146 ACTA BOT. CROAT. 80 (2), 2021 Acta Bot. Croat. 80 (2), 146–157, 2021 CODEN: ABCRA 25 DOI: 10.37427/botcro-2021-015 ISSN 0365-0588 eISSN 1847-8476 Seed micromorphology and anatomy of 36 Muscari (Asparagaceae) taxa from Turkey with notes on their systematic importance Hüseyin Eroğlu1, Mehmet Cengiz Karaismailoğlu2*, Süleyman Mesut Pinar3, Mehmet Fidan2 1 Yüzüncü Yıl University, Faculty of Sciences, Department of Biology, 65090 Tuşba-Van, Turkey 2 Siirt University, Faculty of Arts and Sciences, Department of Biology, 56100 Kezer-Siirt, Turkey 3 Yüzüncü Yıl University, Van School of Health, 65090 Tuşba-Van, Turkey Abstract – This study presents the first in-depth evaluation of the morphological and anatomical characters, as well as their taxonomic importance, of the seeds of 36 taxa in subgenera Muscari, Leopoldia, Pseudomuscari and Botryanthus of the genus Muscari in Turkey, where 24 of the taxa are endemic. The results indicate that the taxa generally differ from each other in terms of seed shape and dimension. Seed dimensions vary between 1.66 mm and 3.21 mm in length, and between 1.12 mm and 2.63 mm in width. The seed surface ornamentation is grouped into nine forms: ru- minate, reticulate, reticulate-areolate, reticulate-foveate, alveolate, scalariform, rugose, verrucate and areolate. The most common type is ruminate, while areolate, reticulate-foveate and scalariform ornamentation forms were found to be taxon-specific. Testa structures of the taxa examined consist in general of two different layers: the epidermis and the subepidermis in scleranchymatous or parenchymatous structures. The subepidermis may be absent in some of taxa. The structure and thickness of the epidermis and the subepidermis are very important characteristics that dis- close interspecific relations among the examined taxa. We also provide a key for the identification of the studied taxa based on seed features. Keywords: crystal, morphology, Muscari, scanning electron microscopy, taxonomy, testa, Turkey Introduction The genus Muscari Mill. is found across the European continent, Mediterranean region and northwest Asia (Jafari and Maassoumi 2011). According to the latest checklist study, the genus is represented by 51 species worldwide ( Govaerts 2019). According to other recent studies, Muscari includes 40 species belonging to four subgenera as Muscari, Leopoldia and Botryanthus and Pseudomuscari with con- troversial status in Turkey, 26 of which are endemic (Dizkırıcı et al. 2019, Eker 2019a,b, Demirci-Kayıran et al. 2019). The genus is characterized by its bulbs, basal leaves, inflorescences, pedicels, flower form and colour, filament placement relative to the tube, and capsule shape (Davis and Stuart 1984). Major taxonomic problems of the genus in- clude the many synonyms among taxa, the fact that type specimens are often cultivated material of unknown origin, that widespread taxa show a lot of variation and the color difference between fresh and dried f lowers (Davis and Stuart 1984). Moreover, reliable classification is impossible in the genus because morphological characteristics and kary- ological information are not complete or consistent enough to make uncontroversial taxonomic judgements (Dizkırıcı et al. 2019). The genus was placed in Hyacinthaceae until the Angiosperm Phylogeny Group (APG) re-evaluated its taxonomic position as a result of subsequent studies, and placed it within the family Asparagaceae (Reveal and Chase 2011, Guner et al. 2012, Demirci and Özhatay 2017). Several morphological, anatomical, cytological, palyno- logical and ecological studies on taxa belonging to various genera of Asparagaceae have been performed previously (Shoub and Halevy 1971, Bentzer et al. 1974, Küçüker 1990, Uysal 1999, Herrmann et al. 2006, Lynch et al. 2006, Uysal et al. 2007, Gürsoy and Şık 2010, Kahraman et al. 2010, Doğu and Bağcı 2009, Doğu et al. 2011, Sezer et al. 2013). However, the morphological and anatomical features of * Corresponding author e-mail: cengiz.karaismailoglu@siirt.edu.tr SEED STRUCTURES OF Muscari FROM TURKEY ACTA BOT. CROAT. 80 (2), 2021 147 seeds have been largely ignored in the systematics of taxa in the family, except in a few new species descriptions (Yıldırım 2015, 2016, Doğu and Uysal 2019). The purpose of this study is to: (i) examine the morpho- logical and anatomical characteristics of seeds of 36 taxa in subgenera Muscari, Leopoldia, Pseudomuscari and Botryan- thus of the genus Muscari in Turkey, and (ii) debate the tax- onomic use of these characters. The study will also serve as a guide to further related studies on various genera in the family. Material and methods The plant specimens were collected from various phy- togeographical regions of Turkey during the fruiting season and were deposited at VANF (Van Yüzüncü Yıl University Herbarium). Details are provided in Tab. 1. Macromorphological features of the seeds including co- lour, shape and size were documented for 100 seeds of 10 individuals per species utilizing a Leica EZ4 binocular mi- croscope with a HD camera (On-line Suppl. Fig. 1, Tab. 2). For the micromorphological features of surface ornamenta- tion, anticlinal and periclinal cell walls, and the form of epi- dermal cells, the samples were studied with a Scanning Electron Microscope (On-line Suppl. Fig. 2, Tab. 3). Seeds were first placed on the stub with silver epoxy and coated with gold, then examined with a Zeiss LEO 440 SEM. A survey of seed anatomical characters was done with dry herbarium materials. Cross-sections were taken from the middle of the seed with a fully automatic microtome (Thermo Shonda Met Finesse, Thermo). They were brought through a series of alcohol and xylene, dyed with hematox- ylin and eosin-Y in a staining device (ASC 720 Medite) and mounted using Entellan (On-line Suppl. Fig. 3, Tab. 4) (Karaismailoğlu 2015, Karaismailoğlu and Erol 2018, Karaismailoğlu and Güner 2019). Anatomical characteris- tics were examined with an Olympus CX31 light micro- scope and Kameram Imaging Software (KAMERAM12 CCD, Argenit Micro System Ltd., Turkey). The terminology used for seed morphological and ana- tomical characteristics is compatible with Stearn (1985). Grouping of taxa was performed using the clustering analysis method (UPGMA) in MultiVariate Statistical Pack- age (MVSP) in accordance with