
ACTA IMEKO 
ISSN: 2221-870X 
June 2021, Volume 10, Number 2, 62 - 69 

 

ACTA IMEKO | www.imeko.org June 2021 | Volume 10 | Number 2 | 62 

System for an acoustic detection, localisation and 
classification 

Jakub Svatos1, Jan Holub1, Jan Belak1 

1 Department of Measurement, Czech Technical University in Prague, Prague 166 27, Czechia 

 

 

Section: RESEARCH PAPER  

Keywords: Acoustic Detection; Gunshots; Localisation; Classification; Neural Network; Mel Frequency 

Citation: Jakub Svatos, Jan Holub, Jan Belak, System for an acoustic detection, localisation and classification, Acta IMEKO, vol. 10, no. 2, article 10, June 2021, 
identifier: IMEKO-ACTA-10 (2021)-02-10 

Section Editor: Giuseppe Caravello, Università degli Studi di Palermo, Italy 

Received January 18, 2021; In final form April 15, 2021; Published June 2021 

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

Corresponding author: Jakub Svatos, e-mail: svatoja1@fel.cvut.cz  

 

1. INTRODUCTION 

An acoustic detection (AD) of gunshots is a present topic that 
can help to detect hazardous and dangerous events, especially in 
public areas. In recent days, there is an increase in gunshot 
attacks in public areas such as schools, campuses, hospitals, and 
shopping centres. In some cases, it is challenging to identify a 
dangerous event from uncertain, inadequate data received by 
cameras or by security staff. The main asset of AD is based on 
the extraction of vital information from the recorded signal data 
and classify it as due to a given event (gunshot, a human scream, 
glass breaking, etc.) Due to this classification, AD can assist in 
Law enforcement to better discriminate dangerous events and 
intervene in the ongoing process on time and decrease the 
possibility of casualties. A fundamental goal of AD systems is to 
monitor acoustic signals around the area of interest and to detect 
a potentially hazardous event, record, localise the probable 
position of the event and classify the event into categories as an 
alert (gunshot) signals and non-treat, ‘false alert’, signals. 

There are several experimental or commercial AD systems 
designed for gunshot events detection and localisation available 
on the market [1]-[5]. These systems are designed to localise the 
source of the gunshot and to estimate the type of treat. The more 
sophisticated systems can even identify the particular firearm 
type using advanced classification methods. A drawback of the 
sophisticated systems is usually very high purchase and 
operational cost, which makes it almost impossible to use for 
smaller non-governmental entities such as campuses or hospitals.  

To successfully design a gunshot detecting and classifying 
algorithm, essential characteristics of its complex physics have to 
be understood. A comprehensive explanation of the problem 
can be found in [6], [7]. 

A gunshot pattern is characterised by the two phenomena, 
muzzle blast, and, if the bullet propagates at supersonic speed, 
shock wave. Muzzle blast is caused by an explosive charge where 
hot, high-pressured gases expand as acoustic energy from the 
centre of the gun barrel. The bullet travelling at supersonic speed 
generates a shockwave effect, which is propagating in a conic 
fashion behind the bullet trajectory. The shockwave is based on 
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the combinations of compression and expansion shock, as 
shown in Figure 1.  

The angle ΘM between the bullet trajectory and the shock 
wave trajectory is given by the Mach number M = v/c, where v is 
the velocity of the projectile and c is the speed of the sound: 

𝛩𝑀 = arcsin (
1

𝑀
). (1) 

These factors can include valuable information that can be 
used for improving the detection capability of the AD system. 
Alongside this, the calibre of both bullet and barrel, the length of 
the latter, mechanical action caused by the gun itself, or even the 
chemical properties of the propellant cause different effects on 
the pattern of a gunshot. Last but not least, the temperature of 
the air, air humidity, wind speed, environment (e.g., foliage 
density, urban area) and soil characteristics also have an impact 
on the resulting gunshot pattern. Considering all these 
phenomena, to effectively detect and identify a gunshot, signal 
processing, including adaptive filtering and advanced data 
processing and classification have to be carried out [8] – [11].  

An example of a typical subsonic pattern and a supersonic 
gunshot signal are shown in Figure 2 and Figure 3. Both bullets 
were shot in semi-open area (with multiple reflections from the 
ground and the walls) by the same 9 mm short gun, and its 
acoustic signature was recorded at the distance of approximately 
10 m. In Figure 3, the shock wave pattern is not clearly visible 
due to its proximity to the muzzle blast pattern of the signal. It 
is caused by the relatively low speed of the supersonic bullet 
(Mach number M = 1.09). 

