Acta Herpetologica 13(2): 201-205, 2018 ISSN 1827-9635 (print) © Firenze University Press ISSN 1827-9643 (online) www.fupress.com/ah DOI: 10.13128/Acta_Herpetol-23582 A lizard acting as carrier of the amphibian-killing chytrid Batrachochytrium dendrobatidis in southern Brazil Mariana R. Pontes1,2,*, Guilherme Augusto-Alves1,3, Carolina Lambertini1,3, Luís Felipe Toledo1 1 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universi- dade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil. *Corresponding author. E-mail: maah.retuci@gmail.com 2 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Pau- lo, Brazil 3 Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil Submitted on: 2018, 3th March; revised on: 2018, 10th August; accepted on: 2018, 29th September Editor: Dario Ottonello Abstract. Fungal infections are causing widespread population declines and extinctions in all vertebrate classes. Among them, an important fungal disease chytridiomycosis, caused by the pathogenic chytrid Batrachochytrium den- drobatidis (Bd). With an aquatic infectious phase,  Bd  does not survive desiccation for long, but may be transported by non-amphibian carriers. Such mechanism is key to understand amphibian-chytrid dynamics and may contribute to local amphibian conservation action plans. Therefore, we surveyed Bd in reptiles from two different Brazilian rain- forests, looking for possible Bd carriers. We sampled 35 individuals belonging to 11 squamate families, five from the Atlantic Forest and 30 from the Amazon. We detected Bd in one adult lizard, Placosoma glabellum. This lizard feeds, shelters, and breeds in the leaf-litter, and moves between Atlantic Forest streams. Hence, it may be carrying Bd from stream to stream, and also spreading the pathogen to direct-developing amphibians, which have no contact with water bodies and are more susceptible to chytridiomycosis than aquatic species. This is the first record of a non-amphibian chytrid carrier in South America. We suggest that additional field and museum samplings will contribute to under- stand whether Bd can actually infect reptiles, and how reptile carriers can affect chytrid dynamics in the wild. Keywords. Amphibia, Reptilia, Squamata, Amazon, Atlantic Forest, Chytridiomycosis, Infection dynamics, Pathogen vector. Infectious diseases, caused by a diversity of patho- genic agents, have become one of the most important threats to wildlife (Daszak et al., 2000; Daszak et al., 2013). For example, fungal infections are responsi- ble for worldwide vertebrate population declines (Ble- hert et al., 2009; Turner et al., 2011; Fisher et al., 2012; Lorch et al., 2016), especially jeopardizing amphibians (Berger et al., 1998; Lips et al., 2006). Chytridiomycosis is an amphibian infectious disease caused by the water- borne fungus Batrachochytrium dendrobatidis (hereafter Bd) (Longcore et al., 1999). Bd infects epidermal tissues of amphibian hosts, affecting essential physiological pro- cesses as osmoregulation (Berger et al., 2005; Van Rooij et al., 2015), which may cause sub-lethal effects (e.g., Bovo et al., 2016, Salla et al., 2015), or death of infected hosts through asystolic cardiac arrest, as a consequence of reductions on blood plasma sodium and potassium con- centrations (Voyles, 2009). It has also been noticed that Bd produces toxic factors that inhibits lymphocyte prolif- eration on hosts (Fites et al., 2013). Chytridiomycosis is associated with massive losses of amphibian populations all over the globe (Olson and 202 Mariana R. Pontes et alii Ronnenberg, 2014; James et al., 2015; Carvalho et al., 2017). This