OPCE-STR.vp Acta Bot. Croat. 70 (2), 215–244, 2011 CODEN: ABCRA 25 ISSN 0365-0588 Ecological assessment of wetland ecosystems of northern Kazakhstan on the basis of hydrochemistry and algal biodiversity SOPHIA S. BARINOVA1*, EIBI NEVO1, TATIANA M. BRAGINA2 1 Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel 2 Russian University of Kazakhstan, Kustanaiskaya Oblast, Naurzum Rayon, Karamendy, Altynsarin Str., 45-1, Kazakhstan Abstract – We studied diversity of algae and cyanobacteria in the wetlands of protected natural lakes with salinity ranging from 0.19 up to 32.7 in the arid/semiarid regions of Northern Kazakhstan. In plankton and periphyton of 34 lakes, we found 254 species be- longing to 113 genera of 8 algal divisions. The diversity in arid regions is represented by widespread species of diatoms, green algae, and cyanobacteria in similar proportions. Alkaliphiles, among the indicators of acidification, and betamesosaprobionts, among the indicators of saprobity, predominated. The indices of saprobity in lakes varied from 1.47 to 2.7, reflecting low-trophic and low anthropogenically disturbed wetlands. Oligohalobes- -indifferents are most common. Highly diverse algal communities were found irrespec- tive of various levels of mineralization. As a consequence of aridization, salinity increase suppressed algal diversity. The mineralization was the most important variable defining the diversity levels, irrespective of the type and location of wetland lakes in the arid re- gions. Keywords: Algae, cyanobacteria, aridization, diversity, salinity, wetland, water quality, Kazakhstan Introduction In arid regions, aquatic environments experience a stressful impact of high concentra- tions of mineral and organic substances due to high evaporation rates (SUBYANI 2005). Al- gal habitats are characterized by a high amplitude salinity variation that in large lakes sup- presses algal diversity (HAMMER 1986). For example lower bacterial diversity (RUSZNYÁK et al. 2008) and algal species richness (ÁCS et al. 2003) were found in the open water area of Lake Velencei (where the conductivity is about 2.5–3.5 mS cm–1 averagely) than in the bog-like area of the lake (where the conductivity is about 1.5–2.3 mS cm–1 on average). Many algal species are indicators of environmental conditions reflecting the influence of ACTA BOT. CROAT. 70 (2), 2011 215 * Corresponding author, e-mail: barinova@research.haifa.ac.il Copyright® 2011 by Acta Botanica Croatica, the Faculty of Science, University of Zagreb. All rights reserved. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:26 Color profile: Disabled Composite 150 lpi at 45 degrees salinity on aquatic communities and the regional flora as a whole. A decrease of algal diver- sity is in turn related to reduced productivity of aquatic ecosystem and thereby of the trophic level of wetlands. It is well known that an increase of salinity to 20, suppress the di- versity of lake biota (HAMMER 1986). The arid regions of Central Asia and Middle East occupy a considerable part of Eurasia (KÖPPEN and GEIGER 1953). In Kazakhstan, the arid and semiarid dry grasslands to deserts are widespread in the upper reaches of the Ob’ River Basin and the Turkestan Desert (BRAGINA and BRAGIN, 2002). The hydrographic network of this territory is developed slightly, closed and has no constant drainage (SKLIARENKO, 2006). During spring high wa- ter, channels are filled with water that reaches lakes and spreads wide over the steppe. The freshwater and the salt waterlakes have depths not exceeding 2.5–3 m and have the typical features of all reservoirs of arid territories, a cyclic hydrological mode where the periods of filling and drying repeat each 12–15 years. Large highly mineralized lakes Balkhash, Tengiz, Issyk Kul’ and Karakul’, as well as the Aralian and Caspian seas, are confined to this climatic area (HAMMER 1986). Phytogeographically, this region is situated near the boundary of the Irano-Turanian province and the province north of it (TAKHTAJAN 1978). A large number of lakes in this area are protected on account of their importance for biodiversity conservation (BRAGINA and BRAGIN 2002). We previously studied algal biodiversity in respect to ecological assessment of the wetlands (BARINOVA et al. 2002) and compared it with other arid regions (BARINOVA et al. 2009). Here we continue studying the diversity of algal communities and its relation to sa- linity. Material and methods This research was based upon 98 samples of phytoplankton and periphyton collected in the North Kazakhstan Region in October 1999 and May–June 2000. Altogether 34 lakes were sampled, as well as the mouth of Karasu River near Lake Tuntugur, Jailmo Well near Lake Kulykol, and Jarsor Brook near Lake Jarsor located in the northern Kazakhstan arid area (Fig. 1). The water level in the studied shallow lakes depends on the climate and on snow melt, and is related to the complete or partial drying of some lakes in dry years. The studied shallow lakes have a permanent depth of 0.5–2.0 m. They become overgrown by underwater and surface vegetation, and exhibit high hydrogen sulphide content in their wa- ter, which varies in seasons and in lake gulfs (BRAGINA and BRAGIN 2002). Water salinity in the lakes varies from fresh to salty, with sulfates and chlorides prevailing. The samples were taken by scooping up for phytoplankton and by scratching for periphyton and were fixed in 3% formaldehyde (WHITTON et al. 1991). Algae were studied with Swift and Amplival dissecting microscopes under magnifications of 740–1850 and were photographed with the digital camera Inspector 1. The diatoms were prepared with the peroxide technique (SWIFT 1967) modified for glass slides (BARINOVA 1988, 1997). In parallel with sampling for algae we measured electrical conductivity, total dissolved solids, and pH with HANNA HI 9813, and DPC2, concentration of N-NO3 with HANNA HI 93728 and phosphates with HACH spectrophotometer, as well as salinity by the argentometric method (APHA 1998); pH measurements were made down to 0.15. 216 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:26 Color profile: Disabled Composite 150 lpi at 45 degrees The assessment of b+g radioactive pollution of water samples was performed with de- tector-indicator of radioactivity QUARTEX RD 8901. The algal abundances were assessed on the basis of a 6-score scale (KORDE 1956, BARINOVA et al. 2006). The taxonomy follows the systems adopted in the »Süswasserflora von Mitteleuropa« (ETTL 1978; STARMACH 1985; ETTL and GARTNER 1988; KRAMMER and LANGE-BERTALOT 1991a, b, c, d; KOMÁREK and ANAGNOSTIDIS 1998) and MATTOX and STEWART (1984) sys- tem for green algae, with additions for individual taxa in GOLLERBACH et al. (1953), KISSELEV (1954), POPOVA (1966), VINOGRADOVA et al. (1980), PALAMAR-MORDVINTSEVA (1982), KRAMMER (1985, 2000), MOSHKOVA and GOLLERBACH (1986), LANGE-BERTALOT and KRAMMER (1987), MEFFERT (1987), KOMÁREK and ANAGNOSTIDIS (1989), POPOVSKY and PFIESTER (1990), BARBER and CARTER (1996), HEGEWALD (2000), RUMRICH et al. (2000). The ecological and geographic characteristics of algae are obtained from the database compiled by the author for freshwater algae as a basis for statistical analysis of algal biodiversity distribution over ecological gradients (BARINOVA 2000, BARINOVA et al. 2000, 2006). Our ecological analysis has revealed a grouping of freshwater algae in respect to pH, salinity and saprobity as well as the other habitat conditions. Each group was separately as- sessed with respect to its significance for bioindications. Species that respond predictably to environmental variables can be used as bioindicators reflecting the response of aquatic ecosystems to eutrophication, pH levels (acidifications), salinity and organic pollutants. ACTA BOT. CROAT. 70 (2), 2011 217 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS Fig. 1. Lakes and wetland region in the Northern Kazakhstan. