plane. We also calculated the spectra of geo-elements according to Davis (1965–1985) and Davis et al. (1988) and life forms in accordance with Raunkiaer (1934) and they were also passively projected on the ordi- nation diagram. Correlations between PCA releve scores and topographical variables, geoelement and growth form were calculated by using the non-parametric Kendall coef- ficient in STATISTICA (Anonymous 2007). The nomencla- ture of plant species follows Flora of Turkey (Davis 1965– 1985, Davis et al. 1988) and new syntaxa were described in accordance with the International Code of Phytosociological Nomenclature (Weber et al. 2000). Syntaxonomical interpre- tations of taxa for the forest vegetation were made according to Quézel (1973), Akman et al. (1978a, b, 1979), and Qué- zel et al. (1978, 1980). Classification of the taxa belonging to the steppe communities was made according to the studies carried out by Akman et al. (1984, 1985), Ketenoğlu et al. (1983), and Quézel et al. (1992). Results Classification The classification analysis resulted in nine main clusters representing clear floristic and ecological differences of veg- etation in the Sivrihisar Mountains (Fig. 2). While seven of these clusters represent steppe vegetation, the other two clus- ters represent the scrub and forest vegetation in the study ar- ea. Diagnostic, constant and dominant species of these clus- ters are as follows: Cluster 1: Artemisia scoparia-dominated steppe Diagnostic species: Agrostemma gracilis, Artemisia sco- paria, Astrodaucus orientalis, Bupleurum gerardii, Campan- ula argaea, Coronilla varia ssp. varia, Hordeum bulbosum, Fig. 1. The geographical position of the Sivrihisar Mountains in Turkey. Dots show the places of the relevés. BALPINAR N., KAVGACI A., BİNGÖL M. Ü., KETENOĞLU O. 20 ACTA BOT. CROAT. 77 (1), 2018 Melica ciliata ssp. ciliata, Parietaria judaica, Pimpinella tra- gium ssp. polyclada, Rubus sanctus, Silene squamigera ssp. squamigera, Thymus sipyleus ssp. sipyleus var. sipyleus, Tri- folium arvense var. arvense. Constant species: Astragalus angustifolius ssp. angustifolius var. angustifolius, Convolvu- lus holosericeus ssp. holosericeus, Galium verum ssp. verum, Koeleria cristata, Poa bulbosa. Dominant species: Artemisia scoparia Cluster 2: Thymus leucostomus var. argillaceus- dominated steppe Diagnostic species: Alyssum strigosum ssp. strigosum, Bromus japonicus ssp. japonicus, B. squarrosus, Ebenus hir- suta, Hypericum aviculariifolium ssp. depilatum var. bour- gaei, Ornithogalum oligophyllum, Scandix iberica, Silene di- chotoma ssp. dichotoma, Thymus leucostomus var. argillaceus. Constant species: Androsace maxima, Anthemis cretica ssp. anatolica, Astragalus vulnerariae, Eryngium campestre var. virens. Dominant species: Thymus leucostomus var. argilla- ceus. Cluster 3: Astragalus microcephalus-dominated steppe Diagnostic species: Astragalus microcephalus, Chryso- pogon gryllus ssp. gryllus, Cichorium intybus, Cirsium ar- vense ssp. vestitum, Daucus broteri, Echium angustifolium, Elymus hispidus ssp. hispidus, Helianthemum nummulari- um ssp. ovatum, Inula montbretiana, Lolium perenne, Teu- crium orientale var. orientale, Thymelaea passerina, Thymus longicaulis ssp. longicaulis var. subisophyllus. Constant spe- cies: Acantholimon acerosum var. acerosum, Astragalus con- densatus, Centaurea virgata, Dianthus zonatus var. zonatus, Eryngium campestre var. virens, Euphorbia anacampseros var. anacampseros, Festuca valesiaca, Filago pyramidata, Marru- bium parviflorum ssp. oligodon, Scabiosa argentea, Teucrium polium, Xeranthemum annuum. Dominant species: Astraga- lus microcephalus Cluster 4: Astragalus angustifolius ssp. angustifolius var. angustifolius-dominated steppe Diagnostic species: Alkanna orientalis var. orientalis, Al- yssum murale var. murale, Anthemis tinctoria var. pallida, Arabis nova, Astragalus angustifolius ssp. angustifolius var. angustifolius, Ceratocephalus falcatus, Erodium hoefftianum, Erophila verna ssp. verna, Geranium lucidum, Hypecoum pro- cumbens, Lamium amplexicaule, Lamium garganicum ssp. re- niforme, Lathyrus cicera, Medicago minima var. minima, M. sativa ssp. sativa, Moenchia mantica ssp. caerulea, Ranuncu- lus isthmicus ssp. stepporum, R. reuterianus, Rumex acetosel- la, Valerianella costata, V. pumila, Veronica triphyllos, Vicia lathyroides, Viola parvula, Crataegus monogyna ssp. azarelle, Constant species: Anthemis tinctoria var. tinctoria, Artemisia santonicum. Dominant species: Astragalus angustifolius ssp. angustifolius var. angustifolius Cluster 5: Artemisia santonicum-dominated steppe Diagnostic species: Allium flavum ssp. tauricum var. tau- ricum, Allium sieheanum, Alyssum sibiricum, Artemisia san- tonicum, Asperula stricta ssp. latibracteata, Bothriochloa isch- aemum, Consolida thirkeana, Erysimum crassipes, Phlomis pungens var. laxiflora, Sideritis lanata, S. montana ssp. mon- tana, Verbascum uschakense, Centaurea solstitialis ssp. solsti- tialis. Constant species: Achillea coarctata, Astragalus lydius, Bromus tomentellus, Centaurea virgata, Cruciata taurica, Er- yngium campestre var. virens, Festuca valesiaca, Marrubium parviflorum ssp. oligodon, Minuartia anatolica var. arachnoi- dea, Onobrychis armena, Paronychia kurdica ssp. kurdica var. kurdica, Scabiosa argentea, Stachys lavandulifolia var. lavan- dulifolia, Stipa holosericea. Dominant species: Artemisia san- tonicum, Sideritis montana ssp. montana Cluster 6: Astragalus condensatus-dominated steppe Diagnostic species: Astragalus condensatus, Fumana ar- abica var. arabica, Globularia orientalis, Linum nodiflorum, Medicago rigidula var. rigidula, Muscari neglectum, Phleum subulatum ssp. subulatum, Polygala anatolica, Scorzonera er- iophora, Silene lydia, Stachys cretica ssp. anatolica, Thymus argaeus, Valerianella coronata, Veronica pectinata var. Glan- dulosa, Paronychia condenseta, Poa timoleontis, Silene macro- danta. Constant species: Hypericum origanifolium, Ornitho- galum alpigenum, Phlomis armeniaca, Scutellaria