pathogen has a biphasic life-cycle, with flag- ellated free-swimming zoospores, often discharged into water bodies as streams and ponds, and sessile zoospo- rangia with intracellular development (Rosenblum et al., 2010; Greenspan et al., 2012). Bd does not survive desic- cation due to its aquatic life-cycle (Johnson et al., 2003), but may be carried by non-amphibian species (McMahon et al., 2013), which might contribute to pathogen trans- mission (Kilburn et al., 2011). Past studies have shown that non-amphibian organisms such as algae (Johnson and Speare, 2003), nematodes (Shapard et al., 2012), crayfishes (Brannelly et al., 2015), reptiles (Kilburn et al., 2011), and waterfowls (Garmyn et al., 2012) also trans- port Bd zoospores. In this sense, besides the studies with amphibian hosts it is essential to increase knowledge about other organisms that may be acting as carriers of this pathogen. Thus, since there are no Bd records for reptiles in South America, here in order to find additional Bd poten- tial carriers we swab-sampled reptiles from Brazil’s Atlantic Forest and Amazon, both tropical rainforests, but different in terms of Bd occurrence and infection intensity (Car- valho et al., 2017; Lambertini et al., 2017). We swabbed reptiles collected from the states of Paraná, São Paulo and Espírito Santo in Brazil’s Atlantic Forest, and from the state of Pará in the Brazilian Amazon. We sampled a total of 35 individuals of 11 Squamata families, five from the Atlantic Forest and 30 from the Amazon (Table 1). We swabbed live individuals throughout their body, ventral and dorsal surfaces, limbs (for lizards), and head (as in Hyatt et al., 2007) to test for the presence of Bd zoospores. We then extracted DNA from each swab using Prep-Man Ultra® (Life Technologies) and proceeded with TaqMan® qPCR assay for Bd detection and quantification (Boyle et al., 2004; Lambertini et al., 2013). We consid- ered positive results greater than or equal to one zoo- spore genomic equivalent (GE) (Kriger et al., 2007). We detected one Bd positive individual, Placosoma glabellum (Peters, 1870) (currently housed at Museu de Zoologia “prof. Adão J. Cardoso” Universidade Estadual de Campinas: ZUEC-REP 3735), with a load of 3.14 Bd zoospore GE. To confirm the positive result, we rinsed this individual in running water for 10 minutes (follow- ing the protocols of Rodriguez et al., 2014 and Becker et al., 2016), swabbed the lizard again and run an additional qPCR experiment. In the second run we detected a load of 1.67 zoospore GE. This is the first report of Bd in a reptile from South America. This pathogen has already been detected in lizards and snakes from Panama, also by qPCR detec- tion and without histological analysis, which would con- firm whether these reptiles are infected with Bd or only act as carriers (Kilburn et al., 2011). Anyway, despite the absence of histological analyses, it is clear that reptiles, including arboreal snakes and semiaquatic or terrestrial lizards, carry Bd, contributing to zoospore dispersion Table 1. Sampled species for Batrachochytrium dendrobatidis pres- ence. Number of sampled individuals is in parentheses. Species in bold was positive for Bd. Taxonomy follows Costa and Bérnils (2018). Species Municipality, State Biome Squamata: “Lizards” Dactyloidae Norops sp.(1) Belém, Pará Amazon Gekkonidae Hemidactylus mabouia (1) Belém, Pará Amazon Gymnophthalmidae Leposoma scincoides (1) Santa Teresa, Espírito Santo Atlantic Forest Placosoma glabellum (2) Morretes, Paraná Atlantic Forest Phyllodactylidae Thecadactylus rapicauda (2) Belém, Pará Amazon Polychrotidae Polychrus sp.