the 44 characters in Tables 2-4 (Fig. 1). Characters used in statistical analysis were: seed colour (1); shape: orbicular (2), ovate (3), oblong (4), elliptic (5), lanceolate (6); sizes: length (7), width (8), L/W (9); surface orna- mentation: reticulate (10), alveolate (11), areolate (12), verru- cate (13), ruminate (14), foveate (15), rugose (16), scalariform (17); anticlinal cell walls: sunken (18), raised (19), unclear (20); periclinal cell walls: convex (21), concave (22), unclear (23); epidermal cell structure: polygonal (24), alveolar (25), rect- angular (26), flat (27), unclear (28); anatomical structure of the epidermis: flat (29), rectangular (30), crushed (31), polyg- onal (32), scleranchymatous cells (33), parenchymatous cells (34); anatomical structure of the subepidermis: crushed (35), flat (36), orbicular (37), square (38), polygonal (39), rectangu- lar (40), scleranchymatous cells (41), parenchymatous cells (42); testa thickness (43); presence of crystals (44). The dis- similarity matrix of the studied taxa was created with MVSP (Kovach 2007) (On-line Suppl. Tab. 1). A dendrogram was created. Also, the cophenetic correlation coefficient is de- signed to explain the relation between the dendrogram and similarity matrix (On-line Suppl. Tab. 1, Fig. 1). Results This work assesses macromorphologically the seed fea- tures of the studied taxa, including colour, shape and di- mensions. All of the taxa examined have the same seed col- or (black) but the shape and size of seeds vary considerably. Seeds examined can be divided into 7 shapes; orbicular, ovate-orbicular, ovate, oblong-ovate, oblong-elliptic, elliptic Fig. 1. Cluster analysis of the studied taxa. EROĞLU H., KARAISMAILOĞLU M. C., PINAR S. M., FIDAN M. 148 ACTA BOT. CROAT. 80 (2), 2021 and elliptic-lanceolate. Orbicular is the most common type (found in 20 taxa). However, oblong-ovate, oblong-elliptic and elliptic-lanceolate are characteristic types for Muscari mirum, M. longipes and M. macbeathianum, respectively. Seed dimensions range from 1.66 mm to 3.21 mm in length, and from 1.12 mm to 2.63 mm in width. While M. erdalii and M. racemosum have the largest seeds, M. macbeathianum has the smallest seeds (Tab. 2, On-line Suppl. Fig. 1). The surface ornamentation, anticlinal and periclinal cell walls, and epidermal cell structures of the seeds have been micromorphologically evaluated in this study. Seed surface ornamentation is grouped into nine types: ruminate, retic- ulate, reticulate-areolate, reticulate-foveate, alveolate, sca- lariform, rugose, verrucate and areolate. The most common form is ruminate, while areolate, reticulate-foveate and sca- lariform ornamentation forms were found to be taxon-spe- cific (Tab. 3, On-line Suppl. Fig. 2). The reticulate-foveate (in M. elmasii), areolate (M. neglectum), and scalariform (M. azureum) ornamentation types are each displayed by only one taxon. The anticlinal cell walls in the studied taxa are raised, sunken or unclear. While sunken cell walls are wide- ly seen in the alveolate, verrucate, areolate, reticulate-areo- late and scalariform ornamentation types, the reticulate and reticulate-foveate ornamentation types are found where epi- dermal cells are enclosed by raised walls. Rugose and rumi- nate types are associated with unclear form (Tab. 3). No clear relationship exists between convex or concave pericli- nal cell walls and surface ornamentation types; however, ruminate and rugose types are found only with unclear periclinal cells. The shape of epidermal cells on the seed surface has also showed diversity and may be grouped into polygonal, alveolar, rectangular and unclear categories. The most common cell type is unclear, while rectangular and alveolar are fairly rare (Tab. 3). The results of the examination of the anatomical struc- tures of the seeds are indicated in On-line Suppl. Fig. 3 and Tab. 4. Testa structures of the seeds of the examined taxa generally consisted of 2 main layers, the epidermis and the subepidermis, formed in either the scleranchymatous or par- enchymatous tissue. The epidermis layer displays important variations in cell form, consisting of f lat, rectangular, crushed, or polygonal cells, in 1-3 layers, and has undulated or straight wall structure. The most frequent form is flat, while the rarest ones are the rectangular and polygonal types (Tab. 4, On-line Suppl. Fig. 3). The subepidermis layer con- sists of crushed, orbicular, rectangular, square, flat or polyg- onal cells in 1-10 layers. The most commonly seen types are crushed and polygonal, whereas the rarest ones are the or- bicular and square types. The subepidermis layer is not found in some of the examined taxa (M. discolor, M. incon- strictum, M. parviflorum, M. botryoides and M. turcicum) (Tab. 4). The thickness of the epidermis layers varies between 16.64 μm (in M. turcicum) and 128.46 μm (in M. longipes). Raphide crystals are seen in the epidermis or subepidermis layers of seeds in M. comosum, M. tenuiflorum, M. babachii, M. discolor and M. vuralii (Tab. 4, On-line Suppl. Fig. 3). A dendrogram indicating differences and similarities among the studied taxa was created by numerical analyses of the seed morphological and anatomical characters, based on the variation of 44 characteristics in 36 taxa. The cophe- netic correlation between the similarity matrix and dendro- gram has been computed as 0.59, representing a good match. Cluster A2 includes the highest number of taxa when compared to other clusters. Muscari sandrasicum forms a clade separate from these clusters in the dendrogram (Fig. 1). M. discolor and M. parviflorum are the most closely re- lated taxa (with a dissimilarity coefficient of 1.01), the most distantly related taxa recorded are M. sandrasicum and M. turcicum (with a dissimilarity coefficient of 136.31) (On-line Suppl. Tab. 1). Discussion The morphological features of seeds offer valuable in- formation about evolutionary relationships among flower- ing plants (Corner 1976, Karaismailoğlu and Erol 2018). However, seed morphological and anatomical features have so far not been extensively used to elucidate inter-species relationships within genera of the family Asparagaceae. This is the first study to reveal the morphological and ana- tomical features of the seeds of a genus in the family, and it will be a