orientalis ssp. pectinata. Dominant species: Astragalus condensatus Cluster 7: Astragalus plumosus-dominated steppe Diagnostic species: Adonis aestivalis ssp. aestivalis, Al- yssum thymops, Anchusa undulata ssp. hybrida, Astragalus plumosus var. plumosus, Bromus cappadocicus ssp. cappado- cicus, Bungea trifida, Centaurea triumfettii, Erodium cicutar- ium ssp. cicutarium, Hedysarum varium, Moltkia coerulea, Salvia cryptantha, Scandix australis ssp. grandiflora, Scorzo- Fig. 2. Hierarchical classification diagram of relevés from Sivri- hisar Mountains: 1. Artemisia scoparia-dominated steppe, 2. Thy- mus leucostomus var. argillaceus-dominated steppe, 3. Astragalus microcephalus-dominated steppe, 4. Astragalus angustifolius ssp. angustifolius var. angustifolius-dominated steppe, 5. Artemisia san- tonicum-dominated steppe, 6. Astragalus condensatus-dominated steppe, 7. Astragalus plumosus-dominated steppe, 8. Cistus laurifo- lius-dominated scrubland, 9. Quercus pubescens-dominated forest. VEGETATION OF SIVRIHISAR MOUNTAINS ACTA BOT. CROAT. 77 (1), 2018 21 nera suberosa ssp. suberosa, Sisymbrium altissimum, Tragop- ogon coloratus. Constant species: Adonis flammea, Astragalus lydius, Eryngium campestre var. virens, Hypericum origanifo- lium, Scutellaria orientalis ssp. pectinata, Teucrium polium. Dominant species: Astragalus plumosus var. plumosus, Sal- via cryptantha Cluster 8: Cistus laurifolius-dominated scrubland Diagnostic species: Alyssum murale var. murale, Berberis crataegina, Campanula lyrata ssp. lyrata, Cistus laurifolius, Colutea cilicica, Cotoneaster nummularia, Daphne oleoides ssp. oleoides, Fritillaria armena, Globularia trichosantha ssp. trichosantha, Helichrysum plicatum ssp. plicatum, Hyperi- cum linarioides, H. scabrum, Juniperus oxycedrus ssp. oxy- cedrus, Lathyrus digitatus, Minuartia juniperina, Plantago lanceolata, Prunella laciniata, Prunus spinosa ssp. dasyphyl- la, Pyracantha coccinea, Pyrus elaeagnifolia ssp. elaeagnifo- lia, Ranunculus illyricus ssp. illyricus, Rosa canina, Sangui- sorba minor ssp. muricata, Silene italica, Sorbus umbellata var. umbellata, Trifolium physodes var. physodes, Trigonella spruneriana var. spruneriana, Ziziphora taurica ssp. taurica. Constant species: Koeleria cristata. Dominant species: Cis- tus laurifolius Cluster 9: Quercus pubescens-dominated forest Diagnostic species: Aegilops umbellulata ssp. umbellu- lata, Alkanna pseudotinctoria, Alyssum minus var. micran- thum, Briza humilis, Bupleurum odontites, Centaurea pi- chleri ssp. pichleri, Ceratocephalus testiculatus, Conringia perfoliata, Ephedra major, Erysimum sintenisianum, Gera- nium tuberosum ssp. tuberosum, Holosteum umbellatum var. umbellatum, Jasminum fruticans, Juniperus excelsa, J. oxyce- drus ssp. oxycedrus, Lamium garganicum ssp. reniforme, Li- num cariense, Matthiola longipetala ssp. bicornis, Poa timo- leontis, Quercus pubescens, Ranunculus gracilis, Rhamnus rhodopeus ssp. anatolicus, Rhamnus thymifolius, Salvia cad- mica, S. syriaca, Trifolium pannonicum ssp. elongatum, Ve- ronica grisebachii, Vinca herbacea, Viola kitaibeliana. Con- stant species: Astragalus lydius, Cruciata taurica, Eryngium campestre var. virens, Hypericum origanifolium, Ornithoga- lum alpigenum, Sedum acre, Teucrium polium. Dominant species: Quercus pubescens Ordination The PCA ordination of relevés for the nine clusters (Fig. 3) shows that there is a clear gradient along the both axes of the ordination. These gradients show the ecological differ- ences among the communities in the study area. The gradi- ent of the ordination mainly results from the differentiation of Juniperus oxycedrus-Cistus laurifolius and Quercus pubes- cens forest. These clusters are characterized by the high ap- pearance of phanerophytic species (Fig. 3) which has a strong positive correlation with both of the ordination axes and the altitude (Tab. 1). These two clusters are also formed on the highest elevation zones of the study area (Fig. 3 and Tab. 1). All topographical variables used in the study have strong effects on the floristic differentiation of the vegetation. How- ever, altitude has the highest effect (Tab. 2). Due to the strong differentiation of J. oxycedrus-C. laurifolius and Q. pubescens forest, representing the higher vegetation types (scrub and forest) in the study area, these two communities were exclud- ed from further ordination analysis to show clearly the differ- entiation between the others. For the lower vegetation types Fig. 3. Indirect ordination of the vegetation relevés from the Sivri- hisar Mountains carried out by principal component analysis. Tab. 1. Kendal correlation coefficients (weighted correlation) between first two principal component analysis axes and topographical variables, geo-element and life form properties for the nine plant communities in the Sivrihisar Mountains. Legend: *** means p<0.001, ** means p<0.01, * means p<0.05. A lti tu de A sp ec t In cl in at io n Ir an o- Tu ra ni an M ed ite rr an ea n Eu ro -S ib er ia n W id e di st ri bu tio n Th er op hy te C ry pt op hy te H em ic ry pt op hy te C ha m ap hy te Ph an er op hy te Axis 1 0.321*** 0.110 –0.162* 0.154* 0.112 –0.174** –0.133* –0.059 0.249*** –0.255*** –0.160* 0.254*** Axis 2 0.199** 0.002 0.131* –0.407*** 0.176* 0.269*** 0.245*** –0.311*** –0.026 –0.018 0.000 0.423*** BALPINAR N., KAVGACI A., BİNGÖL M. Ü., KETENOĞLU O. 22 ACTA BOT. CROAT. 