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1. INTRODUCTION 

Nowadays, the research interests in the development of 
sensors with extremely low-power consumption is growing 
because of the increasingly energy-saving requirements of the 
expanding market. This can be seen by the recent high demand 
of portable battery powered devices often used in wireless sensor 
networks (WSNs) for industrial (e.g., harmful gas detection) [1], 
[2], healthcare (e.g., wearable or implantable devices) [3]-[6], and 
environmental (e.g., weather forecast) [7]-[10] monitoring 
applications. Several sensor typologies have been investigated in 
order to achieve the best trade-off between performance and 
power consumption with a focus on size, weight, and production 
costs. In this context, microwave devices are considered as an 
attractive solution thanks to their interesting features in terms of 
cost, power consumption, and response time. They have been 

employed for materials characterization [11]-[13] as well as for 
gas sensing applications [14]. 

Microwave gas sensors have the ability to operate at room 
temperature without the need of a heater [15], [16]. Moreover, 
they are fully compatible with wireless technology so that they 
can be easily integrated into wireless smart nodes [17]-[19]. In 
particular, the planar microstrip technology is widely employed 
in the fabrication of microwave components like antennas, 
filters, and resonators. Such devices are often used in sensing 
applications because of their low cost, easy fabrication, and good 
performance [20]-[24]. The microwave microstrip sensors are 
attractive especially for gas sensing applications, where the 
frequency-dependent dielectric properties of the sensing material 
are related with the adsorption of the target gas of interest on the 
sensing layer, deposited on the microstrip propagative structure. 
The progress in nanotechnologies has enabled advancements in 
the use of gas sensors using nanostructured materials as sensing 
layers [14], [25]-[27]. 
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This study focuses on the microwave characterisation of a microstrip resonator aimed for gas sensing applications. The developed one-
port microstrip resonator, consisting of three concentric rings with a central disk, is coupled to a 50-Ω microstrip feedline through a 
small gap. A humidity sensing layer is deposited on this gap by drop-coating an aqueous solution of Ag@α-Fe2O3 nanocomposite. The 
operation principle of the developed humidity sensor is based on the change of the dielectric properties of the Ag@α-Fe2O3 
nanocomposite when the relative humidity is varied. However, it should be underlined that, depending on the choice of the sensing 
material, different target gases of interest can be detected with the proposed structure. The frequency-dependent response of the 
sensor is obtained using the reflection coefficient measured from 3.5 GHz to 5.6 GHz, with relative humidity ranging from 0 %rh to 
83 %rh. The variation of the humidity concentration strongly impacts on the two resonances detected in the measured reflection 
coefficient. In particular, an increase of the humidity level leads to lowering both resonant frequencies, which can be used as sensing 
parameters for humidity monitoring purpose. An exponential function has been used to accurately model the two resonant frequencies 
as a function of the humidity. 
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Following on from the results of our previous study [28], we 
present here a thorough investigation of a one-port gas 
transducer based on a microwave microstrip resonator, which is 
validated as humidity sensor by using an Ag@α-Fe2O3 
nanocomposite as a sensing material. The experimental-based 
investigation is performed by focusing the analysis on both 

magnitude and phase of the reflection coefficient ( ) and its 
corresponding impedance (Z). In particular, we monitored the 
relative humidity over the broad range going from 0% to 83% at 
room temperature, and by assessing the sensing performance of 
the developed gas transducer to change in the relative humidity 
in terms of variations in the frequency-dependent behaviour of 

. As shown later in this paper, two dips are clearly visible in the 

magnitude of  for the proposed sensor at approximately 
3.7 GHz and 5.4 GHz, and their appearance is shifted towards 
lower frequencies when the humidity level is increased. Hence, 
the resonant frequencies (fR1 and fR2) associated to the two dips 

observed in  can be directly used as humidity sensing 
parameters. To this end, a sensitivity-based investigation is 
developed in order to assess the sensing performance of the 
proposed microwave sensor for humidity monitoring 
application. The humidity-dependent variations in the two 
resonant frequencies are accurately modelled by using an 
exponential function. 