model for subsequent studies on various genera. The macromorphological characters of seeds display variation among the examined Muscari taxa, with the ex- ception of seed colour, which is consistently black. The gen- eral appearance among populations, including floristic characters and capsule structures, of M. macrocarpum and M. racemosum in subgenus Muscari, M. caucasicum and M. weissii in subgenus Leopoldia, M. aucheri and M. armenia- cum in subgenus Botryanthus are very similar, but they can be easily distinguished using seed shape and size. Comparison of the surface micromorphological struc- ture of seeds is of taxonomical importance (Karaismailoğlu and Erol 2018). Heywood (1971) discusses the significance and efficiency of scanning electron microscopy in elucidat- ing taxonomic problems and distinguishing taxa. However, there are few studies on the importance of seed micromor- phology in the family Asparagaceae (Yıldırım 2015, 2016). This study on 36 Muscari taxa shows that seed microstruc- tures are useful characteristics in separating the taxa with- in the family. Almost all of the studied taxa have been ex- amined in this way for the first time, with the exceptions of M. elmasii (smooth) and M. atillae (smooth) (Yıldırım 2015, 2016). We recorded nine seed surface ornamentation types in this study. In the genus, the most common seed orna- mentation types are ruminate and reticulate. In contrast to this study, reticulate and reticulate-areolate types have been commonly seen among taxa from various angiosperm fam- i lies (Ta ntaw y et a l. 20 04, Ka ra isma i loğ lu 2015, Karaismailoğlu and Erol 2018). Two closely related taxa in the subgenus Muscari, M. macrocarpum and M. racemo- sum, have the same reticulate surface ornamentation type; however, M. macrocarpum has different secondary cuticular SEED STRUCTURES OF Muscari FROM TURKEY ACTA BOT. CROAT. 80 (2), 2021 149 Ta b. 1 . T he e xa m in ed ta xa a nd th ei r l oc at io ns (* =e nd em ic ta xo n) . N o Su bg en us Ta xa Lo ca tio n V ou ch er 1 M us ca ri M us ca ri m ac ro ca rp um S w ee t C 1 M uğ la ; b et w ee n M ar m ar is a nd E m ec ik , a ft er B al ık P as s, ro ck y va lle y, 3 6° 4 6’ 2 7” N , 2 7° 5 9’ 3 6” E , 3 24 m , 01 .0 3. 20 16 H . E ro ğl u 12 15 2 *M . r ac em os um M ill . C 2 D en iz li; Ç am el i, D en iz li- Fe th iy e ro ad , 5 k m to A liv er en V ill ag e, P in us y ar ds , s er pe nt in e fie ld s, 37 ° 1 3’ 3 9” N , 2 9° 26 ’ 5 2” E , 1 26 4 m , 0 4. 05 .2 01 7. H . E ro ğl u 13 17 3 Le op ol di a M . c au ca si cu m (G ri se b. ) B ak er B9 V an ; E re k M ou nt ai n, so ut h of S ar m aç V ill ag e, st ep pe , 3 8° 2 9’ 1 6” N , 4 3° 2 9’ 2 6” E , 2 20 0 m , 2 4. 05 .2 01 6. H . E ro ğl u 12 81 4 M . w ei ss ii Fr ey n A nt al ya : S er ik , K um kö y, P in us p in ea fo re st n ea r th e se a, d un es u nd er th e w oo od , 3 6° 5 2’ 0 7’ ’ N , 3 0° 5 6’ 3 6’ ’ E , 3 m , 02 .0 4. 20 16 . H . E ro ğl u 12 20 5 M . c om os um (L .) M ill . C 2 M uğ la , M ar m ar is , b et w ee n M ar m ar is a nd D at ça , H is ar ön ü Ba y, r oa ds id e, 3 6° 4 7’ 5 9” N , 2 8° 0 5’ 3 1” E , 7 0 m , 16 .0 4. 20 17 . H . E ro ğl u 13 01 6 M . t en ui flo ru m T au sc h B6 A da na ; F ek e, E se nd er e C an yo n, P in us y ar ds , 3 7° 4 5’ 4 4” N , 3 5° 5 5’ 0 3” E , 6 51 m , 1 5. 06 .2 01 6. H . E ro ğl u 12 88 7 *M . b ab ac hi i E ke r & K oy un cu C 6 H at ay , A nt ak ya , K is ec ik V ill ag e, R ad ar r oa d, sc ru b ya rd s, 36 ° 1 8’ 1 5” N , 3 6° 0 2’ 5 9” E , 1 43 0 m , 1 2. 06 .2 01 6. H . E ro ğl u 12 86 8 *M . e rd al ii N .Ö zh at ay & S .D em ir ci C 4 İç el ; M ut , s ou th o f İ br ah im li V ill ag e, sc ru b ya rd s, 36 ° 4 0’ 5 5” N , 3 3° 3 9’ 2 3” E , 9 00 m , 0 2. 05 .2 01 6. H . E ro ğl u 12 55 9 M . l on gi pe s B oi ss . B6 S iv as ; H afi k, w es t o f D ur ul m uş V ill ag e, m ar ly h ill s, 39 ° 5 0’ 0 8” N , 3 7° 1 8’ 2 0” E , 1 31 2 m , 3 0. 05 .2 01 7. H . E ro ğl u 13 27 10 *M . m as sa ya nu m C .G ru ne rt C 5 A da na ; P oz an tı, u pw ar ds o f H am id iy e V ill ag e, se rp en tin e sl op es , 3 7° 3 2’ 2 7” N , 3 5° 0 0’ 5 1” E , 1 35 7 m , 0 1. 05 .2 01 6. H . E ro ğl u 12 53 11 *M . m ir um S pe ta C 2 D en iz li; Ç am el i, D en iz li- Fe th iy e ro ad , 4 k m to A liv er en V ill ag e, se rp en tin e sl op es , 3 7° 1 2’ 4 1” N , 2 9° 2 6’ 1 7” E , 14 75 m , 0 4. 05 .2 01 6. H . E ro ğl u 12 59 12 *M . e lm as ii Yı ld ır ım C 2 M uğ la ; D al am an , a bo ve G ür le yi k V ill ag e, Ç al M ou nt ai n, P in us y ar ds , 3 6° 5 2’ 4 9” N , 2 9° 0 7’ 1 0” E , 1 27 1 m , 14 .0 5. 20 16 . H . E ro ğl u 12 70 13 *M . u fu ki i E .K ay a & D em ir ci B9 V an ; Ç at ak , b et w ee n Ç at ak -B ilg i V ill ag e, st ep pe , 3 8° 0 3’ 4 8” N , 4 3° 1 1’ 4 9” E , 1 67 0 m , 1 7. 07 .2 01 7. H . E ro ğl u 13 41 14 Ps eu do m us ca ri *M . c oe le st e Fo m in B9 V an ; E re k M ou nt ai n, si de o f K eş iş L ak e, h um id m ea do w s, 38 ° 2 7’ 4 3” N , 4 3° 3 4’ 5 1” E , 2 56 4 m , 1 8. 05 .2 01 7. H . E ro ğl u 13 19 15 *M . a zu re um F en zl C 5 N iğ de ; U lu kı şl a, K ar ag öl , h um id m ea do w s, 37 ° 2 4’ 1 6” N , 3 4° 3 3’ 3 8” E , 2 59 9 m , 0 1. 05 .2 01 6. H . E ro ğl u 12 51 16 Bo tr ya nt hu s *M . a uc he ri (B oi ss .) Ba ke r A 9 K ar s; Sa rı ka m ış to H an de re 5 . k m , m ea do w s, 40 ° 1 8’ 3 3’ ’ N , 4 2° 3 0’ 4 3’ ’ E , 2 19 6 m , 0 8. 06 .2 01 6. H . E ro ğl u 12 85 17 M . a rm en ia cu m L ei ch tli n ex B ak er C 4 K ar am an ; S ar ıv el ile r, A tm ey da nı p la ce , s te pp e, 3 6° 4 1’ 4 4” N , 3 2° 3 1’ 0 0” E , 1 66 5 m , 0 1. 05 .2 01 7 H . E ro ğl u 13 06 EROĞLU H., KARAISMAILOĞLU M. C., PINAR S. M., FIDAN M. 150 ACTA BOT. CROAT. 80 (2), 2021 18 *M . s iv ri hi sa rd ag hl ar en sis Y ıld . & B .S el vi B3 E sk iş eh ir ; S iv ri hi sa r, be tw ee n K uz uö re n an d K ar ac aö re n vi lla ge s, st on y- ro ck y st re am si de , 3 9° 1 8’ 5 2” N , 3 1° 4 2’ 42 ” E, 1 41 6 m , 0 2. 05 .2 01 7. H . E ro ğl u 13 09 19 M . n eg le ct um G us s. ex T en . B3 E sk iş eh ir ; S iv ri hi sa r, G ün yü zü c ro ss , s te pp e, 3 9° 2 9’ 4 2” N , 3 1° 3 6’ 4 1” E , 1 00 9 m , 1 7. 04 .2 01 6. H . E ro ğl u 12 42 20 *M . a na to lic um C ow le y & Ö zh at ay C 5 İç el ; T or os la r, A rs la nk öy , a bo ve D üm be le k G eç id i r oc ky sl op es , 3 7° 0 3’ 5 6” N , 3 4° 1 7’ 5 3” E , 2 21 2 m , 1 1. 