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1. INTRODUCTION 

An ever-increasing percentage of the global population lives 
in coastal areas. A downside of this evolution is that an increasing 
number of criminals are turning their attention to our seas and 
oceans to carry out illegal activities. Examples include drug 
smuggling, human trafficking, illegal fishery and border 
infringements. The problem for law enforcement agencies is that 
patrolling and surveilling the vast oceans using traditional means 
(large, manned vessels) is impossible from an economic and 
operational point of view. 

Unmanned maritime systems (UMS) can potentially provide 
maritime law enforcement agencies with a valuable tool for 
increasing their capabilities in relation to maritime surveillance. 
Of course, UMS are not the only answer; they are just one part 
of a much wider maritime situational awareness toolkit [1], which 
also encompasses satellite monitoring [2], manned and 
unmanned aerial assets [3] with advanced analytics solutions, 
allowing the data gathered by all these agents to be turned into 
information and knowledge.  

One of the main capabilities the UMS require is to be able to 
operate as a well-coordinated group, working together towards a 
higher-level goal such as maritime surveillance. However, the 
practical deployment of these novel smaller-scale UMS requires 
the careful consideration of several aspects related to the 
operational requirements of the end users [4], the interoperability 
between the different systems [5] and towards the design of the 
surveillance architecture. As an example, the traditional 
approaches towards distributed patrol and surveillance [6]-[8] by 
manned systems generally do not take into consideration the 
effects of small waves (which are irrelevant for larger ships but 
very important for small UMS).  

In this paper, a novel methodology for the real-time control 
of a fleet of between two and ten UMS will therefore be 
proposed. The presented methodology is cast as a distributed 
coverage optimisation problem that specifies that the danger 
level for the UMS of overturning is effectively estimated as a 
function of the potential trajectories and considered in the 
selection of the optimal movement strategy. As a result, the 
optimal safe trajectories for all the agents in the fleet can be 
planned.  
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The proposed approach is validated through a simulation in 
an application scenario [9] connected to the surveillance of 
Belgian offshore wind farms. Belgian territorial waters are a very 
densely populated maritime area, with reserved spaces for all 
actors, as presented in Figure 1, and it is important that all actors 
stay within the delimited zones. For wind farms (area shaded in 
red on Figure 1), this often presents problems, as other users (e.g. 
fishing vessels and pleasure yachts) penetrate this zone without 
permission. In order to police and enforce the exclusion zone, it 
is necessary to patrol this area, which is on the maritime border 
with The Netherlands and measures about 10 km by 30 km.  

2. PREVIOUS STUDIES 

Multi-agent robotic coverage optimisation is a research topic 
that has received a considerable amount of attention in recent 
years, as an increasing number of robotic assets are being 
deployed; thus, the need to identify strategies to optimise the 
coordination between these agents has increased.  

A first distinction to be made between the different 
methodologies is based upon the type of agents that are taken 
into consideration. On the one hand, there are approaches that 
tackle swarms of a high number of less intelligent agents [10]. 
Swarm approaches generally make use of some form of ant 
colony optimisation algorithm [11] to solve the coverage 
problem. On the other hand, there are multi-agent approaches that 
deal with a lower number of more intelligent agents, which is the 
case for the application in the present study. 

A second important distinction between methodologies is 
based upon the assumptions made with regard to the 
connectivity between the different agents. If continuous 
broadband access between the agents is assumed, then all agents 
can obtain perfect localisation and sensor data from one another, 
and then the approaches can be based on some kind of global 
optimisation approach [12], with the capability to adapt to a time-
dependent environment [13]. Even though it has been shown 
that finding a globally optimal solution for the coverage 
maximisation of a multi-agent fleet is an NP-hard problem [14], 
it is possible to come quite close to this solution within real-time 
constraints [15], [16]; however, this requires intelligent strategies 
to guide the optimisation process (see more discussion on this 
subject later).  

If, however, unreliable network connections are assumed, 
then the agents cannot rely on a global planner, and a local 
optimisation is required. This also entails the need for a 
distributed approach that still allows for timely coordination 
between the different agents within the system, as proposed by 
Xin et al. [17].  