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:28 Color profile: Disabled Composite 150 lpi at 45 degrees Distribution of species sensitive to pH and suitable as bioindicators for acidity is ana- lyzed in accordance with the classification of HUSTEDT (1938–1939). This classification system is divided into pH-related groups, from alkalibiontes to acidobiontes. The bioindication of salinity is based on the classification system by HUSTEDT (1957) with groups ranging from polyhalobes to oligohalobes-halophobes according to KOLBE’s (1927) system of halobity. There are several alternative approaches to assessment of saprobity (adaptation to ex- cessive levels of nutrients), with that of PANTLE and BUCK (1955) modified by SLÁDE^EK (1973, 1986) being found most suitable for the present analysis. The indicators of saprobity are assigned to four groups according to their saprobity index values (S) ranging from polysaprobes (S=3.5–4.0) to xenosaprobes (S=0–0.5). The indices of saprobity are ob- tained as a function of saprobic species numbers and their relative abundances: S = Ssh / Sh (Eq. 1) where S indicates index of saprobity for algal community; s – species-specific saprobity level; h – abundance on the 6-scores scale (after KORDE 1956). For phytogeographic analysis, species ranges were plotted and assigned to phytogeo- graphic divisions of TAKHTAJAN (1978). Statistical methods were used in comparative floristic approaches (NOVAKOVSKY 2004) for clarifying of algal flora similarity in the natural protected wetlands in the semi-arid cli- mate of the Northern Kazakhstan. The percent disagreement was calculated by Ward’s method in Statistica 6.0 Program. Ecological classification of water quality was based on a combination of hydrochemi- cal variables and the indices of saprobity (ROMANENKO et al. 1990, BARINOVA et al. 2006). The status of water objects was assessed as sum of all data integrated in the functional model of an aquatic ecosystem (BARINOVA et al. 2006). Gamma and beta radiation were studied as background variables. Results Influence of ecological conditions on biodiversity of algae in the arid region wetlands of Kazakhstan Because of the remoteness of Kazakhstan’s protected areas, algal diversity there has re- mained virtually unstudied. The lakes that we studied can be considered as typical for this region. Their salinity (as the saltiness or dissolved salt content of a body of water) varies from 0.19 to 32.7 NaCl g L–1 (Tab. 1) increasing during the summer dry period and contains not only chlorides but also sulphates as regional norm. The acidity varies from slightly acid to alkaline, whereas the concentration of nitrates and phosphates attests to a sufficient trophic base for algal development (Tab. 1). At the same time, the saprobity indices of PANTLE and BUCK (1955) modified by SLÁDE^EK (1973) varied from 1.65 in the Gr. Karakamys Lake and 1.47 in the Karasu River mouth to 2.7 in the lakes Tahtakul and Aksuat, which indicates a lack of appreciable anthropogenic impact. 218 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:28 Color profile: Disabled Composite 150 lpi at 45 degrees A C T A B O T .C R O A T .70 (2),2011 219 A L G A L B IO D IV E R S IT Y IN K A Z A K H S T A N W E T L A N D S Tab. 1. Environmental conditions, species number and index of saprobity in the lakes of the Kazakhstan arid regions in 1999–2000; classes of salinity and groups of salinity indicators according to HUSTEDT (1957): mh, mesohalobes; hl, oligohalobes – halophilous; i, oligohalobes – indifferent; saprobity index S according to SLÁDE^EK (1973), and equation (1). No of Lake Lake Conduc- tivity, mSm/cm NaCl g L–1 Class of Salinity pH P–PO4 3–, mg L–1 N-NO3 –, mg L–1 No. of algal species Saprobity Index S Group of salinity indicators Group of similarity on the tree 1 Aike 11.73 6.79 III 7.01 0.16 3.4 19 1.98 hl 1 2 Aksuat 1.16–6.95 0.69–3.94 IV 6.16–6.56 0.01–0.02 1.0–1.4 1 2.70 – 2 3 Alpash 8.72 4.92 IV 7.05 0.01 1.0 13 1.74 i 2 4 Annovskoe 0.7–0.79 0.43–0.45 IV 6.87–7.11 0.01 1.2–2.0 22 1.71–1.81 hl 2 5 Balykty 4.33 2.43 IV 7.84 0.02 1.1 26 2.21 i 1 6 Batpakkol 0.37 0.21 IV 7.29 0.26 2.3 2 2.0 hl 2 7 Biesoygan 0.851 0.52 IV 6.76 0.39 2.1 7 2.55 i 2 8 Bozshakol 0.62–0.91 0.38–0.55 IV 6.43–7.37 0.20–2.25 1.7–8.5 63 1.95–2.13 hl 3 9 Chushkaly 16.4 9.35 III 6.94 0.28 1.7 18 1.97 hl+mh 1 10 Gr. Kak 57.3 32.7 II 6.36 0.05 2.2 6 2.11 hl 2 11 Gr. Karakamys 0.81–2.88 0.46–1.7 IV 6.59–6.66 0.01–0.68 0.8–1.2 28 1.65–1.8 i+hl 2 12 Gr. Sankebay 14.29 8.17 III 7.40 0.09 1.6 3 2.49 hl 2 13 Jaltyr 11.47 6.52 III 6.77 1.0 1.0 6 1.86 i 2 14 Jaman 0.37–0.41 0.22–0.23 IV 6.54–7.53 0.03–0.08 1.2–1.6 57 1.78–2.10 i+hl 3 15 Jarken 0.86 0.49 IV 6.74 0.03 0.9 22 2.00 i+hl 2 16 Jarkol 5.45–5.67 3.1–3.42 IV 7.26–7.38 0.17–1.08 2.3–4.1 8 1.7–1.96 i 2 17 Jilandy 1.48 0.85 IV 7.15 0.68 1.2 4 2.05 i+hl 2 18 Kamyshovoe 0.37–0.43 0.21–0.26 IV 6.29–7.14 0.02–0.11 1.2–1.9 79 1.86–1.9 i+hl 3 U : \ A C T A B O T A N I C A \ A c t a - B o t a n 2 - 1 1 \ B a r i n o v a . v p 9 . r u j a n 2 0 1 1 1 1 : 2 1 : 2 8 C o l o r p r o f i l e : D i s a b l e d C o m p o s i t e 1 5 0 l p i a t 4 5 d e g r e e s 220 A C T A B O T .C R O A T .70 (2),2011 B A R IN O V A S .S .,N E V O E .,B R A G IN A T .M . Tab. 1. – continued No of Lake Lake Conduc- tivity, mSm/cm NaCl g L–1 Class of Salinity pH P–PO4 3–, mg L–1 N-NO3 –, mg L–1 No. of algal species Saprobity Index S Group of salinity indicators Group of similarity on the tree 19 Karasu River, near Lake Tuntugur 0.398 0.24 IV 6.86 0.23 1.4 2 1.47 hl 2 20 Koybagor 1.1–1.16 0.66–0.69 IV 6.83–7.35 0.07–0.27 1.3–2.0 112 1.95–2.04 i+hl 3 21 Kulagul 0.87–1.16 0.50–0.69 IV 7.48–7.57 0.17–0.98 0.0–0.6 18 2.38–2.44 i 1 22 Kulykol 10.4–10.9 5.94–6.43 III 6.73–7.18 0.03–0.3 1.1–2.1 20 1.85–2.3 i 1 23 Kulykol, Well Jailma 1.01 0.58 IV 7.28 0.06 1.0 3 2.35 i+hl 2 24 Kushmurun 30.1 18.0 III 6.77 0.1 3.5 8 2.08 i+hl 2 25 Majbalyk 1.95–3.23 1.11–1.78 IV 6.92–7.4 0.0–0.02 1.4–2.2 4 2.04 i 2 26 Sankebay 14.68 8.8 III 8.15 0.54 5.4 5 1.93 i 2 27 Sarykol 1.14–1.17 0.67–0.69 IV 6.97–6.98 0.0–0.06 0.9–1.5 37 1.71–2.15 i 1 28 Shoshkaly 6.14–6.56 3.49–3.92 IV 6.33–7.15 0.03–0.32 1.1–1.3 31 1.87–2.53 i+hl 1 29 Stream Jarsor 0.63–0.79 0.38–0.44 IV 6.78–6.86 0.01 1.0 19 1.76–1.99 i+mh 2 30 Sultan 3.04 1.73 IV 6.73 0.0 0.9 5 2.15 i 2 31 Suly 0.328 0.19 IV 7.13 1.77 1.4 7 1.84 i 2 32 Tahtakul 0.99–2.3 0.56–1.38 IV 6.35–6.79 0.03–0.48 1.1–1.8 7 1.8–2.7 i 2 33 Teniz 2.52–6.99 1.43–3.98 IV 6.66–6.69 0.0–0.04 1.0–1.5 61 1.87–1.96 i+hl 3 34 Tyuntugur 1.03–1.16 0.63–0.7 IV 6.66–7.53 0.01–0.26 1.5–2.0 58 1.88–2.12 i+hl 3 U : \ A C T A B O T A N I C A \ A c t a - B o t a n 2 - 1 1 \ B a r i n o v a . v p 9 . r u j a n 2 0 1 1 1 1 : 2 1 : 2 9 C o l o r p r o f i l e : D i s a b l e d C o m p o s i t e 1 5 0 l p i a t 4 5 d e g r e e s Our taxonomic analysis revealed 254 species from eight taxonomical divisions, among which diatoms slightly prevail over green and blue-green species (Tab. 2, Fig. 2a). For 13 species we indicate only generic assignments because certain critical features, such as sex- ual forms in Spirogyra, are lacking in our material. ACTA BOT. CROAT. 70 (2), 2011 221 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS Tab. 2. Ecology and geographical distribution of algae and cyanobacteria in Kazakhstan lakes. Ecologi- cal types: Habitat: B – benthic; P – planktonic; P-B – planktonic-benthic; T – temperature; temp – temperate; eterm – eurytermic; warm – warm-water; cool – cool-water; Reo – reophility and oxygenation; st – standing water; str – stream; D – saprobity categories of WATANABE (1986); es – eurysaprob; sx – saproxen; sp – saprophil; S – saprobity categories of SLÁDE^EK (1986); o – oligosaprob; o-a – oligo-alfa-mesosaprob; o-b – oligo-beta-mesosaprob; b – beta-mesosaprob; b-a – beta-alfa-mesosaprob; a – alfa-mesosaprob; a-b – alfa-beta-mesosaprob; x – xenosaprob; a-r – alfa-meso-polysaprob; r – polysaprob; Hal – halobity; mh – mesohalobe; i – oligohalo- bious-indifferent; hl – oligohalobious-halophilous; hb – oligohalobious-halophobous; ph – poly- halobe; pH – acidophility; ind – indifferent; alf – alkaliphil; acf – acidophil; alb – alkalibiont; Geo – chorological types; mt – Mediterranean; k – cosmopolite; b – Boreal; Pt – Paleotropical; Nt – Neotropical; Ha – Holarctic. »–« no data. Numbers of lakes as in Table 1. No Taxon No of Lake Habitat T Reo D S Hal pH Geo Cyanoprokaryota 1 Anabaena constricta (Szaf.) Geitl. 21 P–B – – – p – – Ha 2 Anabaena contorta Bachm. 1 P – st-str – – – – k 3 Anabaena flos-aquae (Lyngb.) Bréb. f. flos-aquae 18 P – st – b i – k 4 Anabaena flos-aquae f. jacutica (Nyg.) Elenk. 8 P – – – – i – b 5 Anabaena minima Tschernov 33 – – – – – – – b 6 Anabaena sp. 18, 28, 33 – – – – – – – – 7 Anabaena spiroides Kleb. 34 P – st-str – o i – k 8 Anabaena variabilis Kütz. 9 P-B – st – – mh – k 9 Aphanizomenon flos-aquae (L.) Ralfs 6, 8, 20 P – – – b hl – k 10 Aphanothece clathrata W. et G. S. West 1, 4, 8, 14, 20, 24, 27 P – – – b hl – k 11 Aphanothece stagnina (Spreng.) A. Br. 8, 20, 21 P-B – – – o hl ind k 12 Chroococcus limneticus Lemm. 20 P – – – o – – k 13 Chroococcus minor (Kütz.) Näg. 33 B – – – o-b – – k 14 Chroococcus minutus (Kütz.) Näg. 20 P – – – – – – k 15 Chroococcus turgidus (Kütz.) Näg. 1, 3, 5, 8, 21, 33, 35 P-B – – – o hl alf k 16 Chroococcus vacuolatus Skuja 33 P-B – – – – – – b, mt U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees 222 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. No Taxon No of Lake Habitat T Reo D S Hal pH Geo 17 Chroococcus varius A. Br. 4, 8 B – – – o-b – – k 18 Coelomoron pusillum (Van Goor) Komárek 1, 4, 8, 14, 21, 33 P temp st – a – – k 19 Coelosphaerium kuetzingianum Näg. 15 P – – – – i – k 20 Coelosphaerium minutissimum Lemm. 21 P – – – – hl – k 21 Gloeotrichia pisum (Ag.) Thur. 4, 18 B – – – – hl ind k 22 Gomphosphaeria aponina Kütz. 28, 33 P – – – – hl alf k 23 Lyngbya aestuarii (Mert.) Leibm. 