In this article, a system for acoustic detection, localisation and 
classification is introduced. The proposed system consists of 
stand-alone sensor units, which are placed around the monitored 
areas in sufficient numbers, to continuously monitor acoustic 

events around the unit; if there is a possibility of a dangerous 
event, the stand-alone units send the data to the remote unit for 
advanced gunshot detection and classification. The remote 
central unit evaluates signals received from multiple sensor units 
and, using advanced signal processing and classification 
methods, determines the location of a gunshot and the probable 
firearm caliber used. To localise the place of the event, at least 
three units equipped with a microphone are needed. The 
localisation accuracy of the system depends on the density and 
the number of stand-alone sensor units used. 

In comparison with other existing available systems (e.g. [3] 
or [5]), the presented system has a novel modular flexible 
structure. It can be deployed on a building or moving object (car, 
person, animal) while the central unit can be installed in a distant 
protected place. In the future, the presented acoustic detector 
can be used in public areas like schools, campuses, shopping 
centers to detect and localise gunshots. 

The paper is organised as follows. In Section II, the sensor 
units, detection algorithm, localisation algorithm and signal 
processing, together with the classification methods, are 
introduced and described. In Section III, the experimental 
measurements and results are presented. The conclusion and 
future work directions are outlined in Section IV. 

2. METHODS 

The presented system for acoustic detection, localisation and 
identification consists of multiple (at least three to estimate the 
correct localisation of the event) sensor units and one central 
unit. Such a topology enables additional analyses at the central 
unit, i.e., advanced location of the acoustic event position using 
timestamped data from multiple sensor units receiving the 
acoustic signal related to the possible shooting event. Each 
sensor unit has to cover analogue signal pre-processing, 
digitisation, simple detection algorithm and simple evaluation. 
Based on the simple detection and evaluation algorithms, all the 
units with positive detection, sends the recorded data to the 
central remote unit. Every stand-alone unit works on the 
principle illustrated in Figure 4. 

The stand-alone sensor detection algorithm works on the 
principle of a modified median filter introduced by the authors 
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Figure 1. An acoustic trace of a supersonic bullet.  

 

Figure 2. Signal corresponding to a 9 mm subsonic short gun gunshot.  

 

Figure 3. Signal corresponding to a 9 mm supersonic short gun gunshot.  
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Figure 4. Unit function requirements.  
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in [8]. The background signal is filtered by the median filter while 
an acoustic event is processed based on the algorithm presented 
in Figure 5. 

It works on the principle of dividing the recorded acoustic 
signal, converted to energy (the input signal is squared), to the 
optimal number of data blocks - time windows, the defined odd 
number of windows, which are fed to the median filter. The 
middle window is the block with the actual data (actual data 
window), where the detection is performed. Each window 
represents 50 samples, i.e., 1 ms of recorded acoustic data around 
the unit. The data contained in the window before the actual data 
window represents the acoustic signal recorder after the actual 
data and vice versa, data recorded before are contained in 
windows that follows the actual data window. The resulting 
signal from the median filter is then subtracted from the actual 
data window, to suppress/filter the background acoustic noise. 
Thereafter the detection algorithm based on multiple thresholds 
distinguishes actual gunshot events from other ‘false alarms’. 
More details about the algorithm can be found in [12] and can be 
described by the pseudocode in Figure 6. 

Requirements for flexible modular sensor units are even more 
demanding than just to detect, record and send the acoustic event 
in case of a positive detection. Since the sensor units can be 
deployed everywhere, they have to be able to send their exact 
position. Moreover, all the sensor units have to be precisely time-
synchronised to get a synchronised timestamp of the detected 
event and to send the data to the central unit wirelessly ensuring 
accurate localisation and classification of the event secured by 
the remote server.  

To fulfil all these criteria, the sensor unit was designed 
according to Figure 7. 

Every sensor unit uses a pre-polarised, electret condenser 
microphone with a flat frequency response from 20 Hz to 
20 kHz and omnidirectional sensitivity, see Figure 8 and Figure 
9. 