The methodology presented here adopts a hybrid approach. 
Conceptually, it is based on a global optimisation, but one that is 
executed separately by each of the agents, taking into 
consideration the latest known data from the other agents. 
Spatio-temporal memories are used to track and predict the 
localisation and sensor data from the other agents in order to 
address communication delays and breakdowns. Clearly, these 
estimations are not perfect, but in this way, the optimisation 
scheme tries to adopt the best of both types of approach. 

Within the robotics community, most attention has been 
focused on providing solutions to the multi-agent coverage 
optimisation problem for unmanned ground vehicles, but there 
are certainly also approaches that consider unmanned aerial 
vehicles [18]. However, for maritime systems, the research 
domain is less developed. Fabbri et al. [19] presented a path and 
decision support system for maritime surveillance vessels, based 
on multi-objective optimisation algorithms that seek to find an 
optimal trade-off between several mission objectives. While the 
concepts are similar, this paper focuses on a high-level decision 
support system for large, manned vessels. This application aims 
to develop a solution for small-scale, unmanned patrol vessels, 
which means that the requirements and constraints are very 
different. 

As discussed previously, finding a globally optimal solution 
for the coverage maximisation of a multi-agent fleet is an NP-
hard problem [14]. This implies that the algorithms scale up 
traditionally badly for an increasing number of agents. As the 
hybrid planner proposed here features a mix of global and local 
optimisation aspects, it also suffers from the drawback of global 
planning systems. In order to remedy this problem, researchers 
have suggested particle optimisation [20], as proposed by Han et 
al., or grey wolf optimisation methodologies, as first introduced 
by Mirjalili et al. [21] and later improved for distributed coverage 
optimisation problems by Wang et al. [22]. In short, all these 
methodologies aim to intelligently prune the number of 
candidate positions that have to be investigated in order to limit 
the number of computations to be performed. Developing 
further on these ideas, an optimisation strategy is also proposed 
that quickly selects the high-probability candidate positions, 
thereby limiting the computation time. 

  

Figure 1. Maritime spatial plan of Belgian territorial waters, showing the very 
dense occupation of these waters by different actors and for different 
economic activities. This paper considers the surveillance and patrol of 
offshore wind farms, indicated on the map as the area with a red overlay 
(Source: Belgian Federal Public Service – Health, Food Chain Safety and 
Environment). 
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3. METHODOLOGY 

3.1. Overall framework 

The proposed methodology draws inspiration from 
behaviour-based control frameworks [23], in which multiple 
behaviours actively work together to control the robot, or in this 
case, the UMS. The main problem in behaviour-based control is 
how to synergise the different individual behaviours into a 
consistent and optimal global behaviour for the robotic agent. 
This requires the choice of so-called weight parameters that lead 
to the expected global behaviour. However, finding these weight 
parameters is a non-trivial task. Therefore, this study proposes 
an optimisation scheme to find the optimal weights, taking into 
consideration two objectives: a) increasing the global coverage 
(and thereby increasing the acquisition of new knowledge about 
the environment) and b) minimising the danger level (thereby 
minimising the likelihood of the vessel capsizing). 

A major design issue for the development of such an 
optimisation scheme is that the weight parameters to be 
optimised are subject to a large number of environmental factors, 
such as visibility and wave height. Therefore, for the present 
study, a dual approach was adopted. 

• At the offline learning stage, depicted by algorithm 1, 
an optimisation process was repeatedly run to find the 

optimal weight parameters 𝑤opt for multiple 

environmental conditions: 

𝑤opt

= arg min
𝑤

𝜙(𝑤, 𝛼, 𝑥, 𝑦, 𝜃, 𝜐, 𝛾, 𝑣m, 𝜃m, 𝑤h, 𝑤𝜃 , 𝑜𝑚, 𝜆) , (1) 

with the following parameters: 

o 𝑤 represents the weight parameters to be 
optimised. 

o 𝛼 is the number of agents. 

o (𝑥, 𝑦)  is the position of the agents in a 
metric grid.  

o 𝜃 is the orientation of the agents in radians. 

o 𝜐 is the visibility in meters. This is a function of the 
sensorial visibility (which is considered to be static, 
as the UMS sensor package does not change during 
a mission) and the meteorological visibility, which 
is dynamic, as the weather conditions may change 
throughout a mission. 