05 .2 01 8. H . E ro ğl u 13 82 21 *M . t uz go lu en si s Y ıld . B4 A ks ar ay , E sk il, 1 k m to w ar s T uz gö lü fr om E sk il, st ep pe , 3 8° 2 4’ 4 3” N , 3 3° 2 7’ 2 0” E , 9 22 m , 1 3. 04 .2 01 6. H . E ro ğl u 12 33 22 *M . d is co lo r B oi ss . & H au ss kn . e x B oi ss . C 8 M ar di n; A rt uk lu , M ar di n- D iy ar ba kı r ro ad , A kr es ta p as s, st on y st re am si de , 3 7° 2 2’ 5 7” N , 4 0° 3 9’ 0 9” E , 1 13 8 m , 07 .0 4. 20 17 . H . E ro ğl u 12 97 23 M . i nc on st ri ct um R ec h. f. C 6 K ili s; so ut h of K oc ab ey li V ill ag e, st on y- ro ck y fie ld s, 36 ° 4 8’ 0 7” N , 3 6° 5 4’ 5 9” E , 4 50 m , 2 8. 02 .2 01 6. H . E ro ğl u 12 12 24 *M . l at ifo liu m J. K ir k B2 Ç an ak ka le ; B ay ra m iç , A ya zm a pr om en ad e, u nd er th e fo re st , h um id a re as , 3 9° 4 4’ 4 5” N , 2 6° 5 0’ 4 7” E , 4 76 m , 03 .0 5. 20 17 . H . E ro ğl u 13 13 25 *M . a di lii M .B .G ün er & H .D um an A 3 A nk ar a, B ey pa za rı , a bo ve H ır ka te pe V ill ag e, a ro un ds o f K oç ah m et F ou nt ai n, m ar ly v al le ys , 4 0° 1 1’ 4 3” N , 3 1° 4 6’ 39 ” E, 1 00 0 m , 0 2. 05 .2 01 7. H . E ro ğl u 13 08 26 *M . b ou rg ae i B ak er C 4 K ar am an ; S ar ıv el ile r, A tm ey da nı P la ce , m ea do w s, st re am si de , 3 6° 4 1’ 2 5” N , 3 2° 3 2’ 4 1” E , 1 60 3 m , 0 1. 05 .2 01 7. H . E ro ğl u 13 04 27 *M . s an dr as ic um K ar lé n C 2 M uğ la ; K öy ce ği z, S an dr as M ou nt ai n, S an dr as H ig hl an d, D eğ ir m en bo zu ğu P la ce , s to ny st re am si de , 3 7° 0 5’ 3 6” N , 28 ° 5 3’ 2 3” E , 1 35 6 m , 1 1. 04 .2 01 6. H . E ro ğl u 12 26 28 M . m ic ro st om um P .H .D av is & D .C .S tu ar t B5 K ay se ri ; B ün ya n, b et w ee n Bü ny an a nd P ın ar ba şı 4 . k m , h um id m ea do w s, 38 ° 4 9’ 4 0” N , 3 5° 5 4’ 2 4” E , 1 38 9 m , 19 .0 5. 20 16 . H . E ro ğl u 12 77 29 *M . m ac be at hi an um K it Ta n B6 A da na ; T uf an be yl i, 2 km fr om G üz el im V ill ag e to T uf an be yl i, du ne u nd er P in us , 3 8° 0 9’ 2 4” N , 3 6° 1 0’ 4 5” E , 14 42 m , 0 9. 05 .2 01 8. H . E ro ğl u 13 74 30 *M . v ur al ii Ba ğc ı & D oğ u C 4 K ar am an ; S ar ıv el ile r, A tm ey da nı p la ce , m ea do w s, 36 ° 4 1’ 2 5” N , 3 2° 3 2’ 0 1” E , 1 60 3 m , 1 4. 04 .2 01 6. H . E ro ğl u 12 34 31 M . p ar vi flo ru m D es f. C 5 İç el ; Y en iş eh ir, b et w ee n Em ir le r an d Tu ru nç lu v ill ag es , g ar de n ed ge s, 36 ° 5 0’ 1 0” N , 3 4° 2 8’ 4 2” E , 2 88 m , 28 .0 9. 20 16 . H . E ro ğl u 12 91 32 *M . s er pe nt in ic um Y ıld ır ım , A ltı oğ lu & Pi rh an C 2 M uğ la ; K öy ce ği z, S an dr as M ou nt ai n, S an dr as H ig hl an d, D eğ ir m en bo zu ğu P la ce , s to ny st re am si de , 3 7° 0 5’ 3 6” N , 28 ° 5 3’ 2 3” E , 1 35 6 m , 1 1. 04 .2 01 6. H . E ro ğl u 12 24 33 M . b ot ry oi de s ( L. ) M ill . B9 A ğr ı; Tu ta k, b et w ee n A şa ğı kö şk a nd D oğ an üs tü n vi lla ge s, m ea do w s, 39 ° 2 4’ 2 1” N , 4 2° 4 5’ 3 6” E , 1 66 9 m , 10 .0 5. 20 16 . H . E ro ğl u 12 62 34 *M . a rt vi ne ns e D em ir ci & E .K ay a A 9 A rt vi n; M ur gu l, ab ov e K or uc ul ar V ill ag e, m ea do w s, 41 ° 1 8’ 0 0” N , 4 1° 3 8’ 5 8” E , 7 62 m , 1 3. 05 .2 01 6. H . E ro ğl u 12 66 35 *M . a til la e Yı ld ır ım B7 M al at ya , A kç ad ağ , L ev en t C an yo n, m ar ly -m ov em en t s lo pe s, 38 ° 2 6’ 0 3” N , 3 7° 5 5’ 5 6” E , 1 19 7 m , 0 7. 04 .2 01 7. H . E ro ğl u 12 96 36 *M . t ur ci cu m U ys al , E rt ug ru l & D ur al C 4 K on ya ; B oz kı r, ab ov e A vd an H ig hl an d, sn ow pa tc he s, st ep pe , 3 7° 0 1’ 1 5” N , 3 2° 1 0’ 4 1” E , 1 97 8 m , 1 1. 05 .2 01 8. H . E ro ğl u 13 79 SEED STRUCTURES OF Muscari FROM TURKEY ACTA BOT. CROAT. 80 (2), 2021 151 protrusions. Seed surface ornamentation is a useful charac- ter in distinguishing the taxa of the subgenus Leopoldia, which exhibits five ornamentation types in 11 taxa. In the subgenus Pseudomuscari, M. coeleste and M. azureum taxa are very similar in terms of population appearance, flowers and fruit capsule characteristics; however, they are distinct- ly different in terms of seed ornamentation types: ruminate and scalariform, respectively. In the subgenus Botryanthus, ornamentation types are diverse (seven types), and the dis- tinct surface ornamentation in nearly identical taxa, such as M. armeniacum-M. aucheri, M. armeniacum-M. bourgaei, M. armeniacum-M. microstomum is proof of the taxonomi cal significance of this characteristic in the subgenus. Earlier seed surface studies have indicated that the views and structures of anticlinal and periclinal cell walls are good diagnostic characters in the establishment of inter-species relationships (Barthlott 1981, Karaismailoğlu 2015, 2016). The types of anticlinal and periclinal cell walls, and epider- mal cell structures of the examined taxa vary among the taxa, except for those of the subgenus Muscari. Tab. 2. Macromorphological characters of the seeds of the studied taxa (mean values ± standard deviation, L=length, W=width). Subgenus Taxa Shape Seed dimensions L (mm) W (mm) L/W Muscari Muscari macrocarpum orbicular 2.98 ± 0.32 2.61 ± 0.29 1.14 M. racemosum broadly ovate-orbicular 3.16 ± 0.22 2.63 ± 0.30 1.20 Leopoldia M. caucasicum broadly ovate 2.34 ± 1.18 1.85 ± 0.11 1.26 M. weissii orbicular 2.08 ± 0.14 1.76 ± 0.12 1.18 M. comosum orbicular 2.23 ± 0.13 2.03 ± 0.11 1.10 M. tenuiflorum broadly ovate-orbicular 2.45 ± 1.15 2.17 ± 0.14 1.13 M. babachii broadly ovate 2.70 ± 0.19 2.22 ± 0.15 1.22 M. erdalii broadly ovate 3.21 ± 0.25 2.43 ± 0.15 1.32 M. longipes oblong-elliptic 2.42 ± 0.24 2.01 ± 0.12 1.20 M. massayanum broadly ovate 3.13 ± 0.23 2.56 ± 0.18 1.22 M. mirum oblong-ovate 2.82 ± 0.22 2.34 ± 0.17 1.20 M. elmasii broadly ovate 2.81 ± 0.25 2.25 ± 0.20 1.24 M. ufukii broadly ovate 3.06 ± 0.17 2.61 ± 0.13 1.17 Pseudomuscari M. coeleste orbicular 2.18 ± 0.16 1.52 ± 0.09 1.43 M. azureum orbicular 2.06 ± 0.10 1.35 ± 0.09 1.52 Botryanthus M. aucheri orbicular 2.11 ± 0.13 1.37 ± 0.08 1.54 M. armeniacum broadly ovate-orbicular 1.96 ± 0.16 1.71 ± 0.11 1.14   M. sivrihisardaghlarensis broadly ovate-orbicular 2.18 ± 0.17 1.69 ± 0.12 1.28 M. neglectum broadly elliptic 2.06 ± 0.15 1.64 ± 0.10 1.25 M. anatolicum orbicular 2.09 ± 0.15 1.72 ± 0.19 1.21 M. tuzgoluensis orbicular 1.94 ± 0.13 1.65 ± 0.13 1.17 M. discolor orbicular 2.23 ± 0.26 1.73 ± 0.11 1.28 M. inconstrictum orbicular 1.99 ± 0.12 1.80 ± 0.12 1.10 M. latifolium ovate-orbicular 2.39 ± 0.20 1.98 ± 0.13 1.20 M. adilii orbicular 2.45 ± 0.16 2.20 ± 0.17 1.11 M. bourgaei orbicular 1.82 ± 0.09 1.42 ± 0.11 1.28 M. sandrasicum orbicular 1.94 ± 0.17 1.53 ± 0.16 1.26 M. microstomum orbicular 1.87 ± 0.13 1.55 ± 0.16 1.20 M. macbeathianum broadly elliptic-lanceolate 1.66 ± 0.13 1.12 ± 0.09 1.48 M. vuralii orbicular 2.15 ± 0.14 1.60 ± 0.12 1.34 M. parviflorum orbicular 1.90 ± 0.16 1.62 ± 0.17 1.17 M. serpentinicum orbicular 1.72 ± 0.11 1.51 ± 0.10 1.13 M. botryoides broadly ovate 1.80 ± 0.14 1.36 ± 0.11 1.32 M. artvinense orbicular 1.70 ± 0.12 1.41 ± 0.10 1.21 M. atillae orbicular 2.25 ± 0.10 1.87 ± 0.11 1.20   M. turcicum orbicular 1.76 ± 0.13 1.34 ± 0.09 1.31 EROĞLU H., KARAISMAILOĞLU M. C., PINAR S. M., FIDAN M. 152 ACTA BOT. CROAT. 