28 P-B – – – – – – k 24 Lyngbya contorta Lemm. 1 – – – – – hl – Ha 25 Lyngbya sp. 15, 18 – – – – – – – – 26 Merismopedia minima Beck 18, 20, 28, 33, 34 B – – – – – – Ha 27 Merismopedia smithii De Toni 14, 18, 20 P cool – – – – – Ha 28 Merismopedia tenuissima Lemm. 1, 8, 9, 14, 20, 33 P-B – – – b hl – k 29 Microcystis aeruginosa (Kütz.) Kütz. 7, 8 P – – – b hl – k 30 Microcystis pulverea f. delicatissima (W. et G. S. West) Elenk. 1 P – – – – i – k 31 Nostoc kihlmanii Lemm. 30 P cool st – – i ind Ha 32 Oscillatoria brevis Kütz. ex Gom. 10 P-B – st – a – – k 33 Oscillatoria limosa (Roth) Ag. 11 P-B – st-str – a hl – k 34 Oscillatoria princeps Vauch. ex Gom. 10, 22 P-B – st-str – a – – k 35 Phormidium ambiguum Gom. 11 B – st-str – – i ind k 36 Phormidium autumnale (Ag.) Gom. 20, 30, 33 B – st-str – b – – k 37 Phormidium paulsenianum B.-Peters. 28 B – – – – ph – Ha 38 Phormidium retzii Ag. ex Gom. 10 B – st-str – o – – k 39 Rhabdogloea scenedesmoides (Nyg.) Komárek et Anagn. 8 P cool st – – – – Ha 40 Spirulina major Kütz. ex Gom. 10 P – st – – – – k 41 Synechocystis sallensis Skuja 20 P-B cool st – o – acf Ha, Nt 42 Tolypothrix sp. 21 – – – – – – – – 43 Woronichinia compacta (Lemm.) Komárek et Hindák 1, 18, 21, 27 P cool st – – – – Ha, Pt Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees ACTA BOT. CROAT. 70 (2), 2011 223 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS No Taxon No of Lake Habitat T Reo D S Hal pH Geo Bacillariophyta 44 Achnanthes brevipes Ag. 11, 13, 28 B – – – – hl alf k 45 Achnanthes gibberula var. interrupta Poretzky et Anisimova 20 B – – – – hl – k 46 Achnanthes lanceolata (Bréb. in Kütz.) Grun. in Cl. et Grun. 5, 8, 22, 29, 34 P-B warm st-str sx o i alf k 47 Achnanthes minutissima Kütz. 3, 11, 18, 20, 27–29, 33 B eterm st-str es o i alf k 48 Amphipleura pellucida (Kütz.) Kütz. 5, 33 B – st – o-a i alf k 49 Amphora coffeaeformis (Ag.) Kütz. 3, 22, 33 B – st-str – – mh – k 50 Amphora commutata Grun. in V. H. 3 B – – – – hl – k 51 Amphora holsatica Hust. in Pasch. 11 P – st-str – – hl – k 52 Amphora ovalis (Kütz.) Kütz. 3, 8, 11, 14, 18, 20, 33, 34 B temp st-str sx a-b i alf k 53 Amphora pediculus (Kütz.) Grun. ex A. Schmidt 5, 8, 16, 20, 21, 33, 34 B temp – es a-b i alf k 154 Amphora veneta Kütz. 4, 8, 10, 14, 28 B – – es a-p i alf k 55 Asterionella formosa Hass. 4, 8, 18 P – – sx i alf k 56 Aulacoseira granulata (Ehrb.) Sim. 8, 33, 34 P-B cool st-str es b i alf k 57 Aulacoseira italica (Ehrb.) Sim. 34 P-B cool st-str es b i alf k 58 Caloneis amphisbaena (Bory) Cl. 5, 8, 12, 20, 28–30, 34 B – – – – hl alf k 59 Caloneis silicula (Ehrb.) Cl. 5, 8, 11, 18, 20, 32 B – st sp b i alf k 60 Caloneis westii (W. Sm.) Hendey 5, 33 B – – – – mh – k 61 Campylodiscus noricus Ehrb. 26, 33 B – – – o i alf k 62 Chaetoceros sp. 9, 33 P – – – – – – – 63 Cocconeis placentula Ehrb. 9, 11, 15, 18–20, 33 P-B temp st-str es o i alf k 64 Craticula cuspidata (Kütz.) D. G. Mann 5, 20, 33 B temp st – – i alf k 65 Cyclostephanos dubius (Fricke in A. Schmidt) Round 20 – – – – b-a hl alf k 66 Cymatopleura librile (Ehrb.) Pant. 5, 7, 89, 14, 18, 20, 25, 27, 28, 34 P-B – – – – – – k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees 224 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. No Taxon No of Lake Habitat T Reo D S Hal pH Geo 67 Cymbella cornuta (Ehrb.) R. Ross 8, 14, 18, 27, 31, 34 B – – – – i alf k 68 Cymbella neocistula Krammer 14 B – st-str sx b i alf k 69 Cymbella tumida (Bréb.) V. H. 8, 18, 20 B temp – sx o i alf k 70 Cymbella turgidula Grun. 5, 14, 18, 20, 33 B – st-str es – – ind k 71 Diatoma vulgare Bory var. vulgare 18, 20, 22, 27, 33, 34 P-B – st-str – x i ind k 72 Diatoma vulgare var. ehrenbergii (Kütz.) Grun. 34 B – – – – i alf k 73 Diploneis elliptica (Kütz.) Cl. 23 B eterm – sx o i alf k 74 Diploneis ovalis (Hilse) Cl. 24 B – – sp i alb b 75 Encyonema silesiacum (Bleisch. in Rabenh.) D. G. Mann in Round et al. 8, 18, 27, 34 B – st-str sx o-b i ind k 76 Epithemia adnata (Kütz.) Bréb. 5, 8, 14, 18, 20, 31, 34 B temp – sx b i alf k 77 Epithemia sorex Kütz. 14, 18, 20, 33 B temp st sx b i alf k 78 Epithemia turgida (Ehrb.) Kütz. 4, 8, 11, 14, 15, 18, 20, 29, 31, 34 B temp – – – i alf k 79 Eunotia exigua (Bréb. ex Kütz.) Rabenh. 11 B – – es o hb acf k 80 Eunotia minor (Kütz.) Grun. in V. H. 18 – – – es b-a – ind k 81 Eunotia monodon Ehrb. 15 B – – o hb acf k 82 Eunotia pectinalis (O. Müll.) Rabenh. 18, 27 B – – sx – hb acf k 83 Eunotia praerupta Ehrb. var. praerupta 18 B cool st-str sx – hb acf k 84 Eunotia praerupta var. bidens (Ehrb.) Grun. in Cl. et Grun. 18 B cool – – – hb acf k 85 Eunotia sibirica Cl. in Cl. et Grun. 11, 31 B – – – – i – b 86 Fallacia pygmaea (Kütz.) Stikle et Mann 5, 24 B – – es a mh alf k 87 Fragilaria crotonensis Kitton 3, 8 P – st es – hl alf k 88 Fragilaria sp. 15, 24 – – – – – – – – 89 Fragilaria ulna (Nitzsch) L.-B. 4, 5, 8, 11, 13, 14, 18–21, 26, 27, 29, 33, 34 P-B temp st-str es b i ind k 90 Fragilaria vaucheriae (Kütz.) B. Peters. 8, 14, 16, 17, 18, 20, 21, 27, 28, 33, 34 P – – – – i alf Ha Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees ACTA BOT. CROAT. 70 (2), 2011 225 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS No Taxon No of Lake Habitat T Reo D S Hal pH Geo 91 Fragilariforma constricta (Ehrb.) Williams et Round 14 B – – – – i acf Ha 92 Fragilariforma virescens (Ralfs) Williams et Round 14, 18 P-B – st es x i ind k 93 Fragilariopsis separanda (Hust.) Hasle 24 – – – – – hl – Ha 94 Frustulia sp. 24 – – – – – – – – 95 Geissleria schoenfeldii (Hust.) L.-B. et Metzetlin in L.-B. 20 B – – – – i alf b 96 Gomphonema acuminatum Ehrb. var. acuminatum 11, 20 P-B – st es b i alf k 97 Gomphonema acuminatum var. coronatum (Ehrb.) W. Sm. 14, 18, 20 P-B – st – b i ind k 98 Gomphonema augur Ehrb. 14, 18 B – – es – i ind k 99 Gomphonema clavatum Ehrb. 8, 18, 33 B – – es – i – k 100 Gomphonema parvulum (Kütz.) Kütz. 8, 11, 33 B temp str es b i ind k 101 Gomphonema truncatum Ehrb. 8, 14, 18, 20 P-B – – es b-a – – k 102 Gyrosigma acuminatum (Kütz.) Rabenh. 5, 8, 18, 22, 26, 34 B cool – – b i alf k 103 Gyrosigma spenceri (W. Sm.) Cl. var. spenceri 9, 16, 22, 33 B – – es o mh alf k 104 Gyrosigma spenceri var. nodiferum Grun. 3, 9, 13, 14, 28 B – – – – i ind b 105 Hippodonta hungarica (Grun.) L.-B., Metzeltin et Witkowski 14, 16, 18, 20, 21, 34 B – st-str es b i alf k 106 Luticola mutica (Kütz.) Mann 33, 34 B – – sp o-b – – k 107 Mastogloia sp. 11, 20, 33 – – – – – – – 108 Melosira varians Ag. 34 P-B temp st-str es b hl alf k 109 Navicula exigua Grun. 5, 7–9, 14, 16, 20, 22, 25–28, 33, 34 B – – es i alf k 110 Navicula gregaria Donk. 8 B – – es b mh alf k 111 Navicula peregrina (Ehrb.) Kütz. 34 B – – es o mh alf k 112 Navicula rhynchocephala Kütz. 8, 14, 18, 28 B – – – a hl alf k 113 Navicula sp. 3, 20 – – – – – – – – 114 Navicula viridula (Kütz.) Ehrb. 5, 8, 14, 18, 20, 28, 33, 34 B – – es a hl alf k 115 Neidium dubium (Ehrb.) Cl. 10, 20 B – – b i alf k 116 Neidium iridis (Ehrb.) Cl. 8, 18, 20 B – st es o hb ind k 117 Nitzschia acicularis (Kütz.) W. Sm. 2, 5, 9, 14, 15, 18, 20–22, 24, 27, 28, 33, 34 P-B temp – es a i alf k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees 226 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. No Taxon No of Lake Habitat T Reo D S Hal pH Geo 118 Nitzschia clausii Hantzsch 11, 29 B – es o-a mh acf k 119 Nitzschia dissipata (Kütz.) Grun. 11, 18, 20, 22, 25, 34 B – st-str sx b i alf k 120 Nitzschia filiformis (W. Sm.) V. H. 8, 9, 14, 28, 34 B – – es a-b hl – k 121 Nitzschia linearis (C. Ag.) W. Sm. 3, 8, 20, 28, 31, 34 B temp – es b i alf k 122 Nitzschia macilenta Greg. 14, 18, 20, 34 – – – – – hl – – 123 Nitzschia palea (Kütz.) W. Sm. 5, 7, 8, 12–15, 18, 20, 21, 27, 28, 33, 34 P-B temp – sp b-a i ind k 124 Nitzschia reversa W. Sm. 5 – – – – – hl – k 125 Nitzschia sigmoidea (Nitzsch) W. Sm. 20 P-B – – – b i alf k 126 Nitzschia sp. 22, 24 – – – – – – – – 127 Nitzschia vermicularis (Kütz.) Hantzsch in Rabenh. 3, 5, 11, 12 B – – – b i alf k 128 Pinnularia gibba Ehrb. var. gibba 18, 20, 33 B – – es – i ind b 129 Pinnularia gibba var. subundulata A. Mayer 20, 34 B – – – – i – b 130 Pinnularia microstauron (Ehrb.) Cl. var. microstauron 20, 29 B temp – sp o i ind k 131 Pinnularia microstauron var. brebissonii (Kütz.) Mayer 8 B – st-str es b i ind k 132 Pinnularia viridis (Nitzsch) Ehrb. 3, 14, 20, 22, 29, 31, 32, 34 P-B temp – es b i ind k 133 Pinnularia sp. 18 B – – – – – – – 134 Rhoicosphenia abbreviata (C. Ag.) L.