77 (1), 2018 (steppe communities), ordination also shows clear gradients along two axes (Fig. 4) and there are significant topographi- cal differences between steppe communities (Tabs. 3, 4). Discussion Ecological differences The effects of topographical variables on species richness and diversity, like the other ecological components affecting the biological mechanisms, were clearly shown (Burke et al. 1989, Sebastiá 2004). In our case, it was also seen that top- ographical variables (altitude, aspect, inclination) have ex- plicit driving effects on community differentiation of steppe vegetation. These kinds of effects of topography were also shown for different vegetation types in Turkey before like forests, scrublands and grasslands (Fontaine et al. 2007, Kavgacı et al. 2010a, b; Özkan 2009, Özkan et al. 2009, 2010). The clear gradients of these topographical factors also cor- respond to the geo-elemental structure. The communities at higher altitudes have a higher proportion of Euro-Siberian plant species in comparison with the other communities. The communities at lower altitudes are clearly represented by Irano-Turanian plants. As is known, higher elevations are associated with higher precipitation (Basist and Bell 1994) and the phytogeographical differences in the study area can be a result of these local climatic differences. Plant communities show clear growth form differenc- es at local, regional and global scales by depending on the changing environmental and ecological conditions (Rowe and Speck 2005). In this context, clear growth form differ- ences among the communities in the study area were also ob- served. The communities at lower altitudes and with north- ern aspects are mostly represented by the Therophytes and Cryptophytes. The high proportion of Therophytes may in- dicate the dry site conditions at these areas. Chamaephytes are more common and characteristic for higher zones and southern slopes, which is probably the result of the human pressure at these sites. Syntaxonomy There are nine different plant communities in the study area. Two of them are Cistus laurifolius-dominated scrub Tab. 2. Conditional effects of topographical variables on species composition for nine plant communities in the Sivrihisar Moun- tains, carried out by canonical correspondence analysis. The table is with the additional variances that each variable explains (Lambda A) and the significance of the variables (P-value) together with their test statistics (F-value). Variable Var. N LambdaA P F Altitude 1 0.43 0.002 4.62 Slope 3 0.32 0.002 3.41 Aspect 2 0.31 0.002 3.42 Fig. 4. Indirect ordination of the relevés from steppe vegetation in the Sivrihisar Mountains. See Fig. 3 for the explanations of the symbols. Tab. 3. Conditional effects of topographical variables on species composition for seven steppe communities carried out by canoni- cal correspondence analysis. The table is with the additional vari- ances that each variable explains (Lambda A) and the significance of the variables (P-value) together with their test statistics (F-value). Variable Var. N LambdaA P F Altitude 1 0.21 0.002 2.42 Slope 3 0.33 0.002 3.62 Aspect 2 0.34 0.002 3.73 Tab. 4. Kendal correlation coefficients (weighted correlation) between first two two principal component analysis axes and topographical variables, geo-element and life form properties for the seven steppe communities in the Sivrihisar Mountains. Legend: *** means p<0.001, ** means p<0.01, * means p<0.05. A lti tu de A sp ec t In cl in at io n Ir an o- Tu ra ni an M ed ite rr an ea n Eu ro -S ib er ia n W id e di st ri bu tio n Th er op hy te C ry pt op hy te H em ic ry pt op hy te C ha m ap hy te Ph an er op hy te Axis 1 –0.016 0.019 0.161* –0.339*** 0.104 0.300*** 0.198** –0.224** –0.164* 0.119 0.162* 0.225** Axis 2 0.375*** 0.394*** 0.036 0.081 –0.129 –0.301*** 0.027 –0.100 –0.144* –0.096 0.359*** 0.160* VEGETATION OF SIVRIHISAR MOUNTAINS ACTA BOT. CROAT. 77 (1), 2018 23 and Quercus pubescens-dominated degraded forest while the rest are lower steppe communities. From the phytoso- ciological point of view, the central part of the Anatolian steppe has lowland steppe characteristics and is included in the order Onobrychido armenae-Thymetalia leucostomi of the Astragalo-Brometea class (Akman et al. 1985). All of the steppe communities which were identified in the research area were classified under the alliance Phlomido armenia- cae-Astragalion microcephali since this alliance represents the communities on radiolarite, flysch, marly and serpen- tine rocks at altitudes ranging from 750 m to 1350 m a.s.l. (Akman et al. 1984). Artemisia scoparia-dominated community occurs at ap- proximately the middle elevation zone of the study area. It is mostly seen on inclined slopes. The phanerophytic species, Rubus sanctus and Amygdalus orientalis join to the floristic composition of this community locally. The dominance of Euro-Siberian plants is very clear in this community and it is also characterized by the more frequent appearance of wide- ly distributed plants. The diagnostic species of the commu- nity are clearly differentiated from the previously described A. scoparia-dominated communities from central Anatolia (Akman et al. 1991, Kurt 2002). Due to this fact, it is classi- fied as Thymo sipylei-Artemisetum scopari ass. nova hoc lo- co. The nomenclatural type is relevé number 16 in On-line Suppl. Tab. 2 (holotypus hoc loco: On-line Suppl. Tab. 2/16). The Thymus leucostomus var. argillaceus-dominated community is distributed on the lower elevation belts with northern aspects. It is represented by the highest occurrenc- es of therophytic and cryptophytic species. The high occur- rence of therophytes, generally indicating a typically desert spectrum vegetation, may be a result of over-grazing in this community (Jankju et al. 2011). None of the geo-elements shows clear dominance in this community. The previously described T. leucostomus var. argillaceus-dominated com- munities in Central Anatolia are found on gypsum bedrock (Akman 1990, Kurt et al. 1999) and classified under the alli- ance Astragalo karamasici-Gypsophylion eriocalycis which is clearly different from our case. Due to this fact, the Thymus leucostomus var. argillaceus-dominated community is clas- sified as Alysso strigosi-Thymetum argillacei ass. nova hoc lo- co. The nomenclatural type is relevé number 65 in On-line Suppl. Tab. 2 (holotypus hoc loco: On-line Suppl. Tab. 2/65). The Astragalus microcephalus-dominated community is placed on the lower vegetation belts with northern aspects. The site of this