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1. INTRODUCTION 

Characteristic scale, LC, and pressure, p, are the two main 
factors that characterize the flow regime in a gas-operated 
system. The micro-scale gap between the piston and cylinder of 
a pressure balance and the ultra-low pressure in a vacuum 
system will reduce the large number of gas molecules and cause 
the gas to be rarefied. Consequently, due to the smaller number 
of gas molecules, flow behaviour will be different from general 
gas where the number of gas molecules is large enough to 
consider the gas as a continuum medium. The continuum 
medium assumption is not valid for the aforementioned cases if 
the flow behaves as slip, transition, or free molecular flow. The 
flow regime is characterized according to its Knudsen number, 
Kn: 

Kn
CL
λ

=  
 
(1) 
 

where λ is the molecular mean free path and LC is the 
characteristic scale of the gas flow. With respect to the value of 
the Knudsen number, there are four distinct regimes as shown 
in Figure 1. When Kn is very small, there are enough molecules 
for the gas to be considered as in a continuum regime. Slip-flow 
and other effects, such as a temperature jump at a solid surface, 

start to appear at values of Kn greater than 0.001 and become 
dominant at around 0.01, where the slip-flow regime begins. As 
the gas becomes more and more rarefied, its flow is 
characterized as being in the transition and free molecular 
regimes, when Kn reaches 0.1 and 10, respectively. In order to 
predict gas behaviour accurately, it is necessary to know its flow 
regime. Using incorrect assumptions can lead to large errors. 

As well as the Knudsen number, the rarefaction parameter δ 
is another quantity that is also used to describe the flow regime 
and is defined as: 

Kn
1

22
π

λ
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The molecular mean free path was not directly measured. In 
this paper, it is estimated using Maxwellian theory as: 

 
Figure 1. Classification of gas flow regime [1].  
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ABSTRACT 
Flows of a gas through the piston-cylinder gap of a gas-operated pressure balance and in a general vacuum system have one aspect in 
common, namely that the gas is rarefied due, respectively, to the small dimensions and the low pressure. The flows in both systems 
could be characterised as being in either slip-flow or transition regimes. Therefore, fundamental research of flow in these regimes is 
useful for both pressure and vacuum metrology, especially for the gas-operated pressure balance where a continuum viscous flow 
model is widely used for determining the effective area of the pressure balance. The consideration of gas flow using the most suitable 
assumption would improve the accuracy of such a calculation. Moreover, knowledge about rarefied gas flow will enable gas behaviour 
in vacuum and low-flow leak detection systems to be predicted. This paper provides useful information about rarefied gas flow in both 
slip-flow and transition regimes. 
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where μ is the viscosity at temperature T and v� = √2RT is the 
most probable molecular velocity. From the above equations, 
the Knudsen number as a function of the pressure of gas 
flowing through a piston-cylinder gap in gauge and absolute 
modes, and through ISO-standard tube, is plotted in Figure 2. 

According to Figure 1, with the pressure balance operating 
in absolute mode (dashed line), flows through a piston-cylinder 
gap of 0.3 μm, 0.6 μm, and 0.9 μm are in the transition and free 
molecular flow regimes. Even in gauge mode (strong solid line), 
the gas is rarefied enough to be characterised as being in either 
a slip or transition regime. It would be inappropriate to use 
Dadson’s theory [2], which is based on continuum flow 
assumptions, to calculate the effective area of a piston-cylinder 
assembly under these conditions. This theory has therefore 
been modified to produce more accurate results [3][4][5]. This 
paper proposes an alternative method, especially in the slip-flow 
regime where continuum assumptions are still valid with special 
consideration at the solid surface. This method, in which a slip 
boundary is applied at the surface, is useful for simulating flow 
through a piston-cylinder gap using commercial CFD software.  

Flow in a vacuum system could be in any regime from 
continuum to free molecular, depending on the pressure and 
the dimensions of the gas container and passages. For 
conventional ISO tube (solid line), rarefied gas effects start 
once the pressure falls below 1000 Pa. At this point, 
conventional continuum theory begins to break down and 
Navier-Stokes equations are no longer valid. 

The objective of this paper is to demonstrate the results of 
slip-flow and kinetic BGK (Bhatnagar-Gross-Krook) models in 
both the slip-flow and transition regimes, the most common 
ones encountered in pressure and vacuum metrology. Slip-flow 
equations, which extend the validity of the Navier-Stokes 
model, are detailed. These equations have been rigorously 
validated for microchannels [8]. The presented models are 
simpler than the kinetic ones, yet still provide quite accurate 
results within slip-flow regimes. 