80 (2), 2021 Revisions of the anatomy of the testa of the various an- giosperm families are influential in solving systematic prob- lems (Vaughan et al. 1976, Karaismailoğlu and Erol 2018). Koul et al. (2000) have shown that testa structures may be utilized as a valuable characteristic in the separation of the taxa and the clarification of their phylogenetic relationships. The seed anatomical characters are frequently as useful as morphological characters for plant taxonomy, and they are valuable in the discrimination of closely correlated taxa in various families and genera (Karamian et al. 2012, Karaismailoğlu and Erol 2018, Karaismailoğlu et al. 2018). A detailed review of the literature has not found a previous study aiming at the exploration of phylogenetic relation- ships among the taxa with a comparative investigation of anatomical structures of the testa in members of the family Asparagaceae. This work is the first such study for the fam- ily and is the precursor to subsequent investigations. In this study, we found that the testae mostly consist of two layers, Tab. 3. Micromorphological characters of the seeds of the studied taxa. Subgenus Taxa Seed surface Anticlinal Periclinal Epidermal ornamentation cell wall cell wall cell structure Muscari Muscari macrocarpum reticulate raised concave polygonal cells M. racemosum reticulate raised concave polygonal cells Leopoldia M. caucasicum alveolate sunken concave alveolar cells M. weissii alveolate sunken concave alveolar cells M. comosum verrucate sunken convex unclear M. tenuiflorum reticulate-areolate sunken convex polygonal cells M. babachii reticulate-areolate sunken convex polygonal cells M. erdalii ruminate unclear unclear unclear M. longipes ruminate unclear unclear unclear M. massayanum ruminate unclear unclear unclear M. mirum reticulate-areolate sunken convex polygonal cells M. elmasii reticulate-foveate raised convex polygonal and alveolar cells M. ufukii ruminate unclear unclear unclear Pseudomuscari M. coeleste ruminate unclear unclear unclear M. azureum scalariform sunken convex rectangular and polygonal cells Botryanthus M. aucheri ruminate unclear unclear unclear M. armeniacum reticulate-areolate sunken concave polygonal cells   M. sivrihisardaghlarensis rugose unclear Unclear unclear M. neglectum areolate Sunken concave polygonal cells M. anatolicum rugose Unclear unclear unclear M. tuzgoluensis ruminate Unclear unclear unclear M. discolor ruminate Unclear unclear unclear M. inconstrictum slightly reticulate raised concave polygonal cells M. latifolium ruminate unclear unclear unclear M. adilii ruminate unclear unclear unclear M. bourgaei ruminate unclear unclear unclear M. sandrasicum ruminate unclear unclear unclear M. microstomum verrucate sunken convex unclear M. macbeathianum ruminate unclear unclear unclear M. vuralii ruminate unclear unclear unclear M. parviflorum ruminate unclear unclear unclear M. serpentinicum verrucate sunken convex unclear M. botryoides rugose unclear unclear unclear M. artvinense rugose unclear unclear unclear M. atillae ruminate unclear unclear unclear   M. turcicum ruminate unclear unclear unclear SEED STRUCTURES OF Muscari FROM TURKEY ACTA BOT. CROAT. 80 (2), 2021 153 Ta b. 4 . T es ta a na to m ic al fe at ur es o f t he st ud ie d ta xa (m ea n va lu es ± st an da rd d ev ia tio n, + = pr es en ce , - = ab se nc e) . Su bg en us Ta xa E pi de rm is la ye rs Pr es en ce / ab se nc e of c ry st al s Ep id er m is st ru ct ur es Su be pi de rm is st ru ct ur es T hi ck ne ss (μ m ) M us ca ri M . m ac ro ca rp um 1 la ye r, sc le ra nc hy m at ic fl at c el ls 6- 7 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 59 .7 5 ± 2. 48 – M . r ac em os um 1 la ye r, sc le ra nc hy m at ic r ec ta ng ul ar c el ls 3- 4 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 54 .2 3 ± 3. 09 – Le op ol di a M . c au ca si cu m 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 3- 4 la ye rs , p ar en ch ym at ic o rb ic ul ar o r fla t c el ls 10 5. 44 ± 2 .3 7 – M . w ei ss ii 1 la ye r, sc le ra nc hy m at ic r ec ta ng ul ar c el ls 3 la ye rs , s cl er an ch ym at ic la rg e fla t c el ls 46 .7 1 ± 1. 82 – M . c om os um 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 1 la ye r, pa re nc hy m at ic r ec ta ng ul ar o r sq ua re c el ls 38 .4 5 ± 3. 63 + M . t en ui flo ru m 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 2- 3 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 11 6. 59 ± 3 .8 8 + M . b ab ac hi i 1 la ye r, sc le ra nc hy m at ic fl at c el ls 2- 3 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 12 1. 10 ± 5 .6 4 + M . e rd al ii 1 la ye r, sc le ra nc hy m at ic fl at c el ls 3- 4 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 40 .3 7 ± 4. 21 – M . l on gi pe s 1 la ye r, sc le ra nc hy m at ic fl at c el ls 5- 7 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 12 8. 46 ± 4 .2 3 – M . m as sa ya nu m 1 la ye r, sc le ra nc hy m at ic fl at c el ls 2 la ye rs , s cl er an ch ym at ic fl at o r cr us he d ce lls 68 .8 3 ± 3. 47 – M . m ir um 1- 2 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 5- 6 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 10 8. 54 ± 2 .8 8 – M . e lm as ii 1 la ye r, sc le ra nc hy m at ic r ec ta ng ul ar c el ls 4- 5 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 44 .1 6 ± 2. 72 – M . u fu ki i 2- 3 la ye rs , s cl er an ch ym at ic la rg e fla t c el ls 1 la ye r, sc le ra nc hy m at ic fl at c el ls 85 .3 5 ± 2. 