community is highly inclined. The commu- nity can be characterized by the relatively high proportion of chamaephytes and low proportion of therophytes. Due to the wide distribution of A. microcephalus, many A. micro- cephalus communities are described in Anatolia (Çetik 1963, Akman 1974, 1976; Akman and Ketenoğlu 1976, Düzenli 1976, Akman et al. 1983, Kılınç 1985, Akman 1990, Akman et al. 1991, Ocakverdi and Ünal 1991, Ocakverdi and Oflas 1999, Aydoğdu et al. 1994, Tatli et al. 1994, Hamzaoğlu 1999, Kurt et al. 1999, Kurt 2000, 2002). However, our community shows clear differences from these communities because of the different diagnostic species, and it is classified as Thymo longicauli-Astragaletum microcephali ass. nova hoc loco. The nomenclatural type is relevé number 129 in On-line Suppl. Tab. 2 (holotypus hoc loco: On-line Suppl. Tab. 2/129). The Astragalus angustifolius ssp. angustifolius var. angus- tifolius-dominated community is placed on a very narrow vegetation belt at the lower elevation zone. The site of this community is formed on gentle slopes. The number of Irano- Turanian plants and chamaephytes is the highest in this com- munity. There are several A. angustifolius dominated com- munities described from the different parts of Anatolia which were classified under different alliances (Schwarz 1936, Qué- zel 1973, Akman 1974, 1976; Akman and Ketenoğlu 1976, Düzenli 1976, Kılınç 1985, Akman 1990, Akman et al. 1991, Ocakverdi and Ünal 1991, Hamzaoğlu 2000, Şanda et al. 2000). But in our case, there is a clear floristic difference and the A. angustifolius ssp. angustifolius var. angustifolius-domi- nated community is classified as Anthemo tinctoriae-Astrag- aletum angustifoli ass. nova hoc loco. The nomenclatural type is relevé number 11 in On-line Suppl. Tab. 2 (holotypus hoc loco: On-line Suppl. Tab. 2/11). The lowest distribution zone of the study area is formed by the Artemisia santonicum-dominated community. These sites have mostly northern oriented slopes with relatively high inclinations. This community can also be characterized by the relatively higher appearance of Euro-Siberian plants than the other communities. The number of Hemicrypto- phytes, Cryptophytes and Therophytes is also high in this community. A. santonicum-dominated communities are described by Ocakverdi and Ünal (1991), Aydoğdu et al. (2001), Aydoğdu et al. (1994), Kurt (2002) and grouped un- der different alliances. The A. santonicum-dominated com- munity in Sivrihisar Mountains represents a different floris- tic composition from the previous studies, and it is classified as Sideritido montani-Artemisetum santonici ass. nova hoc loco. The nomenclatural type is relevé number 26 in On-line Suppl. Tab. 2 (holotypus hoc loco: On-line Suppl. Tab. 2/26). The majority of the study area, covered by lower com- munities, is formed by an Astragalus condensatus-dominated community and an Astragalus plumosus var. plumosus-dom- inated community. These communities, showing similar en- vironmental characteristics, are distributed mostly on south- ern slopes. They are dominated by Chamaephytes differently from the other communities and characterized by the high- est appearances of Irano-Turanian plants, which indicate a higher steppic character (Kurt et al. 2006) in comparison with the other steppe communities. Akman et al. (1984) de- scribes an Astragalus condensatus-dominated community under the alliance Salvio tchihatcheffii-Hedysarion varii. But the A. condensatus-dominated community in the Sivrihisar Mountains represents a very different floristic composition from this community, and it is classified as Globulario lu- mose-Astragaletum condensati ass. nova hoc loco. The no- menclatural type is relevé number 58 in On-line Suppl. Tab. 2 (holotypus hoc loco: On-line Suppl. Tab. 2/58). The com- munities dominated by the spiny taxon Astragalus plumos- us var. plumosus are described by Akman (1976), Akman and Ketenoğlu (1976), Akman (1990) and Yurdakulol et al. (1990). However, the community at Sivrihisar Mountains is formed by different floristic composition than those com- BALPINAR N., KAVGACI A., BİNGÖL M. Ü., KETENOĞLU O. 24 ACTA BOT. CROAT. 77 (1), 2018 munities and is classified as Salvio cryptanthae-Astragaletum plumosi ass. nova hoc loco. The nomenclatural type is relevé number 90 in On-line Suppl. Tab. 2 (holotypus hoc loco: On- line Suppl. Tab. 2/90). The dominant components of the peripheral vegetation around Central Anatolia have been included in the class Quercetea pubescentis (Akman et al. 1984). Cistus laurifolius is an important element of this vegetation type and appears intensively especially in the transitional zone between in- ner Anatolia and the Mediterranean, Aegean and Marma- ra Regions. It mostly occurs as the remnants of Pinus nigra forests as a result of a regressive succession process. In the initial phase of the succession, it is often found as mixed communities with oak species. The C. laurifolius-dominated shrub community in the study area is named Junipero oxyce- dri Cistetum laurifoli ass. nova hoc loco. The nomenclatural type is relevé number 21 in On-line Suppl. Tab. 2 (holoty- pus hoc loco: On-line Suppl. Tab. 2 /21). It is grouped under Quercion anatolicae alliance belonging to Querco-Carpine- talia orientalis order due to lack of congruence with Pino- Cistion laurifolii alliance characteristics which is accepted as the alliance of C. laurifolius dominated communities in the other parts of Anatolia (Akman and Ketenoğlu 1976, Çetik and Vural 1979, Hamzaoğlu and Duran 2004). The high frequency of characteristic species of Astragalo-Brom- etea and Onobrychido-Thymetalia in this community may indicate a conversion through steppe vegetation. The steppe vegetation of Central Anatolia has resulted from the reduc- tion or extinction of former primary forest vegetation, which has disappeared due to biotic factors (Kılınç 1979, Kurt et al. 2006). The higher scrub and wood communities in Central Anatolia represent