o 𝛾 is the sensors’ field of view on board the UMS 
(rad). In this implementation, the sensors are 
always assumed to be front facing (although the 
field of view can be set to 360 °). 

o 𝑣m is the maximum velocity (m/s) that can be 
reached by the UMS. 

o 𝜃m is the maximum turning rate (rad/s) that can 
be achieved by the different UMS. 

o 𝑤h is the wave height (m). 

o 𝑤𝜃  is the wave orientation (rad). 

o 𝑜𝑚 is an obstacle map, expressed as a probability 
density function, that expresses the probability of 
finding an obstacle.  

o 𝜆 is a dimensionless parameter regulating the 
relative importance of coverage maximisation and 
the minimisation of the risk of capsizing. 

The parameters of the optimisation function 𝜙 and the 
function itself are further explained in Section 3.3. For 
this optimisation process, the classic Nelder–Mead 

simplex algorithm [24] was used. This process typically 
takes a long time (a few days, depending on the 
granularity or resolution requested). For this reason, 
Section 3.4 introduces an accelerated optimisation 
scheme. At the end of this process, the resulting data 
were stored in a database for later retrieval (during the 
online stage). 

• At the online stage, the correct weight parameters for 
the environmental conditions at hand were retrieved 
from the database and applied directly to the same 
optimisation function used before, as depicted by 
algorithm 2. 

In the following section, both parts of the optimisation 
scheme will be discussed in detail. 

3.2. Offline optimisation 

Algorithm 1 depicts the offline optimisation scheme. As 
explained, its objective is to develop a database with the optimal 
weight parameters for each possible combination of 
environmental factors. This study has focused on four main 
factors that have been experimentally shown to have an 
important impact on the choice of the different weight 

parameters: the number of assets 𝛼, visibility 𝜐, wave height 𝑤h 

and wave direction 𝑤𝜃 . 

With regard to the number of assets 𝛼, fleets of between two 
and ten unmanned systems have been considered for this study. 
The reason why this number cannot be scaled up further is that 
the methodology relies on an analysis of the localisation and 
sensor data from all other assets. The methodology aims to 
predict the outcome of moving in a number of directions for 

each of these assets with an 𝒪(𝑁2) problem. As a result, 
increasing the number of assets above ten leads to prohibitively 
long computation times, at least for the non-optimised version 
of the algorithm (see Section 3.4 for details). 

Concerning visibility, as this study is based on the use of small 
vessels (which have a minimal height and therefore a limited view 
over the waves), the maximum visibility range is set to 1,000 m.  

In terms of wave height, the database considers wave heights 
up to 10 m even though the simulations show that the danger 
level for such large wave heights is very high, and thus, the 
seaworthiness of the UMS considered in this implementation is 
not assured.  

3.3. Online optimisation 

Algorithm 2 depicts the online localisation scheme, which 

coincides with the optimisation function 𝜙 of algorithm 1. 
Each step of the pseudo-code algorithm is explained here in 

detail: 

 

Algorithm 1. Offline optimisation scheme. 

 

Algorithm 1. Offline optimisation scheme. 
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1. First, the relevant weights are extracted from the 
database. If no exact match can be found, an 
interpolation is performed taking into consideration the 
closest matching conditions in the database developed 
during the offline stage. 

2. The assets perform an initial communication to get to 
know each other's position. An empty coverage map 

(𝑐𝑚) is constructed (note that no a priori knowledge is 
assumed). The robotic assets collectively build up a world 
model (a coverage map indicating areas they have visited 
and an obstacle map showing areas where they have 
found obstacles), which is maintained in memory by each 
of them in order to be able to cope with network outages. 
This world model is initially empty; the only information 
the assets have at the start is each other’s position and 
the boundaries of the working area. 