41 – Ps eu do m us ca ri M . c oe le st e 1 la ye r, sc le ra nc hy m at ic r ec ta ng ul ar c el ls 2- 3 la ye rs , s cl er an ch ym at ic fl at c el ls 33 .6 2 ± 3. 13 – M . a zu re um 1 la ye r, sc le ra nc hy m at ic fl at c el ls 2- 3 la ye rs , p ar en ch ym at ic fl at o r po ly go na l c el ls 39 .7 7 ± 2. 54 – Bo tr ya nt hu s M . a uc he ri 2 la ye rs , s cl er an ch ym at ic la rg e fla t c el ls 1 la ye r, pa re nc hy m at ic p ol yg on al c el ls 38 .7 6 ± 1. 85 – M . a rm en ia cu m 1- 2 la ye rs , s cl er an ch ym at ic fl at c el ls 2 la ye rs , p ar en ch ym at ic fl at o r po ly go na l c el ls 71 .1 9 ± 4. 06 – M . s iv ri hi sa rd ag hl ar en si s 1 la ye r, sc le ra nc hy m at ic fl at c el ls 3- 4 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 37 .8 4 ± 3. 71 – EROĞLU H., KARAISMAILOĞLU M. C., PINAR S. M., FIDAN M. 154 ACTA BOT. CROAT. 80 (2), 2021 Su bg en us Ta xa E pi de rm is la ye rs Pr es en ce / ab se nc e of c ry st al s Ep id er m is st ru ct ur es Su be pi de rm is st ru ct ur es T hi ck ne ss (μ m ) M . n eg le ct um 1 la ye r, sc le ra nc hy m at ic fl at c el ls 2 la ye rs , p ar en ch ym at ic fl at c el ls 41 .6 7 ± 3. 24 – M . a na to lic um 2 la ye rs , s cl er an ch ym at ic fl at c el ls 2- 3 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 23 .0 8 ± 3. 92 – M . t uz go lu en si s 2 la ye rs , s cl er an ch ym at ic fl at c el ls 1 la ye r, sc le ra nc hy m at ic p ol yg on al c el ls 48 .3 3 ± 2. 18 – M . d is co lo r 2 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls - 18 .4 1 ± 2. 38 + M . i nc on st ri ct um 2- 3 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls - 22 .0 5 ± 1. 14 – M . l at ifo liu m 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 2- 3 la ye rs , p ar en ch ym at ic fl at c el ls 66 .1 5 ± 3. 52 – M . a di lii 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 2- 3 la ye rs , s cl er an ch ym at ic c ru sh ed c el ls 31 .1 7 ± 1. 84 – M . b ou rg ae i 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 2 la ye rs , s cl er an ch ym at ic fl at c el ls 64 .2 6 ± 2. 29 – M . s an dr as ic um 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls 2- 3 la ye rs , p ar en ch ym at ic fl at c el ls 71 .2 2 ± 2. 31 – M . m ic ro st om um 1 la ye r, sc le ra nc hy m at ic fl at o r po ly go na l c el ls 2- 3 la ye rs , s cl er an ch ym at ic p ol yg on al c el ls 69 .9 8 ± 3. 53 – M . m ac be at hi an um 2 la ye r, sc le ra nc hy m at ic la rg e fla t o r re ct an gu la r ce lls 1 la ye r, sc le ra nc hy m at ic p ol yg on al c el ls 41 .1 3 ± 2. 36 – M . v ur al ii 1 la ye r, sc le ra nc hy m at ic fl at o r po ly go na l c el ls 2- 3 la ye rs , s cl er an ch ym at ic p ol yg on al c el ls 44 .8 6 ± 1. 71 + M . p ar vi flo ru m 1 la ye r, sc le ra nc hy m at ic la rg e fla t c el ls - 18 .0 8 ± 0. 86 – M . s er pe nt in ic um 1 la ye r, sc le ra nc hy m at ic la rg e re ct an gu la r ce lls 1 la ye r, sc le ra nc hy m at ic r ec ta ng ul ar c el ls 39 .7 3 ± 3. 15 – M . b ot ry oi de s 2- 3 la ye rs , s cl er an ch ym at ic fl at c el ls - 25 .8 1 ± 2. 03 – M . a rt vi ne ns e 1 la ye r, sc le ra nc hy m at ic p ol yg on al c el ls 8- 10 la ye rs , s cl er an ch ym at ic c ru sh ed a nd o rb ic ul ar ce lls 11 7. 46 ± 3 .5 5 – M . a til la e 3 la ye rs , s cl er an ch ym at ic fl at c el ls 2- 3 la ye rs , s cl er an ch ym at ic p ol yg on al c el ls 82 .1 9 ± 2. 68 – M . t ur ci cu m 1 la ye r, sc le ra nc hy m at ic c ru sh ed c el ls - 16 .6 4 ± 3. 22 – SEED STRUCTURES OF Muscari FROM TURKEY ACTA BOT. CROAT. 80 (2), 2021 155 the epidermis and the subepidermis, in the sclerotic or par- enchymatous structure. The epidermis type differs among the taxa. This 1-3 layered epidermis may consist of flat, rect- angular, crushed, or polygonal cells. The most frequent form is flat, while the rarest are the rectangular and polygo- nal types. The structure of the subepidermis layer, which is mostly a compressed tissue under the epidermis layers, also displays significant differences among the taxa. The subepi- dermis layer consists of crushed, orbicular, rectangular, square, flat or polygonal cells in 1-10 layers, except for M. discolor, M. inconstrictum, M. parviflorum, M. botryoides and M. turcicum, which do not have a subepidermis layer. Testa characters such as the structures of the epidermis and subepidermis, thickness of the testa, and the presence or absence of crystals are fairly effective and beneficial in discri- minating almost all of the studied taxa, especially in the pairs of closely correlated taxa M. macrocarpum-M. racemosum, M. caucasicum-M. weissii, M. coeleste-M. azureum, and M.  aucheri-M. armeniacum. This can be interpreted as follows: the anatomy of the testa is a useful additional char- acter in the Muscari, and it can aid in the classification of this huge genus. The results obtained are also in agreement with similar previous studies performed on seed structure of some taxa of the genera Crocus L. and Romulea Maratti in the closely related family Iridaceae, in terms of the dif- ferences observed at interspecific level in testa anatomical structures such as epidermis cell types and thickness of the testa (Grilli Caiola et al. 2010, Karaismailoğlu 2015, Karaismailoğlu et al. 2018). The dendrogram showing two main clusters largely agree with the results of Davis and Stuart (1984). The seed morphological and anatomical variations have been ob- served at the species level and subgenus level, especially in shapes, ornamentation types, dimensions, and thicknesses and structures of epidermis and subepidermis layers. The proximity between taxa belonging to subgenera Muscari and Pseudomuscari has been preserved; however, there are taxon transitions between Leopoldia and Botryanthus sub- genera. While M. atillae, M. latifolium, M. microstomum and M. armeniacum taxa are among the taxa belonging to Botryanthus subgenus, M. mirum and M. caucasicum taxa are located between Leopoldia taxa. In conclusion, the study of morphological and anatom- ical seed characteristics of the studied Muscari taxa offers important insights into the systematics of taxa within the genus. Key to studied Muscari taxa, based on seed characteristics 1. Seed shape is orbicular . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Seed shape is ovate, ovate-orbicular, oblong-elliptic, oblong-ovate, elliptic, elliptic-lanceolate . . . . . . . . . . 21 2. Seed ornamentation is reticulate . . . . . . . . . . . . . . . . . 3 2. Seed ornamentation is alveolate, verrucate, ruminate, scalariform or rugose . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Outer epidermis of testa consists of crushed cells, with 2-3 layers . . . . . . . . . . . . . . . . . . . . . . . . M. inconstrictum 3. Outer epidermis of testa consists of flat cells, with 1 layers . . . . . . . . . . . . . . . . . . . . . . . . . . M. macrocarpum 4. Seed ornamentation is alveolate or scalariform . . . . . 5 4. Seed ornamentation is verrucate, ruminate or rugose . .6 5. Seed ornamentation is alveolate . . . . . . . . . . M. weissii 5. Scalariform . . . . . . . . . . . . . . . . . . . . . . . . . . M. azureum 6. Seed ornamentation is verrucate or rugose . . . . . . . . . 7 6. Ruminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 7. Anticlinal cell walls are sunken . . . . . . . . . . . . . . . . . . 8 7. Anticlinal cell walls are unclear . . . . . . . . . . . . . . . . . 10 8. Outer epidermis of testa consists of flat or polygonal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8. Outer epidermis of testa consists of rectangular cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. serpentinicum 9. Subepidermis of testa consists of rectangular cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. comosum 9. Subepidermis of testa consists of polygonal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. microstomum 10. Outer epidermis of testa consists of flat cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. anatolicum 10. Outer epidermis of testa consists of polygonal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. artvinense 11. Outer epidermis is 1 layer . . . . . . . . . . . . . . . . . . . . . . 12 11. Outer epidermis is 2 or 3 layers . . . . . . . . . . . . . . . . . . 19 12. Outer epidermis of testa consists of crushed or rectan- gular cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 12. Outer epidermis of testa consists of flat or polygonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 13. Outer epidermis of testa consists of crushed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. turcicum 13. Rectangular . . . . . . . . . . . . . . . . . . . . . . . . . . M. coeleste 14. Subepidermis layer is absent . . . . . . . . M. parviflorum 14. Subepidermis layer is present . . . . . . . . . . . . . . . . . . . 15 15. Subepidermis is in parenchymatous structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. sandrasicum 15. Subepidermis is in scleranchymatous structure . . . 16 16. Subepidermis consists of crushed cells . . . . . M. adilii 16. Subepidermis consists of flat or polygonal cells . . . . 17 17. Subepidermis consists of flat . . . . . . . . . . . M. bourgaei 17. Polygonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18. Crystals are present in the epidermis or subepidermis layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. vuralii 18. Crystals are absent . . . . . . . . . . . . . . . . M. microstomum 19. Outer epidermis is 3 layers . . . . . . . . . . . . . . . .M. atillae 19. 2 layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20. Subepidermis is in parenchymatous structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. aucheri 20. Subepidermis is in scleranchymatous structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. tuzgoluensis 21. Seed shape is elliptic or oblong . . . . . . . . . . . . . . . . . . 22 EROĞLU H., KARAISMAILOĞLU M. C., PINAR S. M., FIDAN M. 156 ACTA BOT. CROAT. 80 (2), 2021 21. Seed shape is ovate or ovate-orbicular . . . . . . . . . . . . 25 22. Seed shape is elliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 22. Oblong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 23. Seed shape is elliptic-lanceolate . M. macbeathianum 23. Broadly elliptic . . . . . . . . . . . . . . . . . . . . . . M. neglectum 24. Seed shape is oblong-ovate . . . . . . . . . . . . . . . M. mirum 24. Oblong-elliptic . . . . . . . . . . . . . . . . . . . . . . . . M. longipes 25. Seed shape is ovate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 25. Seed shape is ovate-orbicular . . . . . . . . . . . . . . . . . . . 32 26. Seed surface ornamentation is alveolate or reticulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 26. Seed surface ornamentation is ruminate or rugose . 29 27. Seed surface ornamentation is reticulate . . . . . . . . . 28 27. Alveolate . . . . . . . . . . . . . . . . . . . . . . . . . M. caucasicum 28. Seed surface ornamentation is reticulate-foveate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. elmasii 28. Reticulate-areolate . . . . . . . . . . . . . . . . . . . . .M. babachii 29. Seed surface ornamentation is rugose . . M. botryoides 29. Ruminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30. Outer epidermis of testa is 2-3 layers . . . . . . . M. ufukii 30. Outer epidermis of testa is 1 layer . . . . . . . . . . . . . . . . 31 31. Subepidermis is 3-4 layers . . . . . . . . . . . . . . . M. erdalii 31. Subepidermis is 2 layers . . . . . . . . . . . M. massayanum 32. Seed ornamentation is ruminate or rugose . . . . . . . . 33 32. Seed ornamentation is reticulate or reticulate-areolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 33. Seed surface ornamentation is ruminate . . M. latifolium 33. Rugose . . . . . . . . . . . . . . . . . . . M. sivrihisardaghlarensis 34. Seed surface ornamentation is reticulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. racemosum 34. Reticulate-areolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 35. Crystals are present in the epidermis or subepidermis layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. tenuiflorum 35. Crystals are absent . . . . . . . . . . . . . . . . . M. armeniacum Acknowledgments This article is adapted from the first author’s doctoral thesis. The authors thank YYU-BAPB for supporting this study financially (Project number: FDK-2017-5960). References Barthlott, W., 1981: Epidermal and seed surface characters of plants: systematic applicability and some evolutionary as- pects. Nordic Journal of Botany 1, 345–355. Bentzer, B., Bothmer, R., Wendelbo, P., 1974: Cytology and mor- phology of the genus