their degraded forms (Kurt et al. 2006), and these communities are under high anthropogenic pres- sure today. Quercus pubescens dominated forests in the study area are one of the remnants of those forests. Although for- est species such as Trifolium pannonicum ssp. elongatum, Vi- cia cracca ssp. stenophylla, Coronilla varia ssp. varia, Pyrus elaeagnifolia, Juniperus oxycedrus ssp. oxycedrus are found as accompanying plants in the degraded Q. pubescens for- ests in the area, the high coverage by steppic species may in- dicate that the formation is a transitional phase. Although several Q. pubescens forest communities are described from Anatolia (Akman and Ketenoğlu 1976, Ketenoğlu and Ak- man 1982, Akman et al. 1983, Akman and Aydoğdu 1986), the Q. pubescens forest community in theSivrihisar Moun- tains is not identified at association level due to its highly degraded structure. In conclusion, in addition to the Q. pubescens forest com- munity, 7 steppe and 1 scrub associations are identified and described as new associations in this study. The degraded structure of forest and scrub vegetation indicates the severe anthropogenic effects in the region. However, the presence of various plant associations in such a small area reflects the high floristic and ecological diversity. This emphasizes the importance of the region in terms of nature conservation. So, the richness and diversity of the region should be taken into consideration during the preparation of a management plan for the region, especially from the restoration point of view. In accordance with these assessments, the syntaxonomi- cal scheme of communities and nomenclature type relevés of the newly described syntaxa can be suggested as follows: Class: Astragalo microcephali-Brometea tomentelli Qué- zel 1973 Order: Onobrychido armenae-Thymetalia leucostomi Ak- man, Ketenoğlu, Quézel 1985 Alliance: Phlomido armeniacae-Astragalion microcephali Akman, Ketenoğlu, Quézel et Demirörs 1984 Association: Thymo sipylei-Artemisetum scopari ass. nova Association: Alysso strigosi-Thymetum argillacei ass. nova Association: Thymo longicauli-Astragaletum microceph- ali ass. nova Association: Anthemo tinctoriae-Astragaletum angusti- foli ass. nova Association: Sideritido montani-Artemisetum santonici ass. nova Association: Globulario lumose-Astragaletum condensati ass. nova Association: Salvio cryptanthae-Astragaletum plumosi ass. nova Class: Quercetea pubescentis (Oberd. 1948) Doing Kraft 1955 Order: Querco cerridis-Carpinetalia orientalis Quézel, Barbéro et Akman 1980 Alliance: Quercion anatolicae Akman, Barbéro et Qué- zel 1979 Association: Junipero oxycedri-Cistetum laurifoli ass. nova Quercus pubescens community 1. The nomenclature type of the association Thymo sipylei-Artemisetum scopari ass. nov. holotypus hoc. loco: N. Balpınar (10.06.2003). Plot size: 50 m2, Altitude:1275 m, Slope: 40%, SW: 39°22.504´ N, 031°40.130´ E, Cover herb layer: 80%. Herb layer: Thymus sipyleus ssp. sipyleus var. sipyleus: 2, Artemisia scoparia: 3, Astragalus angustifolius ssp. angusti- folius var. angustifolius: +, Alyssum murale var. murale: +, Alyssum sibiricum: 1, Paronychia condensata: +, Helianthe- mum canum: +, Convolvulus holosericeus ssp. holosericeus: 2, Centaurea urvillei ssp. stepposa: +, Astragalus vulnerariae: +, Onobrychis hypargyrea: 1, Carduus nutans ssp. trojanus: +, Poa bulbosa: +, Minuartia hirsuta ssp. falcata: +. 2. The nomenclature type of the association Alysso stri- gosi-Thymetum argillacei ass. nov. holotypus hoc. loco: N. Balpınar (12.06.2004). Plot size: 50 m2, Altitude:1240 m, Slope: 25%, NW: 39°31.030´ N, 031°18.442´ E, Cover herb layer: 80%. Herb layer: Alyssum strigosum ssp. strigosum: +, Bro- mus japonicus ssp. japonicus: +, Ornithogalum oligophyl- lum: +, Scandix iberica: +, Thymus leucostomus var. argilla- ceus: 3, Hypericum aviculariifolium ssp. depilatum: +, Bromus squarrosus: +, Lolium perenne: +, Astragalus condensatus: +, Stachys cretica ssp. anatolica: +, Centaurea triumfettii: +, Briza humilis: +, Astragalus lydius: +, Phlomis armeniaca: 2, Centaurea virgata: 1, Onobrychis armena: +, Ziziphora tenu- ior: +, Onobrychis hypargyrea: +, Eryngium campestre var. vi- VEGETATION OF SIVRIHISAR MOUNTAINS ACTA BOT. CROAT. 77 (1), 2018 25 rens: +, Cruciata taurica: +, Bromus tectorum: +, Minuartia anatolica var. arachnoidea: 1, Festuca valesiaca: +, Androsace maxima: +, Alyssum minus var. micranthum: +, Adonis flam- mea: +, Filago pyramidata: +, Ajuga chamaepitys ssp. chia var. chia: +, Bromus tomentellus: 1, Globularia trichosantha ssp. trichosantha: +, Chardinia orientalis: +, Centaurea de- pressa: +, Scleranthus annuus ssp. annuus: +, Allium panic- ulatum ssp. paniculatum: +, Thlaspi perfoliatum: +, Elymus lazicus ssp. divaricatus: +, Crupina crupinastrum: +, Erysi- mum kotschyanum: +. 3. The nomenclature type of the association Thymo lon- gicauli-Astragaletum microcephali ass. nov. holotypus hoc. lo- co: N. Balpınar (14.07.2004). Plot size: 50 m2, Altitude:1175 m, Slope: 45%, NW: 39°27.548´ N, 031°39.139´ E, Cover herb layer: 80%. Herb layer: Thymus leucostomus var. argillaceus: 1, Hyper- icum aviculariifolium ssp. depilatum: +, Thymelaea passerina: +, Teucrium orientale var. orientale: 1, Astragalus microcepha- lus: 4, Elymus hispidus ssp. hispidus: +, Helianthemum num- mularium ssp. ovatum: 1, Inula montbretiana: +, Daucus bro- teri: +, Lolium perenne: +, Thymus longicaulis ssp. longicaulis var. longicaulis: 3, Phlomis armeniaca: 1, Centaurea virgata: 1, Dianthus zonatus var. zonatus: 2, Hypericum origanifolium: +, Centaurea urvillei ssp. stepposa: +, Scabiosa argentea: 2, Eu- phorbia macroclada: 2, Acantholimon acerosum var. acerosum: 1, Teucrium polium: +, Festuca valesiaca: 2, Xeranthemum an- nuum: 1, Euphorbia anacampseros var. anacampseros: +, Or- nithogalum alpigenum: +, Chardinia orientalis: +, Achillea se- tacea: +, Stipa pontica: 2, Acanthus hirsutus: +. 