3. The main loop for the simulation timer is created. 
4. All the UMS in the fleet are interrogated. 

5. A set of candidate positions (𝑥c, 𝑦c) that the UMS are 
able to move to is selected, depending on the starting 

position (𝑥0, 𝑦0), orientation 𝜃 and the maximum 

velocity 𝑣̅max(𝑣m, 𝜃m) of the UMS.  
6. All possible candidate positions are explored. 
7. New information that can be retrieved by moving from 

the starting position (𝑥0, 𝑦0) to the new position (𝑥, 𝑦) 
is assessed. This is achieved by adopting a visibility 

model, indicating, through visibility 𝜐 and the sensor field 

of view 𝛾, the probability of detecting an object as a result 
of the vessel’s orientation. The adopted visibility model 
assumes a mix of infrared, visual and LIDAR-based 
sensing and draws upon the heuristically established 
sensor models established by Lahouli et al. [25] (for 
infrared sensors) and Balta et al. [26] (for visual and 

LIDAR sensors). Figure 2 provides an example of a 
visibility model for a vessel that is oriented at a 45 ° angle 

at the position (0,0). This visibility model is compared 

to the coverage map (𝑐𝑚), resulting in a local map 𝑝1, 
which can be regarded as a heat map indicating the best 
locations to move to in order to obtain the maximum 
amount of new data (i.e. to maximally increase the total 
value of the coverage map). 

8. In order to maximise the chances of finding threats, it is 
better to move fast. However, the vessel should not 
move too fast because this would not be fuel efficient, 
and it could lead to incidents. Therefore, another 
function generates a local heat map favouring a 

compromise vessel velocity 𝑣. 

9. Vessels are not able to change their orientation 𝜃 
suddenly. Therefore, another 'behaviour' generates a 
local heat map that avoids sharp turns. 

10. Small vessels are extremely susceptible to waves. Both 

the wave height 𝑤h and the wave direction 𝑤𝜃  play an 
important role, and these need to be carefully aligned 
with the vessel speed and orientation. In order to assess 
this, an empirical ‘wave function’ was compiled, based on 
sailors’ experiences set out in the literature, that expresses 
the danger level related to waves. This wave function is 
expressed as 

𝜙wave = (1 − 𝑦) 𝑣 𝑤h , (2) 

with 𝑦 defined as 

𝑦 = 0.35 𝑥6 − 3.5 𝑥5 + 12.74 𝑥4 − 20.75 𝑥3 

      +14.36 𝑥2 − 2.9 𝑥 + 0.1 . 
(3) 

Figure 3 provides an example of a wave-function 

equation for a vessel at location (0,0) and with incoming 
waves from the north. As can be seen, the ideal 

orientation for the vessel (highest value of 𝜙wave) would 
be slightly inclined but nearly head on to the waves. 
Orientations that are to be avoided (lowest value of 

𝜙wave) are waves coming from the side or from the back. 
11. It is important that vessels do not run into any detected 

obstacles. The UMS therefore collectively create and 

share an obstacle map (𝑜𝑚) and steer away from objects 
on this map. 

12. It would be inefficient for multiple agents in the fleet to 
investigate the same area. Therefore, the swarm 
optimisation behaviour seeks to maintain an adequate 
distance between the agents. 

13. The different local heat maps are combined into a single 

map 𝑝 using the weights that were calculated previously 
(in the offline step). 

14. An extra check is performed in order to ensure that the 
UMS do not stray away from the designated surveillance 
area. 

15. An extra check is made in order to avoid revisiting recent 
locations. This is required not only to speed up the 
convergence but also to avoid getting stuck at local 
minima. Therefore, a trajectory memory is maintained 

and checked for pruning the local heat map 𝑝. 

16. On the local heat map 𝑝, the optimal position (𝑥𝑏 , 𝑦𝑏) is 
located. 

17. All possible positions are then checked. 
18. The vessel is steered towards the optimal position. 

 

Algorithm 2. Online optimisation scheme. 
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19. The danger level for moving to this new position is 
estimated based on the wave function. The danger level 

is here defined as 𝑑𝑎𝑛𝑔𝑒𝑟 = 1 − 𝜙wave.  
20. The UMS performs an update of its sensing cycle, which 

will update the coverage map as new information is 
obtained.  

21. The iteration for all agents ends. 

22. The mean coverage score 𝑓c is recorded. 

23. The total (summed) danger score 𝑓d is recorded. For 
reasons of normalisation, it is divided by the number of 

assets 𝛼. 
24. The temporal loop ends. 
25. Coverage needs to be maximised while minimising the 

danger level. Therefore, the objective function to be 
minimised is defined as 

𝑓 =
1

𝑓c

+ 𝜆 𝑓d . (4) 

The first term of the objective function ensures that the 
coverage is maximised, while the second term ensures 
that the danger level is minimised. The parameter 

𝜆 regulates the relative importance accorded to both 
aspects. This parameter is dependent on the type of 
vessel used. For smaller UMS, sea waves present a much 

higher risk, so 𝜆 should be higher. For larger vessels, 𝜆 
can be reduced in order to maximise the coverage 
mapping more rapidly. 