This article is structured as follows. Section II is dedicated to 
the design of the microstrip resonator, which is based on using 
three concentric rings with a central disk. This choice was made 
after a careful analysis of the performance of different resonator 
topologies through computer simulations. Compared to the 
traditional ring configuration [29], [30], the proposed topology 
allows improvement in the quality (Q-) factor and, thus, in the 
detection process. Section III is devoted to the development of 
the humidity sensor, which is based on using an Ag@α-Fe2O3 
nanocomposite as sensing material. It is worth noting that the 
high porosity of the nanostructure allows enhancement of the 
interaction with water vapour, thereby leading to an improved 
humidity sensitivity. Section IV is focused on the description of 
the fitting of the measurements locally around the two observed 
resonances by using a Lorentzian function. Section V is 
dedicated to the description of the setup for frequency- and 
humidity-dependent characterization and to the presentation of 
the experimental results. Finally, the conclusions are drawn in the 
last section. 

 
 

2. RESONATOR DESIGN AND SIMULATION 

The proposed gas transducer is based on a concentric rings 
microstrip (CRM) resonator acting as a propagative structure for 
the electromagnetic waves. This novel topology of propagative 
structure is composed by three concentric copper rings with a 6-
mm copper central disk and a 50-Ω microstrip feedline coupled 
to the resonator through a 0.2-mm gap.  

The Matlab Antenna Toolbox was used for the design 
process. As illustrated in Figure 1, four different resonator 
topologies were considered during the design step based on 
computer simulations over the frequency range going from 
3 GHz to 6 GHz: the classic ring resonator, two concentric rings, 
three concentric rings, and three concentric rings with a disk in 
the middle. Starting from the traditional configuration, the 
coupling gap and the ring thickness were optimized in terms of 
Q-factor. Later, additional rings were included in the design 
considering a constant spacing. Figure 3 shows the frequency-

dependent behaviour of the magnitude of the simulated  for the 
four studied topologies. As can be observed, the computer 
simulations show that all investigated topologies have two 

resonances appearing in , which can be detected as two marked 
dips occurring at about 3.7 GHz (i.e., Dip 1) and 5.4 GHz (i.e., 
Dip 2), respectively. The two dips are more clearly visible in 

 

Figure 1. Illustration of the four studied resonator topologies: (a) traditional 
ring, (b) two concentric rings, (c) three concentric rings, and (d) three 
concentric copper rings with a central disk. 
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Figure 2. Behaviour of the magnitude of the simulated reflection coefficient 
versus frequency from 3.0 GHz to 6.0 GHz for the four studied resonator 
topologies. 
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Figure 3. Illustration of the two dips appearing in the magnitude of the 
simulated reflection coefficient for the four studied resonator topologies. 
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Figure 2, where the observation of  is limited to the two narrow 
frequency bands around fR1 and fR2. 

To assess the microwave performance of the studied 
resonator topologies, the quality factor improvement was 
evaluated by using the single-ring configuration as a reference for 
comparison. Figure 4 shows the Q-factor improvement for both 
resonances as a function of the number of concentric rings. It is 
worth noting that the selected topology (consisting of three rings 
with a central disk) allows achieving an improvement in the Q-
factor equal to 6% and 44% at fR1 and fR2, respectively. 

The CRM resonator was fabricated on a 3.2-mm FR4 
substrate [31] with copper as conductor for both top and ground 
layers by using the Protomat S103 PCB milling machine. The 
dielectric constant (εr) and the loss tangent (tanδ) of the substrate 
are 4.3 and 0.025, respectively. An SMA connector was soldered 
at the end of the 50-Ω microstrip feedline to connect the 
resonator with a vector network analyzer (VNA) for measuring 
Γ. 

3. SENSOR DEVELOPMENT 

To obtain the gas sensor, a sensing material was deposited on 
the surface of the propagative structure. In particular, an aqueous 
solution of Ag@α-Fe2O3 nanocomposite was deposited on the 
gap placed between the external ring and the microstrip feedline 
by drop coating. The description and synthesis of this humidity 
sensing material is reported in [32]. The effect of the sensing 
material deposition on the frequency-dependent behaviour of Γ 
of the developed structure was measured from 3.5 GHz to 
5.6 GHz using the Agilent 8753ES VNA with a one-port 
calibration (Short Open Load, Agilent 85052 mechanical 
calibration kit). As shown in Figure 5, both dips in Γ become 
much more pronounced after deposition, improving the quality 
factor of both dips. For the sake of completeness, the real and 
imaginary parts of the resonator input impedance for the selected 
frequency ranges are reported in Figure 6. 