2. SLIP-FLOW 

The slip-flow regime is a slightly rarefied one, which could 
occur either in gas flows through the piston-cylinder gap and or 
in vacuum systems, as shown in Figure 2. It typically 
corresponds to a Knudsen number ranging between 0.01 and 
0.1, easily reached for flow either through a micrometer scale 
gap in a pressure balance operating in gauge mode under 

standard conditions or in rough vacuum. The Knudsen layer 
plays a fundamental role in the slip-flow regime. This thin layer, 
one or two molecular mean free paths in thickness, is a region 
of local non-equilibrium, observed in any gas flow near a 
surface. In non-rarefied flow, the Knudsen layer is too thin to 
have any significant influence but, in the slip-flow regime, it 
needs to be considered [6]. 

Although the Navier-Stokes equations are not valid in the 
Knudsen layer, due to non-linear stress/strain-rate behaviour 
within it [7], their use with appropriate boundary velocity slip 
and temperature jump conditions can provide an accurate 
prediction of mass flow rate [8]. The slip-flow condition was 
originally proposed by Maxwell and has since been developed 
up to the second order. Several models have been proposed, 
most of similar form but differing slightly in the coefficients 
used. If isothermal flow is assumed, a general second order slip-
flow model is derived as: 

 
 

(4) 

where uslip is the slip velocity, us is the flow velocity at the wall, 
and uw is the velocity of the wall, with its normal direction noted 
as n. The mean free path of the molecules is λ and α is the 
tangential momentum accommodation coefficient, equal to 
unity for perfectly diffuse molecular reflection and equal to zero 
for purely specular reflection. Aα and Aβ are the first and 
second order dimensionless coefficients, respectively. In 
Maxwell’s model, Aα was taken as being equal to unity which 
overestimates the velocity at the wall but leads to a good 
prediction of gas velocity outside the Knudsen layer. Example 
values of Aα and Aβ proposed in the literature are given in Table 
1. 

To determine pressure distribution along piston and cylinder 
surfaces or flow through vacuum systems, the boundary 
equation (4) is applied to Navier-Stokes equations. These 
equations could be solved analytically for flow through simple 
geometries, whereas flow within a more complicated model 
requires a numerical calculation. Normally, commercial CFD 
(Computational Fluid Dynamics) software such as ANSYS 
FLUENT enables slip boundary conditions to be input at a 
boundary surface. Methods to apply the boundary conditions in 
CFD software have been presented in the literature [6][9]. 

Gas flow through a piston-cylinder gap is considered as a 
flow between two infinite parallel plates (or slabs) in the 
analysis, as the gap between the piston and cylinder of a 
pressure balance is very small in comparison to the radius of 
piston. After applying the slip coefficient to the Navier-Stokes 
equations, a reduced flow rate for slab flow is derived in terms 
of the rarefaction parameter as:   

 
 

(5) 
 

Since the rarefaction parameter in equation (5) depends on 
pressure, the reduced flow rate Gp and the pressure distribution 
along the slab need to be computed iteratively. The equation of 
pressure distribution along a piston and cylinder was derived by 

 
Figure 2. Pressure versus Kn for usual gas flow through different piston-
cylinder gaps and vacuum tubes for N2 at 20°C. 

Table 1. Example values of the dimensionless coefficients  

Author, Year Aα Aβ 
Maxwell, 1879 
Cercignani, 1964 
Deissler, 1964 
Hadjiconstantinou, 2003 

1.0000 
1.1466 
1.0000 
1.1466 

0.0000 
0.9756 
1.1250 
0.6470 
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Priruenrom [10] as: 

 
 

(6) 
 

where p1 is the applied pressure at the bottom of piston, p2 is 
the pressure above the piston, z is the axial coordinate along the 
piston and cylinder, and l is the piston-cylinder overlapped 
length. Further information on how to determine an effective 
area and a pressure distortion coefficient using the above 
equation is presented in her thesis. 

The previously-discussed slip-flow methods could also be 
used to predict gas flow through a vacuum piping system, the 
only difference being the flow passage’s cross-sectional 
geometry, which is normally circular. The reduced flow rate for 
slip-flow through a tube is calculated as: 

 
 

(7) 
 

A flow parameter that is of common interest is mass flow 
rate through the passage. This can be calculated from the 
reduced flow rate as follows [11][12]:  
 For the slab flow, 

 
 

(8) 
 

where A is the cross-sectional area of the channel and H is the 
height of the slab. 

For flow through a circular tube, 

 
 

(9) 
 

where R is the radius of the tube.  

3. TRANSITION FLOW 

As discussed in the previous section, slip-flow models are 
limited to use within the slip-flow regime whereas, within the 
transition regime, kinetic gas theory must be used. Solutions 
based on this theory are valid throughout the whole range of 
the Knudsen number from the free molecular, through the 
transition, and up to the slip and hydrodynamic regimes. In this 
paper, the BGK (one kinetic gas model) is chosen and the 
linearised BGK model is solved numerically by DVM (Discrete 
Velocity Method) to determine flow behaviour. Previous 
research work [8] has demonstrated that fully-developed 
isothermal pressure-driven flows are accurately predictable by 
kinetic models, such as the linearised BGK equation. Figure 3 
shows a comparison between measurement results and those 
from the BGK model.  