4. The nomenclature type of the association Anthe- mo tinctoriae-Astragaletum angustifoli ass. nov. holotypus hoc. loco: N. Balpınar (09.06.2003). Plot size: 50 m2, Alti- tude:1190 m, Slope: 30%, N: 39°27.346´ N, 031°32.387´ E, Cover herb layer: 80%. Herb layer: Artemisia scoparia: +, Astragalus microcepha- lus: +, Viola parvula: +, Geranium lucidum: +, Alkanna ori- entalis var. orientalis: 2, Astragalus angustifolius ssp. angus- tifolius: 3, Erophila verna ssp. verna: +, Lamium garganicum ssp. reniforme: +, Crataegus monogyna ssp. azarelle: +, Ra- nunculus reuterianus: +, Moenchia mantica ssp. caerulea: +, Vicia lathyroides: +, Arabis nova: +, Rumex acetosella: +, Ve- ronica triphyllos: +, Anthemis tinctoria var. pallida: +, Lami- um amplexicaule: +, Lathyrus cicera: +, Erodium hoefftianum: +, Alyssum murale var. murale: +, Artemisia santonicum: 1, Minuartia juniperina: +, Veronica grisebachii: +, Centaurea pichleri ssp. pichleri: +, Potentilla recta: +, Paronychia kurdica ssp. kurdica var. kurdica: +, Onobrychis armena: 1, Eryngium campestre var. virens: +, Cruciata taurica: +, Alyssum minus var. micranthum: +, Euphorbia anacampseros var. anacamp- seros: +, Koeleria cristata: +, Anthemis cretica ssp. anatolica: +, Anthemis tinctoria var. tinctoria: 3, Thlaspi perfoliatum: +, Stipa pontica: +, Holosteum umbellatum var. umbellatum: +, Myosotis ramosissima ssp. ramosissima: +, Lotus aegaeus: +. 5. The nomenclature type of the association Sideritido montani-Artemisetum santonici ass. nov. holotypus hoc. lo- co: N. Balpınar (26.06.2003). Plot size: 50 m2, Altitude:1120 m, Slope: 45%, N: 39°32.168´ N, 031°13.365´ E, Cover herb layer: 80%. Herb layer: Thymus leucostomus var. argillaceus: +, Con- solida thirkeana: +, Asperula stricta ssp. latibracteata: +, Al- lium sieheanum: +, Phlomis pungens var. laxiflora: +, Sideritis montana ssp. montana: 3, Verbascum uschakense: 1, Arte- misia santonicum: 4, Erysimum crassipes: +, Alyssum sibiri- cum: +, Bromus cappadocicus ssp. cappadocicus: +, Dianthus zonatus var. zonatus: +, Marrubium parviflorum ssp. oligo- don: +, Paronychia kurdica ssp. kurdica var. kurdica: +, Ono- brychis armena: +, Convolvulus holosericeus ssp. holosericeus: +, Centaurea urvillei ssp. stepposa: +, Scabiosa argentea: +, Cruciata taurica: +, Teucrium polium: +, Minuartia anatol- ica var. arachnoidea: +, Carduus nutans ssp. trojanus: +, Sti- pa holosericea: 3, Stachys lavandulifolia var. lavandulifolia: +, Anthemis tinctoria var. tinctoria: +, Pistacia terebinthus ssp. palaestina: 1. 6. The nomenclature type of the association Globulario lumose-Astragaletum condensati ass. nov. holotypus hoc. lo- co: N. Balpınar (29.05.2004). Plot size: 50 m2, Altitude:1360 m, Slope: 45%, SE: 39°20.559´ N, 031°42.122´ E, Cover herb layer: 80%. Herb layer: Thymus longicaulis ssp. longicaulis var. longi- caulis: +, Erysimum crassipes: +, Phleum subulatum ssp. subu- latum: +, Poa timoleontis: +, Medicago rigidula var. rigidula: +, Fumana arabica var. arabica: +, Thymus argaeus: +, Scorzo- nera eriophora: +, Astragalus condensatus: 5, Paronychia con- densata: +, Stachys cretica ssp. anatolica: +, Veronica pectinata var. glandulosa: +, Silene macrodanta: +, Silene lydia: +, Li- num nodiflorum: +, Globularia orientalis: 3, Polygala anatoli- ca: +, Juniperus oxycedrus ssp. oxycedrus: 1, Salvia cadmica: +, Phlomis armeniaca: +, Teucrium chamaedrys ssp. syspirense: +, Hypericum origanifolium: +, Acantholimon acerosum var. acerosum: 1, Cruciata taurica: +, Bromus tectorum: +, Andro- sace maxima: +, Euphorbia anacampseros var. anacampseros: +, Adonis flammea: +, Anthemis cretica ssp. anatolica: +. 7. The nomenclature type of the association Salvio cryptanthae-Astragaletum plumosi ass. nov. holotypus hoc. loco: N. Balpınar (09.06.2003). Plot size: 50 m2, Alti- tude:1190 m, Slope: 35%, W: 39°31.466´ N, 031°14.444´ E, Cover herb layer: 80%. Herb layer: Astragalus microcephalus: 1, Hypecoum pro- cumbens: +, Asperula stricta ssp. latibracteata: +, Globular- ia orientalis: 1, Tragopogon coloratus: +, Scorzonera suberosa ssp. suberosa: +, Sisymbrium altissimum: +, Alyssum thymops: +, Anchusa undulata ssp. hybrida: +, Erodium cicutarium ssp. cicutarium: +, Astragalus plumosus var. plumosus: 4, Bungea trifida: +, Salvia cryptantha: 3, Moltkia coerulea: +, Hedysa- rum varium: +, Astragalus lydius: +, Potentilla recta: +, Paro- nychia kurdica ssp. kurdica var. kurdica: +, Lappula barbata: +, Aubrieta anamasica: +, Eryngium campestre var. virens: +, Poa bulbosa: +, Adonis flammea: +, Ajuga chamaepitys ssp. chia var. chia: +, Anthemis tinctoria var. tinctoria: +, Iris schachtii: +, Anchusa leptophylla ssp. incana: +, Orobanche cilicica: +, Alyssum hirsutum var. hirsutum: +. 8. The nomenclature type of the association Junipero oxycedri-Cistetum laurifoli ass. nov. holotypus hoc. loco: N. Balpınar (10.06.2003). Plot size: 100 m2, Altitude:1350 m, Slope: 45%, NE: 39°23.453´ N, 031°42.182´ E, Cover shrub layer: 75%, Cover herb layer: 80%. BALPINAR N., KAVGACI A., BİNGÖL M. Ü., KETENOĞLU O. 26 ACTA BOT. CROAT. 77 (1), 2018 Shrub layer: Cistus laurifolius: 5, Daphne oleoides ssp. ole- oides: 1, Prunus spinosa ssp. dasyphylla: 1, Cotoneaster num- mularia: 1, Berberis crataegina: 1, Juniperus oxycedrus ssp. oxycedrus: 2, Amelanchier parviflora var. parviflora: 2. Herb layer: Hypericum linarioides: 1, Lathyrus digitatus: 1, Prunella laciniata: 1, Silene italica: 1, Pyracantha coccinea: 1, Sanguisorba minor ssp. muricata: 1, Globularia trichosantha ssp. trichosantha: 1, Trigonella spruneriana var. spruneriana: 1, Trifolium physodes var. physodes: 1, Alyssum murale var. mura- le: 1, Ranunculus illyricus ssp. illyricus: 1, Hypericum scabrum: 1, Plantago lanceolata: 1, Rosa canina: 2, Minuartia anatolica var. arachnoidea: 1, Koeleria cristata: 1, Crataegus orientalis var. orientalis: 2, Veronica multifida: 1, Achillea setacea: 1. Acknowledgements Some data used in this study is obtained from corre- sponding author's Ph.D. thesis, which was partially financed by Research Fund of Ankara University (Project ID: 2004- 07-05-085). References