4. RESONATOR PARAMETERS EVALUATION 

Estimating the resonant frequency (fR), quality factor (Q), and 
dip amplitude (AR) from a discrete frequency response is not a 
trivial task. A simple linear interpolation of the available discrete 
data can lead to an inaccurate estimation of these quantities, 
especially when the data are affected by noise. A better fitting 
approach consists in using a Lorentzian function [33], [34], which 
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Figure 4. Analysis of the quality factor improvement of two resonances 
observed in the simulated reflection coefficient as a function of the number 
of rings of the resonator structure. 
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Figure 5. Behaviour of the (a) magnitude and (b) phase of the measured 
reflection coefficient as a function of frequency, from 3.5 GHz to 5.6 GHz, for 
the studied resonator before (red lines) and after (blue lines) deposition of 
the sensing material. 
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Figure 6. Behaviour of the (a) real and (b) imaginary parts of the impedance 
as a function of frequency from 3.5 GHz to 5.6 GHz, for the studied resonator 
before (red lines) and after (blue lines) deposition of the sensing material. 
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allows achieving a good estimation of the resonant parameters fR, 
Q, and AR. A more accurate result can be achieved by using a 
complex function to fit both real and imaginary parts of the 
spectrum [35], [36]. This technique can be useful in several 
applications in which the calibration procedure is impracticable 
(e.g., in cryogenic measurement systems) [36]. 

The frequency-dependent behaviour of the magnitude of Γ of 
the microwave resonator was modelled as a Lorentzian function: 

|𝛤(𝑓)| = 𝑐0 −
𝑎0

𝜋
∙

1
2

𝐺

(𝑓 − 𝑓𝑅)2 + (
1
2

𝐺)
2 , (1) 

where f is the frequency, c0 and a0 are two real coefficients, and 
G is the full width at half maximum. 

From equation (1), AR and Q can be calculated respectively as: 

𝐴𝑅 = 𝑐0 − 𝑎0 ∙
2

𝜋𝐺
 , (2) 

𝑄 =
𝑓

∆𝑓
=

𝑓𝑅

𝐺√√2 − 1
 , (3) 

where Δf is the resonator half-power bandwidth. 
The Levenberg-Marquardt algorithm was used for fitting the 

measured data points with the Lorentzian function. It is found 
that the Lorentzian curve allows fitting very well the two 
observed resonant dips, so that it is possible to obtain a smooth 
behaviour of the magnitude of Γ over a continuous spectrum of 
frequencies for the estimation of the resonant parameters. As an 
illustrative example, Figure 7 reports the Lorentzian fitting 
applied to the magnitude of the measured Γ over a narrow 
frequency band around the second resonance. By using the 
fitting process, the parameters fR, Q, and AR can be accurately 
estimated over the whole considered humidity range. 

5. EXPERIMENTAL RESULTS 

The sensor was placed in a test chamber filled with a 
controlled atmosphere, where the electrical signal was supplied 
via an RF feed-through for connection with the Agilent 8753ES 
VNA (see Figure 8). The test chamber consists of a modified 
Petri dish made in Polystyrene, able to provide both a controlled 
atmosphere and good microwave propagation avoiding signal 

perturbations. The developed sensor was characterized at seven 
different values of the relative humidity concentration, ranging 
from 0 %rh to 83 %rh, at room temperature. The 0 %rh nominal 
value was set by means of the certification of the gas bottles 
(0.5%). 

The test gas mixture was set by means of a fully automated 
gas control system made by a certified gas bottle and a bubbler 
inside a thermostatic bath. The system is equipped with an array 
of Bronkhorst® mass flow controllers able to set a flux of 
100 cm3/min in the test chamber, providing a fast set and purge 
for each test value of the humidity concentration.  

The diagram of the gas apparatus is shown in Figure 9. After 
performing a one-port calibration, the reflection coefficient was 
measured at each humidity condition. Figure 10 and Figure 11 
illustrate the impact of the relative humidity on the measured 
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Figure 7. Illustration of the Lorentzian fitting (red line) of the magnitude of 
the measured (black line) reflection coefficient over a narrow frequency band 
around the second resonance for the studied resonator. 

 

 

Figure 8. Illustration of (a) the sensor prototype placed in test chamber and 
(b) the frequency- and humidity-dependent characterization procedure. 

 

Figure 9. Illustration of the automated gas control and measurement system. 
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behaviour of the complex reflection coefficient over two narrow 
frequency bands around the two observed dips, which were 
detected at approximately 3.7 GHz and 5.4 GHz. It can be seen 
that the size and the shape of the dips change significantly with 
the humidity values. 

It should be mentioned that humidity-dependent variations 
are observed in all the three parameters fR, Q-factor, and AR for 
both resonances. Nevertheless, Q-factor and AR do not follow a 
clear monotonic trend (see Figure 12 and Figure 13). On the 
other hand, it is worth noting that both resonant frequencies 
decrease with increasing the humidity level (see Figure 14), 
thereby enabling the use of the two resonant frequencies as 
humidity sensing parameters.  