-B. 4, 8, 9, 14, 15, 17, 27, 28, 33, 34 P-B – – es b i alf k 135 Rhopalodia gibba (Ehrb.) Müll. 14, 18, 20, 29 B temp – es o i alb k 136 Rhopalodia musculus (Kütz.) O. Müll. 29 P-B – – x mh alb k 137 Sellaphora pupula (Kütz.) Mereschkowsky 18, 34 B eterm st sp a hl ind k 138 Stauroneis anceps Ehrb. var. anceps 6, 8, 9, 11, 16, 18, 20, 22, 28, 33 P-B – – sx b i ind k 139 Stauroneis anceps var. gracilis Rabenh. 8 B – – sx – i ind k 140 Stauroneis phoenicenteron (Nitzsch) Ehrb. f. phoenicenteron 18, 20 B temp – s b i ind k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees ACTA BOT. CROAT. 70 (2), 2011 227 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS No Taxon No of Lake Habitat T Reo D S Hal pH Geo 141 Stauroneis phoenicenteron f. gracilis (Ehrb.) Hust. 20 – – – – – – ind – 142 Stauroneis sp. 20 B – – – – – – – 143 Stephanodiscus hantzschii Grun. 1, 7–9, 18, 20, 33, 34, P-B temp st es a i alf k 144 Stephanodiscus sp. 5 – – – – – – – 145 Surirella brebissonii Kram. et L.-B. 20, 27, 33 B – st-str b-a i alf k 146 Surirella linearis W. Sm. 14 P-B – – es b i ind Ha 147 Surirella ovalis Bréb. 16, 26, 29, 33 P-B – – es o mh alf k 148 Surirella ovata var. pinnata (W. Sm.) Rabenh. 20, 27, 33, 34 B – – es b i alf k 149 Surirella tenera Greg. 34 P-B – st es b i alf k 150 Tryblionella gracilis W. Sm. 5, 17, 20, 23, 29 B – – – – – – k 151 Tryblionella hungarica (Grun.) D. G. Mann – P-B – – sp a mh alf k Chlorophyta 152 Actinastrum hantzschii Lagerh. 8, 14, 21, 34 P-B – st-str – b i – k 153 Ankistrodesmus falcatus (Corda) Ralfs 20 P-B – st-str b hb – k 154 Ankistrodesmus fusiformis Corda sensu Korsch. 14, 20 P-B – st-str – – i – k 155 Binuclearia lauterbornii (Schmidle) Pr.-Lavr. 1, 23 P – – – – – – Ha 156 Chaetophora pisiformis (Roth) Ag. 18, 32 B – st-str – – – – k 157 Chlamydomonas sp. 20 – – – – – – 158 Cladophora fracta (Müll. ex Vahl.) Kütz. 4, 5, 9, 13, 14, 22, 27, 28, 33, 34 P-B – st-str – b – – k 159 Cladophora glomerata (L.) Kütz. 11 P-B – st-str – b i alf k 160 Closterium acerosum (Schrank) Ehrb. 28 P-B – st-str – a i ind k 161 Closterium dianae Ehrb. 5, 18, 20, 33, 34 P-B – st-str – o – – k 162 Closterium ehrenbergii Menegh. 15 P-B – st-str – b hb ind k 163 Closterium gracile Bréb. in Chevalier 8, 22 P-B – st-str – – hb acf k 164 Closterium sp. 8 – – – – – – – 165 Coelastrum microporum Näg. in A. Br. 8, 33 P-B – st-str – b i ind k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees 228 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. No Taxon No of Lake Habitat T Reo D S Hal pH Geo 166 Coelastrum sphaericum Näg. 8, 14, 20 P-B – st-str – – i – k 167 Coenochloris pyrenoidosa Korsch. 11, 14, 18 P – – – – hl – Ha 168 Coenococcus polycoccus (Korsch.) Hind. 4, 11, 15, 18, 20, 33, 34 P – st – – – – k 169 Coenocystis planktonica Korsch. 12 P – st – b i – k 170 Coenocystis subcylindrica Korsch. 15, 27 P – – – – i – b 171 Cosmarium punctulatum Bréb. 4, 18, 27 P-B – – – – hb acf k 172 Cosmarium sp. 4, 14, 18, 27, 34 – – – – – – – 173 Crucigenia tetrapedia (Kirchn.) W. et G. S. West 4, 8, 20, 27, 33, 34 P-B – st-str – b i ind k 174 Crucigeniella apiculata (Lemm.) Komárek 34 P-B – st-str – – – – k 175 Desmodesmus brasiliensis (Bohlin) Hegew. 8, 20, 33 P-B – st-str – b – – k 176 Desmodesmus denticulatus (Lagerh.) An, Friedl et Hegew. 20 P-B – st-str – b i – k 177 Desmodesmus opoliensis (P. Richt.) Hegew. 20 P-B – st-str – – – – k 178 Desmodesmus spinosus (K. Biswas) Hegew. 18 P-B – st-str – o-b – – Ha, Nt 179 Dictyosphaerium pulchellum Wood 4, 8, 14, 20, 21 P-B – st-str – – i ind k 180 Elakatothrix acuta Pasch. 20 P – – – – i – k 181 Elakatothrix gelatinosa Wille 20 P – st-str – o i – k 182 Eremosphera gigas (W. Archer) Fott et Kalina 8, 15, 34 P – – – – i acf k 183 Franceia tenuispina Korsch. 18 P – – – – – Ha 184 Lagerheimia ciliata (Lagerh.) Chod. 20 P-B – st-str – – – – k 185 Lagerheimia genevensis Chod. 1, 20 P – – – i – k 186 Micrasterias sp. 18 – – – – – – 187 Monoraphidium arcuatum (Korsch.) Hind. 1, 20, 28, 34 P-B – st-str – – – – k 188 Monoraphidium contortum (Thur.) Kom.-Legn. 1, 8, 9, 14, 15, 18, 20, 21, 27, 28, 33 P-B – st-str – – – – k 189 Monoraphidium griffithii (Berk.) Kom.-Legn. in Fott 7, 8, 9, 14, 18, 20, 21, 28, 33, 34 P-B – st-str – – – – k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:29 Color profile: Disabled Composite 150 lpi at 45 degrees ACTA BOT. CROAT. 70 (2), 2011 229 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS No Taxon No of Lake Habitat T Reo D S Hal pH Geo 190 Monoraphidium komarkovae Nyg. 22 P – st-str – – – – k 191 Monoraphidium minutum (Näg.) Kom.-Legn. 1 P-B – st-str – – – – k 192 Mougeotia sp. 11, 18, 20, 28, 33 – – – – – – 193 Nephrochlamys rotunda Korsch. 20 P-B – st-str – – – – Ha 194 Oedogonium sp. 3, 11, 14, 15, 20, 29–32 – – – – – – – 195 Oocystis lacustris Chod. 4 P-B – st-str – b hl – k 196 Oocystis submarina Lagerh. 1, 8, 27, 33 P-B – st – – i – k 197 Palmodictyon lobatum Korsch. 15 B – st-str – – – – k 198 Pediastrum boryanum (Turp.) Menegh. 1, 14, 18, 20, 27, 33, 34 P-B – st-str – b i ind k 199 Pediastrum duplex Meyen 4, 14, 27 P-B – st-str – b i ind k 200 Pediastrum kawraiskyi Schmidle 4, 8 P-B – st-str – – – – Ha 201 Pediastrum tetras (Ehrb.) Ralfs 14, 20, 34 P-B – st-str – b i ind k 202 Penium sp. 18 – – – – – – – 203 Raphidocelis sigmoidea Hind. 20 P – st-str – – – – b, mt 204 Raphidocelis subcapitata (Korsch.) Nyg. 8, 33 P-B – st-str – – – – Ha, Nt 205 Scenedesmus acuminatus (Lagerh.) Chod. 18, 20, 27 P-B – st-str – b i ind k 206 Scenedesmus acutiformis var. costatus (Hub.-Pest.) Pankow 18 P-B – – – – – – k 207 Scenedesmus acutus Meyen 14, 18, 20, 28 P-B – st-str – o-b i – k 208 Scenedesmus apiculatus (W. et G. S. West) Chod. var. apiculatus 18, 28 P – st-str – – – – Ha, Pt 209 Scenedesmus apiculatus var. indicus (Hortob.) Tzarenko 20 P-B – st-str – – – – Ha, Nt 210 Scenedesmus arcuatus (Lemm.) Lemm. 14, 20 P-B – st-str – b i – k 211 Scenedesmus bijugatus (Turp.) Kütz. 27 P – – – i ind k 212 Scenedesmus disciformis (Chod.) Fott. et Kom. 20 P-B – st-str – – – – k 213 Scenedesmus ellipticus Corda 18, 27, 34 P-B – st-str – o-b – – k 214 Scenedesmus gutwinskii Chod. 20 P – – – – – Ha 215 Scenedesmus incrassatulus Bohl. 20 P-B – st-str – – – – k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees 230 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. No Taxon No of Lake Habitat T Reo D S Hal pH Geo 216 Scenedesmus obliquus (Turp.) Kütz. 1, 8, 11, 20, 33 P-B – st – – i – k 217 Scenedesmus obtusus Meyen 30 P-B – st-str – – – – Ha 218 Scenedesmus quadricauda (Turp.) Bréb. 5, 14, 18, 20, 27, 33, 34 P – – – – i ind k 219 Schroederia setigera (Schrod.) Lemm. 8 P – st-str – – i – Ha, Nt 220 Selenastrum gracile Reinsch 14, 20 P-B – st-str – b – – k 221 Spirogyra sp. 4, 15, 18, 27–30, 33 – – – – – – – – 222 Spirogyra weberi Kütz. 29 – – – – – – – k 223 Staurastrum gracile Ralfs 18, 27 P – st – – i – k 224 Staurastrum sebaldii Reinsch. 4 P-B – – – – – acf k 225 Staurastrum sp. 18 – – – – – – – – 226 Staurodesmus sp. 14 – – – – – – – – 227 Stigeoclonium tenue (Ag.) Kütz. emend. Cox et Bold 20 B – st-str – a – – k 228 Tetrachlorella alternans (G. M. Smith) Korsch. 14 P-B – – – – – Ha 229 Tetraedron caudatum (Corda) Hansg. 34 P-B – st-str – b i ind k 230 Tetraedron incus (Teil.) G. M. Smith 18, 20 P-B – st-str – – i – k 231 Tetraedron minimum (A. Br.) Hansg. 1, 18, 20, 27, 34 P-B – st-str – b i – k 232 Tetrastrum elegans Playf. 8, 20, 33 P – st-str – – i – k 233 Tetrastrum triacanthum Korsch. 20 P – st-str – – – – Ha 234 Ulothrix tenerrima Kütz. 29 B – – – – i – k 235 Ulothrix zonata (Weber et Mohr) Kütz. 13, 22, 27, 34 P-B – st-str – o i ind k 236 Ulothrix sp. 27 B – – – – – – – 237 Volvox aureus Ehrb. 20 P – st – b i – k 238 Zygnema sp. 18 B – – – – – – – Chrysophyta 239 Dinobryon sertularia Ehrb. 11 P – – – – i – k Cryptophyta 240 Cryptomonas sp. 1, 9, 16, 18, 20–22, 27, 32 P – – – – – – – Dinophyta 241 Glenodinium quadridens (Stenis) Schiller. 