(1) Belém, Pará Amazon Mabuyidae Copeoglossum nigropunctatum (1) Belém, Pará Amazon Sphaerodactylidae Chatogekko amazonicus (1) Belém, Pará Amazon Coleodactylus sp. (1) Belém, Pará Amazon Gonatodes sp.(1) Belém, Pará Amazon Lepidoblepharis sp. (2) Belém, Pará Amazon Tropiduridae Plica umbra (3) Belém, Pará Amazon Uranoscodon sp. (3) Belém, Pará Amazon Squamata: “Serpentes” Boidae Boa constrictor (1) Belém, Pará Amazon Dipsadidae Dipsas catesbyi (1) Belém, Pará Amazon Erythrolamprus sp. (1) Belém, Pará Amazon Helicops angulatus (2) Acará, Pará Amazon Imantodes cenchoa (2) Belém, Pará Amazon Imantodes lentiferus (1) Acará, Pará Amazon Leptodeira annulata (1) Belém, Pará Amazon Oxyrhopus clathratus (1) Peruíbe, São Paulo Atlantic Forest Thamnodynastes sp. (1) Dores do Rio Preto, Espírito Santo Atlantic Forest Typhlopidae Amerotyphlops reticulatus (4) Belém, Pará Amazon 203Lizard as a carrier of the amphibian chytrid across different habitats (Kilburn et al., 2011; present study). The Bd-positive lizard was collected on 9 January 2013, at the Estrada da Graciosa road (PR-410), in the municipality of Morretes, state of Paraná. This site is with- in the same area where three divergent Bd lineages were isolated: Bd-Brazil/Asia-2, Bd-GPL and a hybrid between them (Schloegel et al., 2012; Jenkinson et al., 2016; O’Hanlon et al., 2018). Besides that, this individual lizard was collected on top of a rock inside a stream, syntopic to an endemic rheophilic frog species, Cycloramphus rhya- konastes (Anura: Cycloramphidae) (Nunes-de-Almeida et al., 2016). This is the only known population of this spe- cies (Silvano, 2004), and given that Bd infected individu- als were already recorded [with a prevalence of 55% (10 out of 18 sampled), L.F.T., unpublished data], continuous exchange of Bd in this area can facilitate hybridization of the pathogen (Jenkinson et al., 2016), producing some strains that could potentially be hypervirulent (Greenspan et al., 2018), posing a real short-term threat to the endem- ic C. rhyakonastes. Furthermore, Placosoma glabellum is a terrestrial small-size lizard with distribution restricted to south and southeast of Brazil (Uetz, 2017). Studies have shown that Bd can survive up to seven weeks out of amphibian hosts, specifically in lake water (Johnson and Speare, 2003). Also, it can survive up to three hours on dry bird feathers (Johnson and Speare, 2005). This ability to survive may lead to a greater range of Bd zoospore dis- semination by other organisms. In this specific case, the Bd-positive lizard species could carry Bd zoospores from the stream into the forest, potentially transmitting this pathogen to other water bodies, or to direct-developing anurans that lives in leaf-litter inside forested areas, and can be less tolerant to chytridiomycosis than indirect- developing aquatic anurans (Mesquita et al., 2017). Given that reptiles are more vagile than amphibians, and less restricted to water bodies, they may play an important role in Bd dissemination in the wild. In this sense, we highlight the need for more studies attempt- ing to understand how reptiles and other non-amphibian species may contribute to Bd transmission dynamics in wildlife. ACKNOWLEDGMENTS We thank Alexandre F. R. Missassi, Anat Belasen, Anyelet Valencia-Aguilar, Carlos Henrique L. Nunes-de- Almeida, Clarisse Betancourt-Roman, David Rodriguez, Kelly R. Zamudio, Timothy Y. James, and Thomas S. Jen- kinson for field assistance. This work was funded by São Paulo Research Foundation (FAPESP #2016/25358-3) and National Council for Scientific and Technological