With the aim to evaluate the humidity sensing performance of 
the developed gas transducer for the whole investigated humidity 
range, we used an exponential function to fit the two resonant 
frequencies as a function of humidity: 

𝑓𝑅 = 𝐴 ∙ e
(−

𝑅𝐻
𝐵

)
+ 𝐶, (4) 

where fR represents the considered resonant frequency, RH is the 
relative humidity value, A, B, and C are the fitting parameters. 

The calibration curve for both Dip 1 and Dip 2 is depicted in 
Figure 14(a); in Table 1 the fitting parameters are reported, while 
the calibration fit residuals are shown in Figure 14(b). For Dip 1 
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Figure 10. Behaviour of the (a) magnitude and (b) phase of the measured 
reflection coefficient over a narrow frequency band around the first 
resonance for the studied resonator, for seven relative humidity values. 
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Figure 11. Behaviour of the (a) magnitude and (b) phase of the measured 
reflection coefficient over a narrow frequency band around the second 
resonance for the studied resonator at seven relative humidity values. 
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Figure 12. Analysis of the quality factor of two resonances observed in the 
measured reflection coefficient of the resonator as a function of the 
humidity. 
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Figure 13. Magnitude of the measured reflection coefficient of the resonator 
at the first (black) and second (blue) resonances as a function of the humidity. 
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residuals are almost within ± 200 kHz that, considering an 
absolute sensitivity of 26.4 kHz/%rh, corresponds to ± 7.6 %rh. 
On the other hand, Dip 2 exhibits a higher sensitivity 
(29.3 kHz/%rh) with lower calibration fit residuals in 
comparison to Dip 1: ± 100 kHz, or ± 3.4 %rh. As an 
alternative, it is possible to use both dips for humidity detection, 
thereby reducing the measurement error and increasing accuracy 
[37]. 

For the sake of completeness, the impact of the humidity 
variations is reported also for the impedance associated to the 

measured , focusing on the two narrow frequency bands 
around the two dips. Figure 15 and Figure 16 show that a higher 
humidity implies that the real part decreases close to Dip 1 and 
then increases close to Dip 2, whereas the imaginary part is 
shifted towards higher values in both frequency bands. 

 

6. CONCLUSIONS 

A one-port microwave gas transducer was developed by 
coupling a microstrip resonator for electromagnetic wave 
propagation with an Ag@α-Fe2O3 nanocomposite for humidity 
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Figure 14. Calibration curve for both Dips (a) and calibration fit residuals (b). 

Table 1. Fitting parameters values with standard errors for the two dips 
observed. 

Parameter Dip 1 Dip 2 

 Value Standard error Value Standard error 

A (MHz) 2.68 0.302 2.92 0.104 

B (%rh) 37.21 10.349 28.18 2.485 

C (MHz) 3699.51 0.3043 5467.92 0.088 

 R2 = 0.994 R2 = 0.956 
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Figure 15. Behaviour of the (a) real and (b) imaginary parts of the measured 
impedance over a narrow frequency band around the first resonance for the 
studied resonator, for seven relative humidity values. 
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Figure 16. Behaviour of the (a) real and (b) imaginary parts of the measured 
impedance over a narrow frequency band around the second resonance for 
the studied resonator, for seven relative humidity values. 
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monitoring purpose. The sensing performance of this prototype 
was established by monitoring relative humidity from 0 %rh to 
85 %rh at room temperature. To this end, the sensor was placed 
in a test chamber consisting of a modified Petri dish made in 
Polystyrene. By using a VNA, the reflection coefficient was 
measured over the 3.5 GHz … 5.6 GHz frequency range, under 
seven different conditions of relative humidity. It was observed 
that the frequency-dependent behaviour of the reflection 
coefficient exhibits two marked dips that change in intensity, 
broadness, and location when the relative humidity is varied. In 
particular, the two detected resonant frequencies progressively 
shift towards lower values with increasing humidity, enabling 
their use as effective sensing parameters. The humidity-
dependent behaviour of the two resonant frequencies was 
accurately reproduced by using an exponential function. The 
sensitivity-based analysis showed that the higher resonant 
frequency is the most sensitive parameter to change when the 
relative humidity is varied. Finally, it should be highlighted that, 
although the reported analysis was limited to the humidity 
sensing application, the developed transducer can be applied also 
for the detection of different target gases by selecting an 
appropriate sensing material tailored to the specific sensing 
application. 
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