The heart of the acoustic sensor unit is a low power 
consumption, 32-bit LPC 1837, ARM Cortex-M3 based 
microcontroller, which processes the recorded data from the 
microphone. The analogue Op-amp based peak detector 
provides an interrupt for the microcontroller if the microphone 
records an acoustic impulse event. A 16-bit Analogue-to-Digital 
Converter (ADC) ADS8866 digitises the recorded analogue data. 
The successive approximation, low power consumption ADC 
samples the data with a sampling frequency of fs = 44 kHz. After 
the interrupt, the ADC sends the data to the microcontroller via 
Serial Peripheral Interface (SPI). The data is stored in a circular 
buffer as a 16-bit number. In this way, the data is ready for 
processing.  

If a trigger from the peak detector occurs, the median filter 
algorithm described above evaluates if there is the possibility of 
a gunshot event. If the possible gunshot is evaluated and 
detected, low power consumption GSM chip GL865-QUAD V3 

Median Filter

Win 
1

Win 
2

Act.
Data

Win 
12

Win
13

x2Sample 
x(t) -

+

RMS

MAX

Energy

Rms

Max
Timestamp

Energy

 

Figure 5. The principle of the median filter.  

 

Figure 6. The detection algorithm pseudocode.  

Mikroprocesor

PC

Peak 
Detector

ADC

Microphone

Cell Phone

GPS

GSM/GPRS

Remote Server

INT

SPI

USB

EXTINT

UART

UART

SMS

GPRS

 

Figure 7. Block diagram of the sensor unit.  

 

Figure 8. Frequency response of the microphone.  

 

Figure 9. Omnidirectional sensitivity of the microphone.  
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then sends the recorded data, together with the exact position of 
the unit and a precise timestamp, when the event has been 
recorded, for further analysis to the remote central unit PC.  

The precise localisation of the sensor unit position and 
synchronisation with all the other sensor modules secures GPS 
module NEO/LEA-6T. When the NEO/LEA-6T module 
operates stationary, GPS timing is possible with only one visible 
satellite. It means the time can be maintained even under adverse 
signal conditions or in an environment with poor sky visibility. 
The GPS module is also adding the precise timestamp to the 
recorded data to make it possible to assess the exact localisation 
of the gunshot event. The UCT timestamp and the exact position 
of each unit are determined by this way. For the synchronisation 
of the units, the NMEA protocol [13] is used. The time accuracy 
for the synchronisation of all units is 0.1 ms. The described 
sensor unit is power supplied from Ucc = +5V. The designed 
sensor unit with a testing microphone is shown in Figure 10. 

The central remote unit process received data using advanced 
signal processing. When at least three sensor units detect the 
event and send the data together with its timestamps, an 
algorithm uses these timestamps from the network of sensor 
units to triangulate the location of the event. The remote server 
also secures the classification to state if there is a gunshot 
detected and identify/estimate the caliber of the used firearm or 
if it is only a ‘false alarm’.  

Figure 11 describes the layout of the localisation problem using 
three sensor units/microphones. 

Measuring the time delay τn between the event and each 
microphone Mn and knowing their positions, it is possible to 
calculate the position of the source S inside of the domain D. 
The relationship between the source S of the gunshot and three 

microphones Mn, that detect it, is described by equations (2) to 
(4)  

(𝜏1 − 𝜏0) ∙ 𝑐 =  (𝑥 − 𝑎1)2 + (𝑦 − 𝑏1)2 (2) 

(𝜏2 − 𝜏0) ∙ 𝑐 =  (𝑥 − 𝑎2)2 + (𝑦 − 𝑏2)2 (3) 

(𝜏3 − 𝜏0) ∙ 𝑐 =  (𝑥 − 𝑎3)2 + (𝑦 − 𝑏3)2 , (4) 

where τ0 is the time where the gunshot has occurred; τ1, τ2 and τ3 
are the times where the gunshot has been detected by unit 1, 2 
and 3; (ax, bx) are the coordinates of the relevant unit; and (x, y) 
are the coordinates of the gunshot. The resulted coordinates are 
necessary to recalculate to the Cartesian system. The unit that 
detects the gunshot first (τ1) is considered as it is placed in 
coordinate (0, 0). The coordinates in meters of other units are 
then calculated through (5): 

𝑑 = acos(sin(𝛷1) sin(𝛷2))
+ cos(𝛷1) cos(𝛷2) cos(𝛿𝜆) R , 

(5) 

where 𝛷1 and 𝛷2 are the coordinates in meters and δλ is the 
difference of the longitudes and R is the mean Earth radius 
(6378 km). Once the coordinates of the Cartesian system are 
calculated, it is necessary to recalculate the latitude and the 
longitude coordinates. Since the distance of one degree of 
longitude is different at the North Pole and the Equator, it is 
necessary to know the relationship between degree and meter at 
a given latitude [14]. This is done by applying the simplified 
formulas (6) and (7), which recalculate meters to one degree of 
latitude of longitude, resulting in uncertainty values in the order 
of centimetres: 