3.4. Computational speed optimisation 

As can be seen in the definition of algorithm 2, the 
computation time rises exponentially with the number of 
unmanned systems considered. Not only do all of these assets 
require a separate evaluation (step 4 in algorithm 2), but also the 
complexity of many of the subprocesses (e.g. swarm 
optimisation) increases with the number of agents. The main 
culprits for the long computation time after this are the number 
of candidate positions that have to be evaluated (step 5 in 

algorithm 2) and the sometimes-high number of iterations 
required for the convergence of the Nelder–Mead simplex 
algorithm, used for solving (1). 

The adopted optimisation methodology is geared primarily 
towards an intelligent pruning of the candidate positions, as 
follows: 

• In the first phase, only a very limited subset of the 
original candidate positions is selected. This is 
performed by downscaling the selected candidate 
positions on a lower-scale metric grid. 

• In the second phase, an analysis (as described in 
algorithm 2, lines 6 to 17) is performed on the 
downscaled candidate positions. 

• A local subgrid is defined at the original resolution 
around the resulting position. 

• For all candidate positions within this local subgrid, the 
analysis (as described in algorithm 2, lines 6 to 17) is 
performed again and a final position is selected. 

The double loop may seem to add extra complexity and 
computation time, but in practice, it avoids the evaluation of a 
large number of candidate positions that do not have a viable 
chance of being selected. Indeed, as the local maps are mostly 
continuous functions, it makes sense to evaluate them first at a 
lower resolution and then to scale up. Furthermore, the 
convergence settings of the Nelder–Mead simplex algorithm 
were optimised to match the candidate position pruning 
approach. 

4. VALIDATION 

4.1. Quantitative validation 

For the validation of the proposed approach, an application 
was selected that is used for the surveillance of Belgian offshore 
wind farms, which have an area of around 10 km × 30 km that 
needs to be patrolled. However, the proposed methodology 
would also be very useful for a maritime search and rescue [27] 
or a fishery control scenario. 

 

Figure 2. Visibility model for a vessel that is oriented at a 45 ° angle at the 
position (0,0). 

 

Figure 3. Wave function for a vessel at location (0,0) and with incoming 
waves from the north. 
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In order to validate the methodology, it was compared to five 
state-of-the-art solutions: 

• A random search, where each agent adopts a 
completely random movement pattern, 

• A distributed random search, where the search area 
is subdivided into equal parts and each agent adopts a 
random search pattern within the designated subzone, 

• A lawnmower search, where each agent uses a 
movement pattern typically adopted by robotic 
lawnmowers: moving in straight lines and turning a 
random number of degrees when approaching 
boundaries, 

• A distributed lawnmower search, where the search 
area is subdivided into equal parts and each agent adopts 
a lawnmower search pattern within the designated 
subzone, and 

• Distributed Greek patterns. This is the search and 
surveillance approach typically adopted by manned 
vessels, which has been proven to be very efficient for 
rapid area coverage. Moreover, by subdividing the 
search area and distributing the search tasks among 
multiple agents, this approach is quite well suited to 
maritime coverage optimisation. Figure 4 provides an 
example of the Greek pattern. 

One disadvantage of all these state-of-the-art approaches is 
that they do not take into consideration the danger the waves 

pose to the vessel, which is an integral part of the proposed 
solution.  

In order to further validate the optimisation scheme, the 
results were also compared using a non-optimised, nominal 
version (using a static initial estimate for the weight parameter 

𝑤) with the optimised approach. 
Figure 5 presents the results in terms of coverage in a 

simulation with four agents present. It can be clearly seen that 
the presented approach (denoted as optimal and indicated in 
dark red) achieves the highest overall coverage. Without using 
weight optimisation, the distributed Greek patterns approach 
outperforms the baseline nominal approach presented here. All 
other approaches achieve a performance that is far lower. It can 
also be observed that the coverage results do not always 
monotonically increase. This can be explained by the fact that at 
each iteration, the existing coverage data is ‘aged’ (in practice, the 
coverage map is multiplied by 0.99) in order to represent the fact 
that older data have become less valid. The result is that with a 
limited number of agents, it becomes very difficult to maintain a 
high overall coverage score. 