Hyacinthus L. s. str. (Liliaceae). Bota- niska Notiser 127, 297–301. Corner, E.J., 1976: The Seeds of Dicotyledons. Cambridge Uni- versity Press, Cambridge. Davis, P.H., Stuart, D.C., 1984: Muscari Miller. In: Davis, P.H. (ed.), Flora of Turkey and the East Aegean Islands 8, 227–263. Edinburgh University Press, Edinburgh. Demirci, S., Özhatay, N., 2017: A karyomorphological study on the genus Muscari Mill. growing in Kahramanmaraş (Tur- key). Turkish Journal of Botany 41, 289–298. Demirci-Kayıran, S., Özhatay, N., Kaya, E., 2019: Muscari tauri- cum (Asparagaceae, Scilloideae), a new species from Turkey. Phytotaxa 399, 109–118. Dizkırıcı, A., Yigit, O., Pınar, S.M., Eroğlu, H., 2019: Molecular phylogeny of Muscari (Asparagaceae) inferred from cpDNA sequences. Biologia 74, 205–214. Doğu, S., Bağcı, Y., 2009: Muscari vuralii sp. nov. (Liliaceae/Hy- acinthaceae) from South Anatolia, Turkey. Nordic Journal of Botany 27, 243–246. Doğu, S., Dinç, M., Ünal, A., 2011: Anatomical characteristics of Bellevalia mathewii Özhatay & Koçak (Liliaceae). Biological Diversity and Conservation 4, 14–18. Doğu, S., Uysal, T., 2019: Muscari savranii (Asparagaceae), a new species from Central Anatolia, Turkey. Phytotaxa 402, 155– 164. Eker, I., 2019a: Muscari fatmacereniae (Asparagaceae, Scilloi- deae), a new species from southern Anatolia. Phytotaxa 397, 99–106. Eker, I., 2019b: Muscari pamiryigidii (Asparagaceae, Scilloideae), a new species from northwestern Anatolia. Phytotaxa 408, 255–266. Govaerts, R., 2019: World checklist of Asparagaceae. Facilitated by the Royal Botanic Gardens, Kew. Retrieved April 15, 2019 from http://apps.kew.org/wcsp Grilli Caiola, M., Leonardi, D., Canini, A., 2010: Seed structure in Crocus sativus L., C. cartwrightianus Herb., C. thomasii Ten., and C. hadriaticus Herb. at SEM. Plant Systematics and Evolution 285, 111–120. Guner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M.T., 2012: A checklist of the flora of Turkey. Nezahat Gökyiğit Botanik Bahçesi Yayınları, İstanbul (in Turkish). Gürsoy, M., Şık, L., 2010: Comparative anatomical studies on Muscari armeniacum Leichtlin ex Baker and Muscari neglec- tum Guss. in West Anatolia. CBU Journal of Science 6, 61– 72. Herrmann, N., Weissb, G., Durka, W., 2006: Biological flora of Central Europe: Muscari tenuiflorum Taus. Flora 201, 81– 101. Heywood, V.H., 1971: Scanning Electron Microscopy. System- atic and Evolutionary Applications, London. Jafari, A., Maassoumi, A.A., 2011: Synopsis of Leopoldia, Mus- cari and Pseudomuscari (Hyacinthaceae) in Iran, with Leo- poldia ghouschtchiensis sp. nova. Annales Botanici Fennici 48, 396–400. Kahraman, A., Celep, F., Doğan, M., Koyuncu, M., 2010: Mor- pho-anatomical studies on Bellevalia paradoxa Boiss. be- longing to Liliaceae. Australian Journal of Crop Science 4, 150–154. Karaismailoğlu, M.C., 2015: Morphological and anatomical fea- tures of seeds of Turkish Romulea taxa (Iridaceae) and their taxonomic significance. Acta Botanica Croatica 74, 31–41. Karaismailoğlu, M.C., 2016. Addition to characters of endemic Aubrieta canescens subsp. canescens Bornm. (Brassicaceae) from Turkey. Bangladesh Journal of Botany 45, 509–515. Karaismailoğlu, M.C., Şık, L., Almıla, Ç., Erol, O., 2018: Seed structure of some taxa of the genus Crocus L. (Iridaceae) se- ries Crocus. Turkish Journal of Botany 42, 722–731. Karaismailoğlu, M.C., Erol, O., 2018: Seed structure and its tax- onomic implications for genus Thlaspi sensu lato sections Nomisma, Thlaspi and Pterotropis (Brassicaceae). Turkish Journal of Botany 42, 591–609. SEED STRUCTURES OF Muscari FROM TURKEY ACTA BOT. CROAT. 80 (2), 2021 157 Karaismailoğlu, M.C., Güner, Ö., 2019: Nutlet structures of sub- section Fragiles of the genus Stachys (Lamiaceae) from Tur- key and their systematic applications. Turkish Journal of Botany 43, 659–672. Karamian, R., Moradi Behjou, A., Ranjbar, M., 2012: Anatomi- cal findings of Onobrychis sect. Heliobrychis (Fabaceae) in Iran and their taxonomic implications. Turkish Journal of Botany 36, 27–37. Koul, K.K., Ranjna, N., Soom, N.R., 2000: Seed coat microscu- lpturing in Brassica and allied genera (subtribes Brassicinae, Raphaninae, Moricandiinae). Annals of Botany 86, 385–397. Kovach, W.L., 2007: MVSP - A MultiVariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth. Küçüker, O., 1990: Studies on the Endemic Colchicum Taxa of Turkey: C. baytopiorum C.D. Brickell. Turkish Journal of Botany 14, 1–11. Lynch, A.H., Rudall, P.J., Cutler, D.F., 2006: Leaf anatomy and systematics of Hyacinthaceae. Kew Bulletin 61, 145–159. Reveal, J.L., Chase, M.W., 2011: APG III: Bibliographical infor- mation and synonym of Magnoliidae. Phytotaxa 19, 71–134. Sezer, O., Özgişi, K., Yaylacı, Ö.K., Koyuncu, O., 2013: Some morpho-anatomical studies on rare endemic Muscari sivri- hisardaghlarensis. Biological Diversity and Conservation 6, 26–33. Shoub, J., Halevy, A.H., 1971: Studies on the developmental mor- phology and the thermoperiodic requirements for flower de- velopment in Ornithogalum arabicum L. Journal of Horti- cultural Research 11, 29–39. Stearn, W.T., 1985: Botanical Latin: History, grammar, syntax, terminology, and vocabulary. David & Charles, London. Tantawy, M.E., Khalifa, S.F., Hassan, S.A., Al-Rabiai, G.T., 2004: Seed exomorphic characters of some Brassicaceae (LM and SEM Study). International Journal of Agriculture and Biol- ogy 6, 821–830. Uysal, İ., 1999: Morphological, anatomical and ecological stud- ies on the two Turkish endemic species collected from Kaz Dağı (B1 Balıkesir) Allium sibthorpianum Schultes & Schul- tes fill. and Allium reuterianum Boiss. Turkish Journal of Botany 23, 137–148. Uysal, T., Ertuğrul, K., Dural, H., Küçüködük, M., 2007: Musc- ari turcicum (Liliaceae/Hyacinthaceae), a new species from south Anatolia, Turkey. Botanical Journal of the Linnean Society 154, 233–236. Vaughan, J.G., Phelan, J.R., Denford, K.E., 1976: Seed studies in the Cruciferae. In: Vaughan, J.G., Macleod, A.J., Jones, B.M.G. (eds.), The Biology and Chemistry of the Cruciferae, 119–144. Academic Press, London. Yıldırım, H., 2015: Muscari atillae (Asparagaceae): a new species from Eastern Anatolia, Turkey. Phytotaxa 213, 291–295. Yıldırım, H., 2016: Muscari elmasii sp. nova (Asparagaceae): a new species from western Anatolia, Turkey. Turkish Journal of Botany 40, 380–387.