𝑥𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 111123.92 − 559.82 cos(2 𝜆)
+ 1.175 cos(4 𝜆) − 0.0023 cos(6 𝜆) 

(6) 

𝑥longitude

= 111412.84 cos(𝛷) − 93.5 cos(3 𝛷)
− 1.175 cos(5 𝛷) 

(7) 

An example of the received timestamps from the three sensor 
units (AED 1 – AED 3) with their exact position in longitude 
and latitude coordinates and calculated source of a detected 
acoustic event by the remote server is in Figure 12. 

A custom software application for the remote unit PC to 
communicate with sensor units, processing the sent data and 
displaying the location of the event was developed as a part of 
the acoustic detection system (Figure 13). The application was 
developed in C# programmable language. The program shows a 

 

Figure 10. The sensor unit for acoustic detection.  

 

Figure 11. The layout of the situation with three microphones.  

 

Figure 12. An example of a message with calculated source of an acoustic 
event sent by the sensor unit.  
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map with the exact location of the chosen acoustic unit and 
precise/synchronised UTC time. In case of detection, the 
application signalises the event, displays an exact timestamp in 
UTC and stores the data for further processing. Through the 
application, the sampling frequency, parameters for the detection 
algorithm based on the median filter described in the beginning 
of the Section II, and the connection of additional detection 
units can be done. Parallel to localisation, the remote central unit 
applies the algorithms to obtain the features for classification and 
classify the event into the classes.  

The Mel Frequency Transformation (MFT) and Continuous 
Wavelet (CW) methods are used for the processing of received 
data to obtain features for the further classification. To identify 
the components in an acoustic signal, it is preferable not to use 
the linear frequency scale, but to detect the differences in lower 
frequencies rather than higher frequencies. Incorporating this 
can be preferable in acoustic detection. MFT algorithm uses 
band-pass filters to get the energy of the signal for each defined 
band. Then, the algorithm uses frequency distribution to create 
Mel Frequency Coefficients (MFC). MFC is computed using 
cosine transformation on the logarithm of bank energies. It can 
be described as follows. The waveform is divided into the 
Frames, then the discrete Fourier Transform is applied, Logs of 
amplitude spectrum is taken, the scale is converted using the Mel-
scaling and, finally, the discrete cosine transform is performed. 
To convert the frequencies into the Mel Scale, equation (8) is 
used. More details on MFC can be found in [15], [16] 

𝑀(𝑓) = 1125 ln (1 +
𝑓

700
) . (8) 

Through experiments, it was set the optimal number 20 MFC 
and filters with frequency bands from 500 Hz to 5kHz. These 
MFCs served as features for the future classification. To limit the 
influence of an echo on a classification and increase its validity 
and reliability, more features have to be added.  

For this reason, the CW algorithm was considered. Unlike 
Discrete Fourier Transform DFT, CW transform uses defined 
waves to create a frequency spectrum with significant time 
resolution. The time resolution allows limiting the influence of 
echo, because the echo does not usually interact with the 
beginning of the impulse acoustic event/gunshot pattern.  

The best results for a gunshot recognition showed the Bump 
wavelet served as a mother wavelet. The used Bump wavelet is a 
bandlimited function defined in the frequency domain by (9), and 
its shape is shown in Figure 14.  

Ψ(sω) = e
1−(

1
1−(sω−μ)2/σ2)

 1
[
μ−σ

s
,
μ+σ

s
] 
 

 
(9) 

where 1[(μ−σ)/s, (μ+σ)/s] is the indicator function, s is the scale, ω is 
angular frequency, σ is standard deviation, and µ is mean value. 
More details about the wavelet can be found in [17], [18]. 

Both presented algorithms are used as features for the 
advanced classification of received signals by central remote unit 
from sensor units. Various sets of gunshots, as well as several 
diverse false signals, similar to a gunshot signal were used for 
classification. Each false signal was chosen to be challenging to 
differentiate it from the real gunshots by a human operator. 