These results can be expected, as the random search and 
lawnmower search approaches are quite simplistic 
methodologies, whereas the distributed Greek patterns approach 
has a proven track record for these kinds of applications. Still, 
using weight optimisation, the methodology proposed in this 
study succeeds in achieving a higher coverage score. 

However, the major strength of this approach can be seen in 
Figure 6, which indicates the danger level of executing a mission 
using each of the approaches. The blue portion of the bar chart 
indicates the mean danger level, whereas the red portion 
indicates the maximum danger level attained during a particular 
mission. Clearly, both are important for assessing the risk of 
incidents. It can be clearly seen that both the nominal and the 
optimal proposed methodology achieve a danger level that is 
significantly lower than in the other approaches. Moreover, for 
the optimal approach, there is little difference between the mean 
and the maximum danger levels, indicating that the methodology 
succeeds in maintaining risk at a constant and low level. 

 

Figure 4. Example of distributed Greek patterns. 

 

Figure 5. Evolution of the relative coverage of a surveillance area using seven different approaches. 
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4.2. Scaling and timing 

In order to assess the effects of the speed optimisation 
methodology explained in Section 3.4, Figure 7 shows the 
evolution of the processing time, relative coverage and relative 
danger level for the proposed approach with and without the 
application of the candidate location pruning methodology. 

As is clearly indicated in Figure 7, the computation time is 
drastically reduced by the incorporation of the candidate position 
pruning methodology. In general, the accelerated approach is 
about 9 times faster than the baseline approach. This clearly 
shows that the proposed methodology of first analysing a limited 
set of points and then providing a detailed analysis of a dense 
point set in just one small area has a highly beneficial impact on 
the global processing time. This also enables the methodology to 
be used for an increased number of assets even though the global 

algorithm still scales up to slightly more than 𝒪(𝑁). 
An important aspect to assess is whether there would be any 

loss of quality using the accelerated approach. In order to 
evaluate this, the coverage mapping and danger levels were 
recorded for both methodologies and for the different numbers 
of agents, as shown in Figure 7. 

Surprisingly, the accelerated approach performed even better 
than the baseline approach even though the differences were not 
large. This may seem counter-intuitive at first sight because the 
accelerated approach evaluates fewer candidate positions and 
thus, compared with the baseline approach, always has a higher 
risk of being trapped at local minima.  

This phenomenon was investigated and found to be caused 
by the better convergence properties of the accelerated 
approach. Indeed, as the accelerated approach requires fewer 
time-consuming local map evaluation steps, the Nelder–Mead 
simplex optimisation algorithm achieves (slightly) lower values 

for the optimisation function 𝜙 when using the accelerated 
method. The ‘side effect’ of accelerated optimisation, as 
described in Section 3.4, is therefore also an improved (higher) 
coverage mapping and a slightly improved (lower) danger level. 

5. CONCLUSIONS 

In this paper, an approach towards distributed coverage 
optimisation for a maritime surveillance application has been 
presented. The approach is based upon a mix of offline learning 
and online optimisation. In order to remedy the traditional 
problem related to the excessive processing time for multi-agent 
global planning methodologies, an approach for the multi-scale 
selection of candidate locations has also been proposed. 

The methodology was validated by comparing it in simulation 
to multiple state-of-the-art approaches. This comparison 
demonstrated that the proposed approach performed well in 

terms of coverage mapping and very well in terms of minimising 
the danger of capsizing for small, unmanned vessels. Moreover, 
the validation of the performance of the accelerated approach on 
multi-agent systems demonstrated that the computation time can 
be drastically reduced while the coverage mapping performance 
is increased. 

A next step will be to implement and test the system on the 
real-life UMS that are planned to be deployed to patrol Belgian 
territorial waters. 

 

Figure 6. Relative danger level for executing a maritime surveillance mission using seven different approaches. 

 

Figure 7. Evolution of the processing time, mean relative coverage and mean 
relative danger level for the proposed approach with and without the 
application of the candidate location pruning methodology. 
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