Devel- opment  (CNPq #300896/2016-6). MRP and CL thank the Coordination for the Improvement of Higher Education Personnel (CAPES 001) for fellowships. Sampling permit was approved by Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio 17242-3) and is in accord- ance with Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (Sis- Gen A60B4D9). REFERENCES Becker, C.G., Rodriguez, D., Lambertini, C., Toledo, L.F., Haddad, C.F.B. (2016): Historical dynamics of  Batra- chochytrium dendrobatidis  in Amazonia. Ecography 39: 954-960. Berger, L., Speare, R., Daszak, P., Green, D.E., Cunning- han, A.A., Goggin, C.L., Slocombe, R., Ragan, M.A., Hyatt, A.D., McDonald, K.R., Hines, H.B., Lips, K.R., Marantelli, G., Parkes, H. (1998): Chytridiomycosis causes amphibian mortality associated with popula- tion declines in the rain forests of Australia and Cen- tral America. P. Natl. Acad. Sci. USA. 95: 9031-9036. Berger, L., Speare, R., Skerratt, L.F. (2005): Distribution of Batrachochytrium dendrobatidis and pathology in the skin of green tree frogs Litoria caerulea with severe chytridiomycosis. Dis. Aquat. Organ. 68: 65-70. Blehert, B.S., Hicks, A.C., Behr, M., Meteyer, C.U., Ber- lowski-Zier, B.M., Buckles, E.L., Coleman, J.T.H., Dar- ling, S.R., Gargas, A., Niver, R., Okoniewski, J.C., Rudd, R.J., Stone, W.B. (2009): Bat white-nose syndrome: an emerging fungal pathogen? Science 323: 227. Bovo, R., Andrade, D.V., Toledo, L.F., Longo, A.V., Rodri- guez, D., Haddad, C.F.B., Zamudio, K.R., Becker, C.G. (2016): Physiological responses of Brazilian amphib- ians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 11: 245-252. Boyle, D.G., Boyle, D.B., Olsen, V., Morgan, J.A.T., Hyatt, A.D. (2004): Rapid quantitative detection of chytridio- mycosis (Batrachochytrium dendrobatidis) in amphib- ian samples using real-time Taqman PCR Assay. Dis. Aquat. Organ. 60: 141-148. Brannelly, L.A., McMahon, T.A., Hinton, M., Lenger, D., Richards-Zawacki, C.L. (2015): Batrachochytrium den- drobatidis  in natural and farmed Louisiana crayfish populations: prevalence and implications. Dis. Aquat. Organ. 112: 229-235. Carvalho, T., Becker, C.G., Toledo, L.F. (2017): Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. P. R. Soc. B. 284: 20162254. 204 Mariana R. Pontes et alii Costa, H., Bérnils, R.S. (2018): Répteis do Brasil e suas unidades federais: Lista de espécies. Herpetologia Bra- sileira. 7: 11-57. Daszak, P., Cunningham, A.A., Hyatt, D. (2000):  Emerg- ing infectious diseases of wildlife - Threats to biodi- versity and human health. Science 287: 443-449. Daszak, P.,  Zambrana-Torreli., C., Bogich, T.L.,  Fernan- dez, M.,  Epstein, J.H.,  Murray, K.A.,  Hamilton, H. (2013): Interdisciplinary approaches to understanding disease emergence: the past, present, and future driv- ers of Nipah virus emergence. P. Natl. Acad. Sci. USA. 110: 3681-3688. Fisher, M.C., Henk, D.A., Briggs, C.F., Brownstein, J.S., Madoff, L.C., McCraw, S.L., Gurr, S.J. (2012): Emerg- ing fungal threats to animal, plant and ecosystem health. Nature 484: 186-194. Fites, J.S.M, Ramsey, J.P., Holden, W.M., Collier, S.P., Sutherland, D.M. Reinert, L.K. Gayek, A.S., Dermody, T.S., Aune, T.M., Oswald-Richter, K., Rollins-Smith, L.A. (2013): The invasive Chytrid Fungus of amphib- ians paralyzes lymphocyte responses. Science 342: 366-369. Garmyn, A., Van Rooij, P., Pasmans, F., Hellebuyck, T., Van Den Broeck, W., Haesebrouck, F., Martel, A. (2012): Waterfowl: Potential environmental reservoirs of the chytrid fungus  Batrachochytrium dendrobatid- is. Plos One 7: e35038. Greenspan, S.E., Longcore, J.E., Calhoun, A.J. (2012): Host invasion by Batrachochytrium dendrobatidis: fungal and epidermal ultrastructure in model anu- rans. Dis. Aquat. Organ. 