20 P – – – – – – k Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees The lacustrine algoflora mainly consists of geographically widespread species (85% cosmopolitan, 9% of pan-Holarctic distribution, and 4.5% of Boreal distribution (Tab. 2). In the lakes of arid regions, algae occur over the water column and on hard substrates, with some preference for the latter (Fig. 2b). The most abundant periphyton species are cyanoprokaryotic Anabaena flos-aquae f. flos-aquae (Kamyshovoe Lake), Coelosphae- rium minutissimum (Kulagul Lake), Phormidium retzii (Lake Great Kak), diatoms Am- phora pediculus (Great Kak Lake), and green algae Binuclearia lauterbornii (Aike Lake) and Spirogyra weberi (Jarsor Stream) With respect to pH, the indicator species (HUSTEDT 1938–1939) are segregated into four groups among which the alkaliphiles prevail (Fig. 2c). Such distribution is characteristic of slightly alkalic conditions (Tab. 1). The most common alkaliphiles are Chroococcus turgidus, (Cyanoprokaryota) and Achnanthes minutissima, Amphora ovalis, A. pediculus, Caloneis amphisbaena, Epithemia turgida, Fragilaria vaucheriae, Navicula exigua, Nitzs- chia acicularis, N. palea, Rhoicosphenia abbreviata (Bacillariophyta). The diversity of pH indicators reflects the great amplitude of this variable. Salinity indicators (HUSTEDT 1957) are assigned to five ecological groups (Fig. 2d), with oligohalobes-indifferents as a dominant group, although the oligohalobes-halophiles and mesohalobes are also common, as well as a single species of polyhalobes (Tab. 2). Among the oligohalobes-indifferents the most common are Amphora ovalis, Epithemia turgida, Fragilaria ulna, F. vaucheriae, Nitzschia acicularis, N. palea, Rhoicosphenia abbreviata (Bacillariophyta), Crucigenia tetrapedia, Pediastrum boryanum (Chlorophyta), Trachelomonas hispida, T. volvocina (Euglenophyta). Remarkably, the blue-greens are ACTA BOT. CROAT. 70 (2), 2011 231 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS No Taxon No of Lake Habitat T Reo D S Hal pH Geo Euglenophyta 242 Astasia inflata Klebs 19 P – st – – – – Ha, Nt 243 Euglena acus Ehrb. var. acus 20, 25, 34 P eterm st – b i ind k 244 Euglena oxyuris Schmarda 14, 17 P st-str – a mh ind k 245 Euglena viridis Ehrb. 7 P-B eterm st-str – p mh ind k 246 Euglena sp. 3, 4, 15 – – – – – – – 247 Phacus caudatus Hübn. 14, 20, 33 P-B eterm st-str – b i alf k 248 Phacus longicauda (Ehrb.) Duj. 20 P-B – st – a i ind k 249 Phacus orbicularis Hübn. 20 P-B – st-str – b i ind k 250 Trachelomonas hispida (Perty) Stein emend. Delf. 4, 8, 18, 20, 27–29 P-B eterm st-str – b i – k 251 Trachelomonas volvocina Ehrb. 8, 14, 18, 20, 27, 29, 34 P-B eterm st-str – b i ind k Xanthophyta 252 Ophiocytium majus Missing 15, 33 P – st – – – acf k 253 Tribonema viride Pascher 11, 15, 29, 33 P-B – – – – i – k 254 Tribonema sp. 22 B – – – – – – – Tab. 2. – continued U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 26. rujan 2011 13:58:16 Color profile: Disabled Composite 150 lpi at 45 degrees 232 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. 0 50 100 150 Cyanoprokaryota Bacillariophyta Chlorophyta Euglenophyta Xanthophyta Cryptophyta Dinophyta Chrysophyta a y = -24x 2 + 111x - 35 R 2 = 1 0 10 20 30 40 50 60 70 80 90 100 P P-B B Ecological group N , S p e c ie s Connection to substrate b y = -21x 2 + 103x - 71 R 2 = 0,9571 0 10 20 30 40 50 60 acf ind alf alb Ecological group N , S p e c ie s pH c y = -11,214x 2 + 55,786x - 11,6 R 2 = 0,39 0 20 40 60 80 100 120 hb i hl mh ph Ecological group N , S p e c ie s Salinity d y = -0,7992x 2 + 7,7432x + 0,0833 R 2 = 0,1527 0 10 20 30 40 50 60 70 x o o-â o-á â â-á á-â á á-p p Ecological group N , S p e c ie s Sladecek's saprobity e y = -29x 2 + 113x - 70 R 2 = 1 0 5 10 15 20 25 30 35 40 sx es sp Ecological group N , S p e c ie s Watanabe's saprobity f y = -4,25x 2 + 17,35x - 1,75 R 2 = 0,8027 0 5 10 15 20 25 cool temp eterm warm Ecological group N , S p e c ie s Temperature g y = -69x 2 + 261x - 161 R 2 = 1 0 10 20 30 40 50 60 70 80 90 100 st st-str str Ecological group N , S p e c ie s Streaming and Oxygenation h Fig. 2. Algal species diversity and ecology in the wetland lakes of Kazakhstan: a – distribution of species richness per taxonomic divisions; b – distribution of species per habitat ecological groups; c – distribution of species per groups of pH indicators; d – distribution of species per groups of salinity indicators; e – distribution of species per groups of saprobity indicators (after SLÁDE^EK 1973); f – distribution of species per groups of saprobity indicators (after WATANABE 1986); g – distribution of species per groups of temperature indicators; h – distri- bution of species per groups of streaming and oxygenation indicators. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees mostly halophilic, but include also the only palyhalobic species Phormidium paulseni- anum. All the halophobes are diatoms, among them several species of Eunotia. Algal indicators of organic pollution are assigned to nine ecological groups (Figs. 2e, f; Tab. 2), representing the entire spectrum of indication systems (SLÁDE^EK 1973, 1986; WATANABE et al. 1986). Beta-mesosaprobionts prevail with Phormidium autumnale, Micro- cystis aeruginosa (Cyanoprokaryota), Fragilaria vaucheriae, Surirella ovata, Pinnularia ACTA BOT. CROAT. 70 (2), 2011 233 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS Tab. 3. Chemical variables (with standard deviation) and water quality classification based on concen- trations of nitrate- nitrogen and phosphorus in the wetland lakes during 1–20 October 1999. Lake N-NO3 (mg L –1) P-PO4 3– (mg L–1) Rank of water quality N-NO3 P-PO4 3– Aike 3.4±0.14 0.16±0.01 5a 4a Kulykol 1.5±0.1 0.06±0.00 3b 3b Kulykol (N2) 1.1±0.0 0.05±0.00 3b 3a Kulykol, kordon Jailma 2.1±0.1 0.30±0.01 3b 4b Kulykol, well Jailma 1.0±0.0 0.06±0.00 3a 3b Stream Jarsor 1.0±0.0 0.01±0.00 3a 2a Jarsor 8.6±0.3 4.06±0.12 5b 5b Batpakkol 2.3±0.1 0.26±0.01 4b 4b Kulagul 0.0±0.0 0.98±0.03 1 5b Sankebay 5.4±0.2 0.54±0.20 5b 5a Jarkol, Naurzum Natural Reserves* 4.1±0.2 1.08±0.03 5b 5b Kushmurun, south part 3.5±0.1 0.10±0.00 5a 3b Kojbagor, coast 2.0±0.1 0.13±0.00 4a 4a Kojbagor 1.9±0.1 0.27±0.01 4a 4b Tuntugur 1.9±0.1 0.12±0.00 4a 4b Tuntugur, coast 2.0±0.1 0.26±0.01 4a 4b River Karasu, near L. Tuntugur 1.4±0.1 0.23±0.01 3b 4b Bozshakol 2.7±0.1 0.20±0.01 5a 4a Bozshakol, north-east part 8.5±0.3 2.25±0.07 5b 5b Biesoygan 2.1±0.1 0.39±0.01 4b 5a Sarykol 1.5±0.1 0.06±0.00 3b 3b Taly 1.7±0.1 0.15±0.00 4a 4a Kamyshovoe 1.9±0.1 0.11±0.00 4a 4a Jaman 1.6±0.1 0.08±0.00 4a 3b Shoshkaly 1.3±0.1 0.32±0.01 3b 5a Annovskoe 2.0±0.1 0.01±0.00 4a 2a Maybalyk 1.4±0.1 0.02±0.00 3b 2b Tahtakul 1.8±0.1 0.48±0.01 4a 5a Sarybalyk 1.8±0.1 0.03±0.00 4a 2b Aksuat 1.0±0.0 0.01±0.00 3b 2a Gr. Karakamys 1.2±0.0 0.01±0.00 3b 2a Note: the assessment of b+g radioactive pollution of water samples with detector-indicator of radioactivity QUARTEX RD 8901 shows that its level does not exceed 20 mkR/h. * – Naurzum Biosphere Reserve. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees viridis (Bacillariophyta), Cladophora, Crucigenia tetrapedia (Chlorophyta), Trachelo- monas volvocina (Euglenophyta). Indicators of temperature conditions reflect a wide range of temperature fluctuations. A group of temperate species prevails, but species of cold and warm waters are also present (Fig. 2g). Among indicators of streaming and oxygenation, species of slightly turbulent waters – moderate oxygenation prevail, yet in figure 2h, the summit of the trend is displaced toward the indicators of streaming highly oxygenized waters. 234 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. Tab. 4. Saprobity indices, species richness and classification of water quality in the wetland lakes of Kazakhstan during October 1999. Lake No. of algal species Index of saprobity (S) Rank of water quality based on biological variables Rank of water quality based on chemical variables Water Ecosystem State Index (WESI) Aike 20 1.98 3a 5a 0.5 Kulykol 2 2.3 3b 3b 1.0 Kulykol (N2) 2 1.85 3a 3b 0.8 Kulykol, kordon Jailma 3 2.3 3b 4b 0.7 Kulykol, well Jailma 3 2.35 3b 3b 1.0 Stream Jarsor 7 1.99 3a 3a 1.0 Jarsor – – – 5b – Batpakkol 2 2.0 3a 4b 0.6 Kulagul 4 2.38 3b 5b 0.5 Sankebay 5 1.93 3a 5b 0.4 Jarkol. Naurzum Natural Reserves 2 1.7 3a 5b 0.4 Kushmurun, south part 9 2.08 3b 4a 0.8 Kojbagor, coast 29 2.03 3b 4b 0.7 Kojbagor 26 1.95 3a 4a 0.6 Tuntugur 6 1.93 3a 4b 0.6 Tuntugur, coast 26 1.88 3a 4a 0.6 Karasu River near L. Tuntugur 2 1.47 2b 4b 0.7 Bozshakol 23 1.99 3a 5a 0.5 Bozshakol, north-east part 31 1.95 3a 5b 0.4 Biesoygan 7 2.55 4a 5a 0.7 Sarykol 10 2.15 3b 3b 1.0 Taly 6 2.05 3b 4a 0.8 Kamyshovoe 22 1.9 3a 4a 0.6 Jaman 8 1.78 3a 4a 0.6 Shoshkaly 2 2.53 4a 5a 0.7 Annovskoe 5 1.71 3a 4a 0.6 Maybalyk – – – 3b – Tahtakul 2 2.7 4a 5a 0.7 Sarybalyk – – – 4a – Aksuat – – – 3b – Karakamys – – – 3b – U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees Assessment of wetland lacustrine ecosystems according to the hydrochemical and hydrobiological variables Hydrochemical data for autumn of 1999 (dry period) are represented in tables 1 and 3. The analysis of water conductivity and mineralization reveals a group of highly mineral- ized lakes – Jarsor, Sankebay and Kushmurun – with salinity level above 7. The other lakes are brackish or freshwater. Practically all the investigated lakes show the neutral or slightly alkalic reaction typical of natural water bodies with active self-purification processes. Sul- ACTA BOT. CROAT. 