The gas flow rate measurements were performed at the inlet 

() and the outlet (☐) of a series of rectangular microchannels 
whose aspect ratio was approximately 0.1. The reduced flow 
rate Gp is plotted in terms of the rarefaction parameter δ. 
Measurement results are in good agreement with the kinetic 
model based on the linearised BGK equation, with α = 1 or 
diffuse reflection where gas molecules lose all their tangential 
momentum to a wall during their collisions. Details of the 
investigation are described in the literature. 

4. RESULTS 

Results of the slip-flow model for slab flow are shown in 
Figure 4, where the reduced flow rates Gp, from equation (5) for 
each model presented in Table 1, are plotted in terms of the 
rarefaction parameter δ. The result from the BGK model is 
plotted as a benchmark, against which the results from the 
other models can be compared. All results are in very good 
agreement in the slip-flow regime (δ > 8.86 or Kn < 0.1), 
except the first order slip-flow model significantly deviates from 
the others near the upper limit of the slip-flow regime. A 
difference of up to 8.5 % is observed at δ = 9 when compared 
with the result from the BGK method. The Hadjiconstantinou 
equation yields the closest result to BGK method, with less 
than a 0.9 % difference observed for the entire slip-flow regime. 

An overview showing the region from the slip-flow regime 
to the free molecular regime is given in Figure 5. To help focus 
attention on the transition regime, the rarefaction parameter δ is 
plotted on a logarithmic scale. 

The result of the BGK model when the tangential 
accommodation α is equal to 0.9 is plotted to demonstrate the 
trend in the results when the gas-surface interaction is no 
longer considered to be a purely diffuse collision. Moreover, 
results of the BGK model from Cercignani & Pagani () [13], 
Lo & Loyalka (Δ) [14], and Loyalka et al. (o) [15] are also 
plotted to support the results obtained. Any differences 
between the results of the various BGK models are 
insignificant throughout all regimes, whereas the results from all 
slip-flow models fail to predict rarefied gas flow in both the 
transition and molecular flow regimes. 

For flow within a circular tube, the trend of the results 
shown in Figure 6 does not differ much from the previous slab 
flow case. The results from the BGK model at α = 1 are in very 
good agreement with those of Cercignani & Sernagiotto () 
[16], Sharipov (Δ), and Loyalka & Hamoodi (o), using a BGK 
model [17], a Shakov model, and a Numerically Solved 
Boltzmann Equation [18] respectively. 

 
Figure 3. Reduced flow rate (Gp) versus rarefaction parameter (δ) of flow 
through rectangular channel (aspect ratio ≈ 0.1) [7]. 

 
Figure 4. Reduced flow rate (Gp) versus Rarefaction parameter (δ) of flow 
through slab at diffuse reflection (α =1). 
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As in the slab flow case, all slip-flow equations break down 
in the transition and free molecular regimes. However, within 
the slip-flow regime itself, the boundary equation in 
conjunction with the Navier-Stokes equation is the preferred 
method to solve for bulk flow, due to the less complex 
calculations and the lower required resources. For simple 
geometry cases, it is possible to obtain an exact solution. 

5. DISCUSSIONS AND CONCLUSION 

General equations to determine the flow rate of rarefied gas 
through both slab and tube, based on Navier-Stoke equations in 
conjunction with slip boundary conditions, have been 
developed. The results of these slip-flow models have been 
compared with those from kinetic theory using a BGK model, 
the results of which have been obtained by a numerical method 
using a DVM (Discrete Velocity Method) scheme. Slip-flow 
models require lower computational resources, but their 
performance is limited. They provide a reliable result within the 
continuum and slip-flow regimes but fail to predict rarefied gas 
flow in both the transition and free molecular regimes. 

Since the slip-flow method is easier both to handle and apply 
in commercial CFD (Computational Fluid Dynamic) software 
for solving complex problems, it is still a valuable approach. It 
can be used as an alternative method to determine gas flow 
within a piston-cylinder gap in a slip-flow regime. Moreover, 
such a method can also provide a precise prediction of flow rate 
through the piping of a vacuum system operating within the 
slip-flow regime. 
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Figure 6. Reduced flow rate (Gp) versus rarefaction parameter (δ) of flow 
through circular tube at diffuse reflection (α =1). 

 
Figure 5. Reduced flow rate (Gp) versus rarefaction parameter (δ) of flow 
through slab (α = 0.9, 1). 
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