Akman, Y., 1974: Etude phyto-écologique de la région de Beypazarı-Karaşar et Nallıhan Communications 18, 51–113. Akman, Y., 1976: Etude phytosociologique du massif d’Işık. Com- munications 20, 1–30. Akman, Y., 1990: Etude de la végétation steppique des montagnes d’Aydos située au Nord Ouest d’Ankara. Ecologia Mediterra- nea 16, 223–230. Akman, Y., Aydoğdu, M., 1986: A phytosociological study in the vicinities of Çamlıdere Çamkoru and Peçenek (Ankara). Com- munications 4, 9–24. Akman, Y., Barbéro, M., Quézel, P., 1978a: Contribution a l’etude de la végétation forestiére d’Anatolie Méditerranéenne. Phy- tocoenologia 5, 1–79. Akman, Y., Barbéro, M., Quézel, P., 1978b: Contribution a l’etude de la végétation forestiére d’Anatolie Méditerranéenne. Phyto- coenologia 5, 189–276. Akman, Y., Barbéro, M., Quézel, P., 1979: Contribution a l’etude de la végétation forestiére d’Anatolie Méditerranéenne. Phyto- coenologia 5, 277–346. Akman, Y., Ketenoğlu, O., 1976: The phytosociological and phy- toecological investigation on the Ayaş Mountains. Commu- nications 20, 1–43. Akman, Y., Ketenoğlu, O., Quézel, P., 1985: A new syntaxon from Central Anatolia. Ecologia Mediterranea 11, 111–121. Akman, Y., Ketenoğlu, O., Quézel, P., Demirörs, M., 1984: A syn- taxonomic study of steppe vegetation in Central Anatolia. Phy- tocoenologia 12, 563–584. Akman, Y., Quézel, P., Barbéro, M., Ketenoğlu, O., Aydoğdu, M., 1991: Le végétation des steppes, pelouses écorchées et à xéro- phytes épinex de I’Antitaurus dans la partie sud-ouest de I’Anatolie. Phytocoenologia 19, 391–428. Akman, Y., Yurdakulol, E., Demirörs, M., 1983: The vegetation of the Ilgaz Mountains. Ecologia Mediterranea 9, 137–165. Aksoy, A., Hamzaoğlu, E., 2006: Vegetation zones in the salty marshes of Central Anatolia and natural borders of agricul- tural usage (Turkey). In: Öztürk M., Waisel Y., Khan M.A., Görk G. (eds.), Biosaline agriculture and salinity tolerance in plants, 109–116. Birkhäuser, Basel. Anonymous, 2007: Statistica (data analysis software system). Ver- sion 8.0. StatSoft, Inc. www.statsoft.com Atalay, Ý., Efe, R., 2010: Structural and distributional evaluation of forest ecosystems in Turkey. Journal of Environmental Bi- ology 31, 61–70. Aydoğdu, M., Akman, Y., Quézel, P., Barbéro, M., Ketenoğlu, O., Kurt, L., 1994: Syntaxonomic analysis of gypsaceous vegetation of the surrounding area between Ayas-Polatlı and Beypazarı (Ankara, Turkey). Ecologia Mediterranea 20, 9–19. Aydoğdu, M., Hamzaoğlu, E., Kurt, L., 2001: The study on the veg- etation of Baran Mountain (Kırşehir-Türkiye). Gazi Üniversi- tesi Fen Bilimleri Enstitüsü Dergisi 14, 1375–1386. Aydoğdu, M., Kurt, L., Hamzaoğlu, E., Ketenoğlu, O., Cansaran, A., 2004: Phytosociological studies on salty steppe commu- nities of Central Anatolia, Turkey. Israel Journal of Plant Sci- ences 52, 72–79. Basist, A., Bel, G. D., 1994: Statistical relationships between topogra- phy and precipitation pattern. Journal of Climate 7, 1305–1315. Birand, H., 1961: Erste Ergebnisse vegetations-Untersuchungen in der Zentral Anatolischen steppe. I. Halopyten gesellschaften des Tuzgölü. Botanische Jahrbücher 79, 255–296. Birand, H., 1970: Die verwüstüng der Artemisia steppe bei Karapınar in Zentral Anatolien. Vegetatio 20, 21–47. Braun-Blanquet, J., 1964: Pflanzensoziologie. Grundzüge der Veg- etationskunde 3rd ed. Springer Verlag, Wien-New York. Burke, I. C., Reiners, W. A., Olson, R. K., 1989: Topographical con- trol of vegetation in a mountain big sagebrush steppe. Vegeta- tion 84, 77–86. Chytrý, M., Tıchý, L., Holt, J., Botta-Dukát, Z., 2002: Determina- tion of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13, 79–90. Çetik, R., 1963: The vegetation of Çubuk Dam. İstanbul Üniversi- tesi Fen Fakültesi Mecmuası 28, 109–138. Çetik, R., 1985: The vegetation of Turkey I: The vegetation and ecology of Central Anatolia. Selçuk Üniversitesi Basımevi, Konya (in Turkish). Çetik, R., Vural, M., 1979: Ecological and sociological studies on the vegetation of Afyon, Bayat-Köroğlubeli and its environ- ment. Communications 23, 1–44. Davis, P. H., 1965-1985: Flora of Turkey and the East Aegean Is- lands. Vol. 1–9, Edinburgh University Press, Edinburgh. Davis, P. H., Mill, R. R., Tan, K., 1988: Flora of Turkey and East Aegean Islands (Supplement). Vol. 10, Edinburgh University Press, Edinburgh. Düzenli, A., 1976: Phytosociological and ecological investigation of Hasan Mountain. Ormancılık Araştırma Enstitüsü Dergisi 22, 51–70 (in Turkish). Fontaine, M., Aerts, R., Özkan, K., Mert, A., Gülsoy, S., Suel, H., Waelkens, M., Muys, B., 2007: Elevation and exposition rath- er than soil types determine communities and site suitably in Mediterranean mountain forests of southern Anatolia, Turkey. Forest Ecology and Management 247, 18–25. Hamzaoğlu, E., 1999: The steppe vegetation of Kervansaray Moun- tain (Kırşehir). Gazi Üniversitesi Fen Bilimleri Enstitüsü Der- gisi 12, 1143–1167 (in Turkish). Hamzaoğlu, E., 2000: The vegetation of Buzluk Mountain (Kırşehir). Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 20, 79–89 (in Turkish). Hamzaoğlu, E., Duran, A., 2004: A phytosociological research on the degraded forest vegetation of Dinek Mountain (Kırıkkale). Gazi Üniversitesi Fen Bilimleri Dergisi 17, 1–13. VEGETATION OF SIVRIHISAR MOUNTAINS ACTA BOT. CROAT. 