70 (2), 2011 235 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS Tab. 5. Chemical variables (with standard deviation) and water quality classification based on con- centrations of nitrate nitrogen and phosphorus in the wetland lakes during May–June 2000. Lake N-NO3 (mg L -1) P-PO4 3 (mg L-1) Rank of water quality N-NO3 P-PO4 3- Alpash 1.0±0.0 0.01 3a 2a Kulykol 1.2±0.0 0.03 3b 2b Gr. Kak 2.2±0.1 0.05 4b 3a Suly 1.4±0.1 1.77 3b 5b Balykty 1.1±0.0 0.02 3b 2b Stream Jarsor 1.0±0.0 0.01 3a 2a Jarsor 2.9±0.1 0.32 5a 5a Maybalyk 2.2±0.1 0.00 4b 1 Kulagul 0.6±0.0 0.17 3a 4a Gr. Sankebay 1.6±0.1 0.09 4a 3b Jarkol, Naurzum Natural Reserves* 2.3±0.1 0.17 4b 4a Chushkaly, Naurzum Natural Reserves* 1.7±0.1 0.28 4a 4b Tounsor (Teniz) 1.5±0.1 0.00 3b 1 Kojbagor 1.3±0.1 0.07 3b 3b Tuntugur 1.5±0.1 0.01 3b 2a Teniz 1.0±0.0 0.04 3a 3a Sultan 0.9±0.0 0.00 3a 1 Bozshakol 1.7±0.1 0.00 4a 1 Jarken 0.9±0.0 0.03 3a 2b Jaltyr 1.0±0.0 1.00 3a 5b Sarykol 0.9±0.0 0.00 3a 1 Jilandy 1.2±0.0 0.68 3b 5b Kamyshovoe 1.2±0.0 0.02 3b 2b Jaman 1.2±0.0 0.03 3b 2b Shoshkaly, western part 1.1±0.0 0.03 3b 2b Annovskoe 1.2±0.0 0.00 3b 1 Gr. Karakamys 0.8±0.0 0.04 3a 3a Tahtakul 1.1±0.0 0.03 3b 2b Sarybalyk 1.5±0.1 0.00 3b 1 Aksuat 1.4±0.1 0.02 3b 2b Karakamys 1.0±0.0 0.68 3a 5b U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees phide (H2S plus the acid-soluble sulfides of metals) concentration 2.005 mg L –1 was found in the northeastern part of Bozshakol Lake only, which is evidence of periodic anoxia. The saprobity index S varies from 1.47 to 2.70, which corresponds to 2b – 4a ranges of water quality (Tab. 4). The biotic component of lake ecosystems provides for a high level of self-purification. 236 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. Tab. 6. Saprobity index S, species richness and water quality classification in wetland lakes of North- ern Kazakhstan in May–June 2000. Lake Maximum no. of algal species, (per sample) Index of saprobity (S) Rank of water quality based on the biological variables Rank of water quality based on the chemical variables Water Ecosystem State Index (WESI) Alpash 14 1.74 3a 3a 1.0 Kulykol 8 2.04 3b 3b 1.0 Gr. Kak 9 2.11 3b 4b 0.7 Suly 7 1.84 3a 4b 0.6 Balykty 26 2.21 3b 3b 1.0 Stream Jarsor 10 1.76 3a 3a 1.0 Jarsor – – – 5a – Maybalyk 4 2.04 3b 4b 0.7 Kulagul 13 2.44 4a 4a 1.0 Gr. Sankebay 2 2.49 4a 4a 1.0 Jarkol, Naurzum Natural Reserves 6 1.96 3a 4b 0.6 Chushkaly, Naurzum Natural Reserves 12 1.97 3b 4b 0.7 Tounsor (Teniz) 30 1.87 3a 3b 0.8 Kojbagor 64 2.04 3b 3b 1.0 Tuntugur 23 2.12 3b 3b 1.0 Teniz 25 1.96 3a 3a 1.0 Sultan 5 2.15 3b 3a 1.25 Bozshakol 30 2.13 3b 4a 0.8 Jarken 23 2.00 3b 3a 1.25 Jaltyr 6 1.86 3a 5b 0.4 Sarykol 23 1.71 3a 3a 1.0 Jilandy 6 2.05 3b 5b 0.5 Kamyshovoe 53 1.86 3b 3b 1.0 Jaman 40 2.10 3b 3b 1.0 Shoshkaly, western part 23 1.87 3b 3b 1.0 Annovskoe 10 1.81 3a 3b 0.8 Gr. Karakamys 6 1.65 3a 3a 1.0 Tahtakul 4 1.80 3a 3b 0.8 Sarybalyk 5 1.48 2b 3b 0.6 Aksuat 1 2.70 4a 3b 1.2 Karakamys 18 1.80 3a 5b 0.4 U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:30 Color profile: Disabled Composite 150 lpi at 45 degrees In spring, the lakes Kak, Jarsor, Sankebay and Sarybalyk were strongly mineralized, with salinity above 7 (Tabs. 5, 6). The other lakes remained freshwater or brackish. The pH reaction was neutral or slightly acidic in all the lakes, characteristic of natural waters with active self-purification processes. The defined background radioactivity in the studied lakes during 1999–2000 was stable, with a level not exceeding 20 mkR h–1, presenting the regional norm and unable to impact lake communities. Discussion The overall diversity is the highest in the lakes Bozshakol, Kamyshovoe, Kojbagor (63 – 112 species), and some other freshwater lakes (Tab. 1) of IV water salinity class. Bio-indicational analysis of algal diversity shows that the dominant indicator species are alkaliphiles, oligohalobes-indifferents and beta-mesosaprobes conveying the integrity of major ecological variables. Similarity analysis (Fig. 3) is based on the distribution matrix of 254 revealed species over 34 water bodies and calculated as the percent disagreement by WARD’s method. The dendrogram shows that the algal taxonomic diversity is divided into three different clust- ers, with most of the Kazakhstan lakes separated at the 74% similarity level. The group designated at the 82% similarity level (cluster 2) comprises algal assemblages of lakes with great amplitude of salinity fluctuations (II to IV classes), with species numbers 1 – 28. The dominant indicators are oligohalobes-indifferent, halophiles and mesohalobes. The second group discriminated at 82% similarity level comprises assemblages of moderately mineralized lakes of III–IV salinity classes, with the species numbers 18 – 37. The dominant indicators are oligohalobes-indifferent, halophiles and occasionally meso- halobes. Cluster 3 of low similarity level comprises assemblages of slightly mineralized lakes of IV salinity class: Bozshakol, Tuntugur, Jaman, Teniz, Kamyshovoe, and Kojbagor, with species numbers 57 (Jaman) to 112 (Kojbagor), dominated by oligohalobes-indifferent and halophiles; mesohalobes are lacking in these lakes. Therefore, the dendrogram clustered all the revealed diversity around three major vari- ables: species richness of algal communities, salinity class, and the dominant salinity indi- cators. The most similar are the species-rich communities of slightly mineralized lakes, as well as the species-poor communities of highly mineralized lakes (ÁCS et al. 2003). These regularities indicate that, other conditions remaining the same, salinity is the main depress- ing factor of algal diversity irrespective of the type and distribution of the water body. In other words, the compositions of algal communities reflect in the first place the salinity level related to climatic aridity. Because the species diversity in protected wetlands is mostly influenced by natural fac- tors, floristic cores can reflect historical natural impact on algal biodiversity. Comparative floristics help summarize regional algal diversity in major floristic cores (Fig. 4). We used comparative floristic approaches also for revealing the major factors influencing the lacus- trine flora enriching process. In the statistical program GRAPHS (NOVAKOVSKY 2004) which presented not only tables of calculation but also constructed visual graphs, we ana- ACTA BOT. CROAT. 70 (2), 2011 237 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:31 Color profile: Disabled Composite 150 lpi at 45 degrees lyzed presence-absence of 254 species in 34 lakes with SERENSEN-CHEKANOVSKY indices calculation. As a result, a dendrite of similarity (Fig. 4) shows five floristic cores, which are marked by dashed lines. Most lakes with species rich communities and fresh water combined into central core (A). The lakes Bozshakol with 63 species and Kojbagor with 112 species placed in the cen- ter of core A. All lakes from core (A) are 3–4 salinity class with high species diversity, low to medium dissolved solids and seasonally fluctuating electrical conductivity, neutral to low acidic range of pH, low to middle nutrient concentration, and III–IV class of water pol- lution. This means that ecosystems in core (A) lakes are well developed. Core (B) formed 9 freshwater lakes with middle species diversity, medium dissolved solids and nutrients concentration, clearer than in core (A), but with neutral to low alkalic water. 238 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. Ward`s method Percent disagreement Kojbagor Kamyshovoe Teniz Jaman Tuntugur Bozshakol Gr.Karakamys Jarken Annovskoe Str.Jarsor Alpash Suly Tahtakul Sultan Kushmurun Jarkol Majbalyk Biesoygan Gr.Kak Jaltyr Sankebay Kulykol-Jailma Jilandy Gr.Sankebay R.Karasu Batpakkol Aksuat Sarykol Shoshkaly Balykty Kulykol Chushkaly Kulagul Aike 1 2 0.2 0.4 0.6 0.8 3 Linkage Distance Fig. 3. Tree diagram for algal species diversity in the wetland lakes of Kazakhstan, WARD’s method, percent disagreement. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:31 Color profile: Disabled Composite 150 lpi at 45 degrees Core (C) included two lakes only that connected with core (A) and characterized as freshwater, low alkaline, low organic polluted with low to medium dissolved solids and nu- trients concentration. Core (D) also formed two lakes, which have conditions similar to those lakes of core (C) and also closely related with the diversity of core (A). The last core (E) included three freshwater lakes, which have similar conditions with lakes from the major core (A). A few lakes that are not included in the mentioned above cores have intermediate (as in Tahtakol or Kushmurun) or extreme environmental conditions such as in the Great Kak Lake: high salinity and electrical conductivity, low acidic water with low phosphates and medium nitrates concentration and as a result low species diversity. Therefore, comparative floristic analysis pointed to salinity as the most important fac- tor that has had a historical influence on algal diversity in the studied wetland lakes. The assessment of the aquatic ecosystems state is based on a correlation of hydro- chemical data and their ranges for nitrogen and phosphorus (the trophic elements) with those for saprobity indices (the biota’s self-purification capacity). We calculated the index of the water ecosystem state, WESI (BARINOVA 2000, BARINOVA et al. 2006) relating the ranges of self-purification to those of trophic elements. WESI reflects the potentials of the aquatic ecosystem to regenerate after anthropogenic impacts. It also conveys the intensity of anthropogenic impacts if such occurred. In the case of WESI above or equal to 1.0, the ecosystem is assessed as balanced and buffered from anthropogenic impacts. At WESI be- low 1.0, the biotic components are under toxic influences. A smaller WESI reflects a greater toxicity. Sometimes the latter can be natural rather than anthropogenic. ACTA BOT. CROAT. 70 (2), 2011 239 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS Fig. 4. Dendrite of similarity constructed on the base of SERENSEN-CHECKANOVSKY indices. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:32 Color profile: Disabled Composite 150 lpi at 45 degrees Our analysis showed a normal (balanced) state for the ecosystems of the lakes Kulykol, the spring Jailma, the spring Jarsor and Sarykol Lake (Tab. 4) in dry autumn of 1999. Most of the samples reveal a slight natural toxic influence which may be come from sulphides. More significant toxic influence is recognized for the lakes Aike, Sankebay, Jarkol, and Bozshakol. However, the composition of their algal communities gives no evidence of heterotrophy. Normal state (WESI above or equal 1.0) was found in the spring season of 2000 in the lakes Alpash, Kulykol, Balykty, Kulagul, Great Sankebay, Kojbagor, Tuntugur, Teniz, Sul- tan, Jarken, Sarykol, Kamyshovoe, Jaman, Shoshkaly, Karakamys, Aksuat, and the stream Jarsor. This group includes most of the lakes. At the same time, a slight toxic suppression of photosynthetic activity was revealed for the lakes Suly, Majbalyk, Jarkol, Chushkaly, Taunsor (Teniz), Bozshakol, Jaltyr, Jilandy, Annovskoe, Tahtakul, Sarybalyk, Karakamys. Therefore, the toxicity might have been temporary, during the dry period, unrelated to any constant anthropogenic impact. According to the functional model of aquatic ecosystems (BARINOVA 2000, BARINOVA et al. 2006), ecosystems of majority of lakes are at the regener- ating stage and most influenced by evaporation in summer season. Algal species and index saprobity S dynamic in communities during the 1999–2000 study period show that the maximal taxonomic diversity (number of species) for algal com- munities in 1999 was observed in the lakes Kojbagor (64), Bozshakol (30), Kamyshovoe (53) and Jaman (40). The saprobity index S varied from 1.48 to 2.70, which corresponds to 2b–4a ranks of water quality. Although sulfides were periodically revealed in Bozshakol Lake, algal species richness is rather high because this lake is fresh and provides the best environment not only for higher aquatic plant development, but also for algal diversity in plankton and submerged plants. The means of S for these lakes in the spring revealed a high self-purification capacity. The most species-rich in the year 2000 were the lakes Balykty (26), Tounsor (Teniz) (30), Kojbagor (64), Tuntugur, Bozshakol (30), Kamyshovoe (53), Jaman (40), and other swith more than 20 species per each sample. On the basis of nitrate concentration, most of the lakes in 1999 were assigned to 4b and 5a–b water quality ranges (Tab. 3), which indicates a reduced consumption of this element by the lacustrine biota. For phosphate concentrations, 19 samples fall in the same high ranges. Only in the Kulagul (Kulykol) Lake is there a high concentration of phosphates against the minimal nitrate concentration. In this lake the algal productivity is limited by ni- trogen which explains the low consumption of phosphates. During the study period only in the northeastern part of Bozshakol Lake was a high concentration of sulfides (H2S) found, which can be explained by anaerobic decomposition of dead matter produced by the lake ecosystem during the periods of water bloom or a decay of aquatic macrophytes. This biota toxic variable periodically formed a reduction zone in the bottom, but in the thin layer of water under the surface life is flourishes. On account of their nitrate and phosphate concentrations, several lakes were assigned to 4b and 5a water quality classes in 2000 (Tab. 5), indicating under-consumption of these components by the biota. In lakes Maybalyk, Tounsor (Teniz), Sultan, Bozshakol, Sarykol, Annovskoe, and Sarybalyk, a relatively high concentration of nitrates was associated with a low concentration of phosphates; the nitrates were under-consumed, because the devel- opment of algal community was limited by phosphorus. Nitrogen was not a limiting factor 240 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:32 Color profile: Disabled Composite 150 lpi at 45 degrees in these lakes. As a whole, the biotic communities were actively developing, although oc- casionally restricted by the deficit of phosphorus in freshwater lakes and in a single brack- ish lake, Sarybalyk. Conclusion The calculated indices of the environmental quality of Kazakhstan’s arid region wetlands ranged within the expected natural variations. Toxic influence is recognized in Jaltyr, Jilandy, and Karakamys. A slight natural influence was revealed for most of the lakes. The organic matter enriching the water after aquatic plant death regulates the pro- duction of sulfides as toxic substances for algae. Yet the algal communities provide no evi- dence of heterotrophy. The toxicity might have been temporary, unrelated to a constant anthropogenic impact. According to the functional model of aquatic ecosystems (BARINOVA et al. 2006), lakes Jaltyr, Jilandy, and Karakamys are assigned to the regeneration stage. In comparison to 1999 and 2000, salinity (mineralization) in the studied lakes slightly decreased (by 0.01–0.02), with the exception of Sarybalyk and Aksuat, where it increased from 1.47 and 0.69 respectively in autumn 1999 to 8.88 and 3.94 respectively in spring 2000. Salinity as a consequence of aridization suppressed algal diversity, and thereby de- creased the productivity of the first trophic level, undermining the trophic base of wetlands as water fowl habitat. Lake ecosystems are insignificantly disturbed, only few of them revealing an apprecia- ble toxic effect. The saprobity indices calculated for each of the lakes attest to a high self-purification capacity. By comparing of the ecosystem state indices, WESI, for 1999 and 2000 we are led to the conclusion that self-purification activity increased from dry to wet seasons in Kulagul, Sankebay, Jarkol, Kojbagor, Tuntugur, Bozshakol, Annovskoe, and Tahtakul. A seasonally increase of salinity in lakes Aksuat, Sarybalyk, and Jarsor did not affect their general state. Therefore, we concluded that salinity in the lakes is the most important factor that has also had a historical influence on the algal diversity of the arid region wetland lakes. Acknowledgements We thank E. A. BRAGIN, N. N. BEREZOVIKOV, S. N. EROKHOV, V. S. VILKOV and V. I. DROBOVTSEV for help in the sampling trips as well as A. G. KARLSEN and A. SOLOVIEVA for help in laboratory analysis. This work was partly supported by the Israeli Ministry of Ab- sorption. References ÁCS, É., BORSODI, A. K., MAKK, J., MOLNÁR, P., MÓZES, A., RUSZNYÁK, A., RESKÓNÉ, M. N., KISS K. T., 2003: Algological and bacteriological investigations on reed periphyton in lake Velencei, Hungary. Hydrobiologia 506–509, 549–557. APHA, AWWA, WEF, 1998. Standard methods for the examination of water and wastewater, Method 4500Cl-B. American Public Health Association and American Water Works Association and Water Environment Federation, Washington, D.C. ACTA BOT. CROAT. 