100: 201-210. Greenspan, S.E., Lambertini, C., Carvalho, T., James, T.Y., Toledo, L.F., Haddad, C.F.B., Becker, C.G. (2018): Hybrids of amphibian chytrid show high virulence in native hosts. Sci. Rep. 8: 9600. Hyatt, A.D., Boyle, D.G., Olsen, V., Boyle, D.B., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Hero, M., Hines, H., Phillott, R., Campbell, R., Marantelli, G., Gleason, F., Colling, A. (2007): Diagnostic assays and sampling protocols for the detection of Batrachochytrium dend- robatidis. Dis. Aquat. Organ. 73: 175-192. James, T.Y., Toledo, L.F., Röder, D., Leite, D.S., Belasen, A.M., Betancourt-Román, C.M., Jenkinson, T.S., Soto-Azat, C., Lambertini, C., Longo, A.V., Ruggeri, J., Collins, J.P., Burrowes, P.A., Lips, K.R., Zumudio, K.R., Longcore, J.E. (2015): Disentangling host, path- ogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol. Evol. 5: 4079-4097. Jenkinson, T.S., Betancourt Román, C.M., Lambertini, C., Valencia‐Aguilar, A., Rodriguez, D., Nunes‐de‐Almei- da, C.H.L., Ruggeri, J., Belasen, A.M., Silva Leite, D., Zamudio, K.R., Longcore, J.E., Toledo, L.F., James, T.Y. (2016): Amphibian‐killing chytrid in Brazil comprises both locally endemic and globally expanding popula- tions. Mol. Ecol. 25: 2978-2996. Johnson, M.L., Berger L., Philips, L., Speare, R. (2003): Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batra- chochytrium dendrobatidis. Dis. Aquat. Organ. 57: 255-260. Johnson, M.L., Speare, R. (2003): Survival of  Batra- chochytrium dendrobatidis  in water: quarantine and disease control implications.  Emerg. Infect. Dis. 9: 922-925.  Johnson, M.L., Speare, R. (2005): Possible modes of dis- semination of the amphibian chytrid Batrachochytri- um dendrobatidis in the environment. Dis. Aquat. Organ. 65: 181-186. Kilburn, V.L., Ibáñez, R., Green, D.M. (2011): Reptiles as potential vectors and hosts of the amphibian patho- gen Batrachochytrium dendrobatidis in Panama. Dis. Aquat. Organ. 97: 127-134. Kriger, K.M., Ashton, K.J., Hines, H.B., Hero, J.M. (2007): On the biological relevance of a single Batrachochytri- um dendrobatidis zoospore: a reply to Smith (2007). Dis. Aquat. Organ. 73: 257-260. Lambertini, C., Rodriguez, D., Brito, F.B., Leite, D.S., Toledo, L.F. (2013): Diagnóstico do fungo quitridio: Batrachochytrium dendrobatidis. Herpetologia Bra- sileira 2: 12-17. Lambertini, C., Becker, C.G., Bardier, C., Leite, D.D., Toledo, L.F. (2017): Spatial distribution of Batra- chochytrium dendrobatidis in South American caecil- ians. Dis. Aquat. Organ. 124: 109-116. Lips, K.R., Brem, F., Brenes, R., Reeve, J.D., Alford, R.A., Voyles, J., Carey, C., Livo, L., Pessier, A.P., Collins, J.P. (2006): Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. P. Natl. Acad. Sci. USA. 103: 3165-3170. Longcore, J.E., Pessier, A.P., Nichols, D.K. (1999):  Batra- chochytrium dendrobatidis  gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91: 219-227. Lorch, J.M., Knowles, S., Lankton, J.S., Michell, K., Edwards, J.L., Kapter, J.M., Staffen, R. A., Wild, E.R., Schmidt, K.Z., Ballmann, A.E., Blodgett, D., Farrell, T.M., Glorioso, B. M., Last, L.A., Price, S.J., Schul- er, K.L., Smith, C.E., Wellehan, J.F.X., Blehert, D.S. (2016): Snake fungal disease: an emerging threat to wild snakes. Philos. T. Roy. Soc. B. 371: 20150457. McMahon, T.A., Brannelly, L.A., Chatfield, M.W.H., John- son, P.T.J.,  Joseph, M.B., McKenzie, V.J., Richards- Zawacki, C.L.,  Venesky, M.D.,Rohr, J.R. (2013): 205Lizard as a carrier of the amphibian