77 (1), 2018 27 Hennekens, S. M., Schaminée, J. H. J., 2001: TURBOVEG a com- prehensive data base management system for vegetation data. Journal of Vegetation Science 12, 589–591. Jankju, M., Mellati, F., Atashgahi, Z., 2011: Flora, life form and cho- rology of winter and rural range plants in the northern Kho- rasan province, Iran. Journal of Rangeland Science 1, 269–283. Kavgacı, A., Başaran, S., Başaran, M. A., 2010b: Cedar forest com- munities in western Antalya (Taurus Mountains, Turkey). Plant Biosystems 144, 271–287. Kavgacı, A., Čarni, A., Tecimen, B., Özalp, G., 2010a: Diversity and ecological differantiation of oak forests in NW Thrace (Tur- key). Archives of Biological Sciences 62, 705–718. Kaya, Ö. F., Ketenoğlu, O., Yetim, S., 2011: A synecological and syntaxonomical research of the secondary vegetation caused by overgrazing on Arat Mountain (Şanlıurfa, Turkey). Acta Botanica Gallica 158, 13–25. Ketenoğlu, O., Akman, Y., 1982: The phytosociological inves- tigation of Quercus pubescens formation in Kızılcahamam- Kargasekmez region in Central Anatolia. Communications 25, 1–9. Ketenoğlu, O., Aydoğdu, M., Kurt, L., Akman, Y., Hamzaoğlu, E., 2000: Syntaxonomic research on the gypsicole vegetation in Cap- padocia, Turkey. Israel Journal of Plant Sciences 48, 121–128. Ketenoğlu, O., Quézel, P., Akman, Y., Aydoğdu, M., 1983: New syntaxa on the gypsaceus formations in the Central Anatolia. Ecologia Mediterranea 9, 211–221. Kılınç, M., 1979: The flora of the serpentine formation between Kırıkkale-Kalecik and Elmadağ. Ormancılık Araştırma En- stitüsü Dergisi 25, 29–40 (in Turkish). Kılınç, M., 1985: The vegetation of the area among Devrez stream and Kızılırmak River in Central Anatolia-Western Black Sea Region transition zone. Doğa Bilimleri Dergisi 9, 315–357 (in Turkish). Krause, K., 1940: Plant formations of Western and Central Anato- lia (Translation: A. Birand). Ziraat Vekaleti Yüksek Ziraat En- stitüsü Yayınları, Ankara (in Turkish). Kurt, L., 2000: A study on the steppic vegetation between Aksaray- Nevşehir and Şereflikoçhisar from the phytoecological aspect. Fırat Üniv. Fen ve Mühendislik Dergisi 12, 51–59 (in Turkish). Kurt, L., 2002: The steppe vegetation of Emirdag (Afyon/Turkey). Anadolu Üniversitesi Bilim ve Teknoloji Dergisi 3, 257–270. Kurt, L., Kurt, F., Evren, H., Karakaya, A., 1999: Steppic vegetation of the Eldivan Mountain (Çankırı/Turkey). Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 11, 49–57. Kurt, L., Tuğ, G. N., Ketenoğlu, O., 2006: Synoptic view of the steppe vegetation of central Anatolia. Asian Journal of Plant Sciences 5, 733–739. Kürschner, H., Parolly, G., 2012: The Central Anatolian steppe. In: Werger, M. J. A. and van Staalduinen, M. A. (eds.), Eurasian steppes. Ecological problems and livelihoods in a changing world, 149–171. Springer, Netherlands. Lepš, J., Šmilauer, P., 2003: Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge. Louis, H., 1939: Das natürliche Pflanzenkleid Anatoliens, geog- raphisch gesehen. Geographische Abhandlungen, Stuttgart. Mc Cune, B., Mefford, M. J., 2006: PC-ORD 5, Multivariate analy- sis of ecological data. MjM Sofware Design. Gleneden Beach, Oregon. Ocakverdi, H., Oflas, S., 1999: The plant sociology and ecology of Upper Göksu Basin (Hadim-Konya) and its environs. Turkish Journal of Botany 23, 195–210. Ocakverdi, H., Ünal, A., 1991: Plant sociology and its ecology re- search of Karadağ (Karaman). Doğa, Turkish Journal of Botany 15, 79–100 (in Turkish). Özkan, K., 2009: Environmental factors as influencing vegetation communities in Acipayam district of Turkey. Jornal of Envi- ronmental Biology 30, 741–746. Özkan, K., Gülsoy, S., Mert, A., Öztürk, M., Muys, B., 2010: Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. Jornal of Envi- ronmental Biology 31, 51–60. Özkan, K., Şenol, H., Gülsoy, S., Mert, A., Suel, H., Eser, Y., 2009: Vegetation-environment relationships in Mediterranean mountain forests on limeless bedrocks of southern Anatolia, Turkey. Journal of Environmental Engineering and Landscape Management 17, 154–163. Quézel, P., 1973: Contribution á l’etude phytosociologique du ma- sif du Taurus. Phytocoenologia 1, 131–222. Quézel, P., Barbéro, M., Akman, Y., 1978: L’Interpretation phy- tosociologique des groupements forestiers dans le Bassin Mediterraneen Oriental. Documents Phytosociologiques 2, 329–352. Quézel, P., Barbéro, M., Akman, Y., 1980: Contribution á l’etude de la végétation forestiére d’Anatolie Septentrionale. Phytocoe- nologia 8, 365–519. Quézel, P., Barbéro, M., Akman, Y., 1992: Typification de syntaxa décrits en région Mediterranéenne Orientale. Ecologia Medi- terranea 18, 81–87. Raunkiaer, C., 1934: life forms of plants and statistical plant geog- raphy. Oxford University Press, London. Rove, N., Speck, T., 2005: Plant growth forms: an ecological and evolutionary perspective. New Phytologist 166, 61–72. Sebastiá, M. T., 2004: Role of topography and soils in grassland structuring at the landscape and community scales. Basic and Applied Ecology 5, 331–346. Schwarz, O., 1936: Die vegetations verhältnisse Westanatoliens. Englers’ Botanische Jahrbücher fur Systematik 67, 297–436. Şanda, M. A., Küçüködük, M., Serin, M., 2000: The steppe veg- etation of the area among Hadim (Konya), Ermenek and Bucakkışla (Karaman). Selçuk Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi 1, 21–35 (in Turkish). Tatlı, A., Eyce, B., Serin, M., 1994: The vegetation of Kızılören, Çal and Loras Mountains (Konya). Turkish Journal of Botany 18, 267–288 (in Turkish). Ter Braak, J. F. C., Šmilauer, P., 2002: CANOCO Reference Man- ual and CanoDraw for Windows User’s Guide, Software for Canonical Community Ordination (version 4.5) Wagenin- gen. Tichý, L., 2002: JUICE, software for vegetation classification. Jour- nal of Vegetation Science 13, 451–453. Török, P., Ambarlı, D., Kamp, J., Wesche, K., Dengler, J., 2016: Step (pe) up! Raising the profile of the Palaearctic natural grass- lands. Biodiversity and Conservation 25, 2187–2195. Walter, H., 1956: Des problem der Zentralanatolischen stepe. Die Naturwissenschaften 43, 97–102. Weber, H. E., Moravec, J., Theurillat, J. P., 2000: International code of phytosociological nomenclature 3rd edition. Journal of Veg- etation Science 11, 739–768. Westhoff, V., Van Der Maarel, E., 1973: The Braun-Blanquet ap- proach. In: Whittaker, R. H. (ed.), Handbook of Vegetation Science 5, Ordination and classification of communities, 617– 726. Junk, The Hague (in Dutch). Yurdakulol, E., Aydoğdu, M., Çetin, B., 1990: A study of the steppe vegetation surrounding area of Kırıkkale-Kalecik-Kırşehir from the phytosociological aspect. Doğa, Turkish Journal of Botany 14, 215–234 (in Turkish).