70 (2), 2011 241 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:32 Color profile: Disabled Composite 150 lpi at 45 degrees BARBER, H. G., CARTER, J. R., 1996: An atlas of British diatoms. Biopress Limited, Dorchester, U.K. BARINOVA, S. S., 1988: Polymorphism of connective structures in diatom algae. In: KRASSILOV, V. A. (ed.), Evolutionary research. Vavilov’s Themes, 110–122 (in Rus- sian). Academy of Sciences of USSR, Far East Branch, Vladivostok. BARINOVA, S. S., 1997: Morphology of connective spines in diatom algae of the genus Aulacoseira Thwaites. Paleontological Journal, Moscow 31, 239–245. BARINOVA, S. S., 2000: Methodical aspects of algal biodiversity analysis. In: BARINOVA, S. S. (ed.), Algae as indicators of environmental assessment, 4–59 (in Russian). Institute of Natural Conservation Press, Moscow. BARINOVA, S. S., MEDVEDEVA, L. A., ANISSIMOVA, O. V., 2006: Diversity of algal indicators in environmental assessment (In Russian). Pilies Studio, Tel Aviv. BARINOVA, S. S., BRAGINA, T. M., NEVO, E., 2009: Algal species diversity of arid region lakes in Kazakhstan and Israel. Community Ecology 10, 7–16. BARINOVA, S. S., KARLSEN, A. G., SOLOVIEVA, A. A., 2002: Sustainable assessment of some water ecosystems of Kostanai Oblast and west part of North-Kazakhstan Oblast on the hydrochemical and hydrobiological dates. In: BRAGINA, T. M., BRAGIN, E. A. (eds.), The most important wetlands of North Kazakhstan (Kostanai Oblast and west part of North-Kazakhstan Oblast), 39–43 (in Russian). Russian University Press, Moscow. BARINOVA, S. S., MEDVEDEVA, L. A., ANISSIMOVA, O. V., 2000: Ecological and geograph- ical data of algae-indicators. In: BARINOVA, S. S. (ed.), Algae as indicators of environ- mental assessment (in Russian), 60–150. Institute of Natural Conservation Press, Mos- cow. BRAGINA, T. M., BRAGIN, E. A. (eds.), 2002: The most important wetlands of North Kazakhstan (Kostanai Oblast and west part of North-Kazakhstan Oblast) (in Russian). Russian University Press, Moscow. ETTL, H., 1978: Xanthophyceae. 1. Süßwasserflora von Mitteleuropa, 3. G. Fischer, Stuttgart. ETTL, H., GARTNER, G., 1988: Chlorophyta II. Tetrasporales, Chlorococcales, Gloeoden- drales. Süßwasserflora von Mitteleuropa, 10. G. Fischer, Stuttgart. GOLLERBACH, M. M., KOSSINSKAYA, E. K., POLANSKY, V. I., 1953: Blue-green algae. Guide to Freshwater Algae of the USSR, 2 (In Russian). Soviet Science Press, Moscow. HAMMER, U. T., 1986: Saline lake ecosystems of the world. Dr W. Junk Publishers, Dordrecht. HEGEWALD, E., 2000: New combinations in the genus Desmodesmus (Chlorophyceae, Scenedesmaceae). Algological Studies 96, 1–18. HUSTEDT, F., 1938–1939: Systematische und ökologische Untersuchungen über die Diato- meenflora von Java, Bali und Sumatra. Archiv für Hydrobiologie, Supplement 15, 131–177. HUSTEDT, F., 1957: Die Diatomeenflora des Flüßsystems der Weser im Gebiet der Hanse- stadt Bremen. Abhandlungen Naturwissenschaft Verein Bremen 34, 181–440. KISSELEV, N. A., 1954: Pyrrophyta. Flora plantarum cryptogamarum URSS, 6 (In Russian). Nauka Press, Moscow. 242 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:32 Color profile: Disabled Composite 150 lpi at 45 degrees KOLBE, R., 1927: Zur Ökologie, Morphologie und Systematik der Brackwasserdiatomeen. Die Kieselalgen des Sperenberger Salzgebietes. Pflanzenforschung 7, 1–146. KOMÁREK, J., ANAGNOSTIDIS, K., 1989: Modern approach to the classification system of Cyanophytes 4 – Nostocales. Archiv für Hydrobiologie Suppliment 82 (Algological Studies 56), 247–345. KOMÁREK, J. and ANAGNOSTIDIS, K., 1998: Cyanoprokaryota, 1: Chroococcales. Süß- wasserflora von Mitteleuropa 19/1. G. Fischer, Jena. KORDE, N. V., 1956: The methods of biological studies for the bottom deposits of lakes (the field methods of biological analysis) (In Russian). In: ZHADIN, V. I. (Ed.), Freshwater life in USSR, 4, 1, 383–413. Russian Academic Science Press, Moscow and Leningrad. KÖPPEN, W., GEIGER, R., 1953: Die Klimate der Erde (Map). Neubearbeitung 1953 von R. Geiger u. W. Pohl J. Perthes, Gotha. KRAMMER, K., 2000: Diatoms of Europe, 4. A.R.G. Gantner Verlag K.G., Königstein. KRAMMER, K., 1985: Morphologische und lichtmikroskopische Merkmale in Mikrometer bereich. Ein Fergleich. Mikrokosmos 74, 105–109. KRAMMER, K., LANGE-BERTALOT, H., 1991a: Bacillariophyceae, 1. Naviculaceae. Süßwasser- flora von Mitteleuropa, 2/1. G. Fischer, Jena. KRAMMER, K., LANGE-BERTALOT, H., 1991b: Bacillariophyceae, 2. Bacillariaceae, Epi- themiaceae, Surirellaceae. Süßwasserflora von Mitteleuropa, 2/2. G. Fischer, Jena. KRAMMER, K., LANGE-BERTALOT, H., 1991c: Bacillariophyceae, 3. Centrales, Fragilari- aceae, Eunotiaceae. Süßwasserflora von Mitteleuropa, 2/3. G. Fischer, Stuttgart. KRAMMER, K., LANGE-BERTALOT, H., 1991d: Bacillariophyceae, 4. Achnanthaceae, Kri- tische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesammtliteratur- verzeichnis, 1–4. Süßwasserflora von Mitteleuropa, 2/4. G. Fischer, Stuttgart. LANGE-BERTALOT, H., KRAMMER, K., 1987: Bacillariaceae, Epithemiaceae, Surirellaceae. Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemer- kungen und Erganzungen zu den Naviculaceae. Bibliotheca Diatomologica 15, 1–289. MATTOX, K. R., STEWART, R. D., 1984: Classification on the green algae: a concept based on comparative cytology. In: IRVINE, D. E. G., JOHN, D. M. (eds.), Systematics of the green algae, 29–72. Systematics Association Special Volume 27, Academic Press, London and Orlando. MEFFERT, M. E., 1987: Planktic unsheathed filaments (Cyanophyceae) with polar and cen- tral gas-vacuoles, I. Their morphology and taxonomy. Archiv für Hydrobiologie Supple- ment 76, 315–346. MOSHKOVA, N. A., GOLLERBACH, M. M., 1986: Green Algae. Chlorophyta: Ulotricho- phyceae, 1, Ulotrichales. Flora plantarum cryptogamarum URSS, 10 (In Russian). Nauka Press, Leningrad. NOVAKOVSKY, A. B., 2004: Abilities and base principles of program module »GRAPHS« (In Russian). Scientific reports of Komi Scientific Center, Ural Division of the Russian Academy of Sciences 27, 1–28. PALAMAR-MORDVINTSEVA, G. M., 1982: Chlorophyta: Conjugatophyceae. Desmidiales. Flora plantarum cryptogamarum URSS, 11 (In Russian). Nauka Press, Leningrad. ACTA BOT. CROAT. 70 (2), 2011 243 ALGAL BIODIVERSITY IN KAZAKHSTAN WETLANDS U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:32 Color profile: Disabled Composite 150 lpi at 45 degrees PANTLE, E., BUCK, H., 1955: Die biologische Uberwachung der Gewässer und die Dar- stellung der Ergebnisse. Gas- und Wasserfach 96, 1–604. POPOVA, T. G., 1966: Euglenophyta. Flora plantarum cryptogamarum URSS, 8 (In Rus- sian). Nauka Press, Moscow. POPOVSKY, J., PFIESTER, L. A., 1990: Dinophyceae (Dinoflagellida). Süßwasserflora von Mitteleuropa, 6. Gustav Fisher Verlag, Stuttgart. ROMANENKO, V. D., OKSIJUK, O. P., ZHUKINSKY, V. N., STOLBERG, F. V., LAVRIK, V. I., 1990: Ecological impact assessment of hydrotechnical constructions on water bodies (In Rus- sian). Naukova Dumka, Kiev. RUMRICH, U., LANGE-BERTALOT, H., RUMRICH, M., 2000: Diatoms of the Andes from Vene- zuela to Patagonia/Tierra del Fuego. Gantner Verlag, Ruggell. RUSZNYÁK, A., VLADÁR, P., MOLNÁR, P., RESKÓNÉ, N. M., KISS, G., MÁRIALIGETI, K., BORSODI, A. K., 2008: Cultivable bacterial composition and BIOLOG catabolic diver- sity of biofilm communities developed on Phragmites australis. Aquatic Botany 88, 211–218. SKLIARENKO, S. L., 2006: Researches on key ornithological territories in Kazakhstan and Central Asia. (In Russian). Biodiversity safety of Kazakhstan Association Press, Almaty. SLÁDE^EK, V., 1973: System of water quality from the biological point of view. Ergebnisse Limnologie 7, 1–128. SLÁDE^EK, V., 1986: Diatoms as indicators of organic pollution. Acta Hydrochemica und Hydrobiologica 14, 555–566. STARMACH, K., 1985: Chrysophyceae und Haptophyceae. Süßwasserflora von Mittel- europa, 1. G. Fischer, Stuttgart. SUBYANI, A. M., 2005: Hydrochemical identification and salinity problem of ground-water in Wadi Yalamlam basin, Western Saudi Arabia. Journal Arid Environments 60, 53–66. SWIFT, E., 1967: Cleaning diatom frustules with ultraviolet radiation and peroxide. Phyco- logia 6, 161–163. TAKHTAJAN, A., 1978: The floristic regions of the world (In Russian). (In Russian). Nauka Press, Leningrad. VINOGRADOVA, K. L., GOLLERBACH, M. M., ZAUER, L. M., SDOBNIKOVA, N. V., 1980: Chlorophyta, Rhodophyta, Phaeophyta. Flora plantarum cryptogamarum URSS, 13 (In Russian). Nauka Press, Leningrad. WATANABE, T., ASAI, K., HOUKI, A., 1986: Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage – Diatom Assemblage Index (DAIpo). The Science of the Total Environment 55, 209–218. WHITTON, B. A., ROTT, E., FRIEDRICH, G., 1991: Use of algae for monitoring rivers. Insti- tute of Botany. Innsbruck University Press, Innsbruck. 244 ACTA BOT. CROAT. 70 (2), 2011 BARINOVA S. S., NEVO E., BRAGINA T. M. U:\ACTA BOTANICA\Acta-Botan 2-11\Barinova.vp 9. rujan 2011 11:21:32 Color profile: Disabled Composite 150 lpi at 45 degrees