chytrid Chytrid fungus  Batrachochytrium dendrobatidis  has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. P. Natl. Acad. Sci. USA. 110: 210-215. Mesquita, A.F.C., Lambertini, C., Lyra, M., Malagoli, L.R., James, T.Y., Toledo, L.F., Haddad, C.F.B., Becker, C.G. (2017): Low resistance to chytridiomycosis in direct- developing amphibians. Sci. Rep. 7: 16605. Nunes-de-Almeida, C.H.L., Zamudio, K.R., Toledo, L.F. (2016): The semiterrestrial tadpole of Cycloramphus rhyakonastes Heyer, 1983 (Cycloramphidae). J. Herpe- tol. 50: 289-294. Olson, D.H., Ronnenberg, K.L. (2014): Global Bd map- ping project: 2014 update. FrogLog 111: 17-21. O’Hanlon, S. J., Rieux, A., Farrer, R. A., Rosa, G.M., Waldman, B., Bataille, A., Kosch, T.A., Murray, K.A., Brankovics, B., Fumagalli, M., Martin, M.D., Wales, N., Alvarado-Rybak, M., Bates, K.A., Berger, L., Böll, S., Brookes, L., Clare, F., Courtois, E.A., Cunning- ham, A.A., Doherty-Bone, T.M., Ghosh, P., Gower, D.J., Hintz, W.E., Höglund, J., Jenkinson, T.S., Lin, C.F., Laurila, A., Loyau, A., Martel, A., Meurling, S., Miaud, C., Minting, P., Pasmans, F., Schmeller, D., Schmidt, B.R., Shelton, J.M.G., Skerratt, L.F., Smith, F., Soto-Azat, C., Spagnoletti, M., Tessa, G., Toledo, L.F., Valenzuela-Sánchez, A., Verster, R. , Vörös, J., Webb, R.J., Wierzbicki, C., Wombwell, E., Zamudio, K.R., Aanensen, D.M., James, T.Y., Gilbert, M.T.P., Weldon, C., Bosch, J., Balloux, F., Garner, T.W.J., Fisher, M.C. (2018): Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360: 621-627. Rodriguez, D., Becker, C.G., Pupin, N.C., Haddad, C.F.B., Zamudio, K.R. (2014): Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23: 774-787. Rosenblum, E.B., Voyles, J., Poorten, T.J., Stajich, J.E. (2010): The deadly chytrid fungus: a story of an emerging pathogen. Plos Pathog. 6: e1000550. Salla, R.F., Gamero, F.U., Ribeiro, L.R., Rizzi, G.M., Med- ico, S.E.D., Rissoli, R.Z., Vieira, C.A., Silva-Zacarin, E.C.M., Leite, D.S., Addalla, F.C., Toledo, L.F.; Costa, M.J. (2015): Cardiac adaptations of Bullfrog tadpoles in response to chytrid infection. J. Exp. Zool. Part A 323: 487-496. Schloegel, L.M.,  Toledo, L.F.,  Longcore, J.E.,  Greenspan, S.E.,  Vieira, C.A.,  Lee, M.,  Zhao, S.,  Wangen, C.,  Fer- reira, C.M.,  Hipolito, M.,  Davies, A.J.,  Cuomo, C.A.,  Daszak, P.,  James, T.Y. (2012): Novel, panzootic and hybrid genotypes of amphibian chytridiomyco- sis associated with the bullfrog trade. Mol. Ecol.  21: 5162-5177. Silvano, D. (2004): Cycloramphus rhyakonastes. The IUCN Red List of Threatened Species Available at: http:// www.iucnredlist.org/details/56378/0 [accessed on 29 June 2018]. Shapard, E.J., Moss, A.S., San Francisco, M.J. (2012):  Batrachochytrium dendrobatidis  can infect and cause mortality in the nematode  Caenorhabditis ele- gans. Mycopathologia 173: 121-126. Turner, G.G., Reeder, D.M., Coleman, J.T.H. (2011):  A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Research News 52: 13-27. Uetz, P. (2017):  Placosoma glabellum, The Reptile Data- base. Available at: http://reptile-database.reptarium. cz/species?genus=Placosoma&species=glabellum [accessed on 5 February 2018]. Van Rooij, P., Freddy Haesebrouck, A.M.F., Pasmans, F. (2015): Amphibian chytridiomycosis: a review with  focus on  fungus-host interactions. Vet. Res. 46: 137. Voyles, J., Young, S., Berger, l., Campbell, C. Voyles, W.F., Dinudom, A. Cook, D. Webb, R. Alford, R.A. Skerratt, L.F., Speare, R. (2009): Pathogenesis of chytridiomyco- sis, a cause of catastrophic amphibian decline. Science 326: 582-585. Acta Herpetologica Vol. 13, n. 1 - June 2018 Firenze University Press