For classification, two independent Neural Networks (NN) 
were created. First, a NN was designed to classify signals based 
on MFC. Considering the low dimensionality of these 
coefficients, a fully two-layer connected neural network has been 
used. For the CW algorithm, a convolution neural network was 
used. As the spectrum is a two-dimensional matrix, the 
convolution network is significantly better than a fully connected 
system. Convolution network allows finding local features in 
multidimensional, location-dependent input data. Spectrogram 
features are location-dependent, and therefore, the convolution 
network leads to better results than a typical fully connected 
network. Also, the convolution network is typically much smaller 
in dimension, thus significantly reducing the computation time. 
A single network combining both designs was implemented and 
used for the classification. The network had two inputs, one for 
the MFC and one for the CW algorithm.  

Along with the NN, two more classifiers, Support Vector 
Classifier (SVC) and Naive Bayes Classifier (NBC) [19] - [21] are 
presented herein for a results comparison. Both classifiers were 
implemented in Matlab software with classification pattern 
recognition toolbox PRTools ver. 5 [22]. Naive Bayes method is 
based on Bayesian theorem (10). 

P(A/B) =  
P(B/A) P(A)

P(B)
 (10) 

where P(A), P(B) is the prior probability of A, B respectively, and 
P(B/A) is the conditional probability, the probability of A given 
that B is true. The Naive Bayes Classifier estimates for every 
feature and every class separately. Naive Bayes method is simple, 
but despite its simplicity can often outperform other 
sophisticated classification methods. It is widely used for results 
comparison with other classifiers. SVC works based on the 
construction of non-linear decision boundaries. SVM creates a 
decision plane, so-called Hyperplane, which in Feature space 
separate training data optimally. The decision plane then 

 

Figure 13. PC application.  

 

Figure 14. Bump mother wavelet.  
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separates sets of objects, which have different class 
memberships. The input data are transformed (mapped) to 
Feature space using a mathematical function known as the 
kernel. Support vector models can be linear, polynomial, 
sigmoidal and radial basis function. 

3. RESULTS  

To acquire the test data, multiple gunshots measurements in 
different shooting ranges, closed – with many reflections and 
open, were done. For increasing the diversity of gunshots, three 
different calibres were measured [23]. Tested firearms were 
9 mm short gun, 6.35 mm short gun, .22 short gun, .22 rifle gun. 
Various subsonic and supersonic (up to Mach number of 
M = 1.1) ammunition was used with the 9 mm short gun. Each 
type of gun was measured at least 60 times. In total, 
approximately 400 samples corresponding to gunshots were and 
recorded by sensor units described in Section II (in many cases, 
one sample has been recorded by more sensor units). For false 
signals, acoustic impulse events similar to gunshots were 
measured. Approximately 200 samples of various false alarms 
were measured. As examples of false signals, glass breaking, 
different slams (such a door slam), handclaps, or close big bubble 
wrap popping were recorded. At least three sensor units placed 
in nearby locations recorded all the tested signals. The example 
of a gunshot of a 9 mm short gun in a noisy environment (diesel 
engine) recorded at a distance of 10 m is shown in Figure 15.  

Figure 16 shows another recorded gunshot, shoot by .22 short 
gun in closed shooting rage where many reflections are visible. 
The gunshot was recorded at a distance of 12 m. 

Two examples of recorded false alarms represented by a door 
slam and bubble wrap popping are presented in Figure 17 and 
Figure 18. 

Both presented false signals exhibit similar patterns as 
gunshots. Therefore, the recorded data have to be processed in 
a way to emphasise the differences. This can be done by MFT 
and CW methods presented in Section II. 

This work presents the classification into ‘false alarms’ and 
gunshot event and in the case of a gunshot, the classifier classifies 
the recorded signal into an individual caliber.  

To train the classifiers in an optimal way, the recorded 
acoustic events data have to be divided into two groups – to 
training and to validation sets. There are many articles dealing 
with an optimal number of training data. One of the proposed 
methods is the use of the learning curve. Use of learning curves 
for optimal size of training data is described in [24]. From the 
Learning curve, dependency of the model performance on the 
training data size can be obtained. It usually depends on the 
classification method, the complexity of the classifier or how well 
can be the classes separated. Optimal size of training data can be 
determined from the maximum of the Learning curve. Recorded 
‘false alarms’ and gunshots samples were chosen randomly 
chosen for the training and the validation sets. In this case, the 
number of training data is optimal for approximately 30% of the 
samples. 

The training set had approximately 200 independent 
measurements and the validation set had approximately 400 
samples. The experimental results for the validation data to be 
classified into false alarms and gunshots events are shown in 
Table 1. 

The results show the validation success rate of classifying into 
the gunshots is 100 %. The system can classify the gunshot from 

 

Figure 15. Recorded signal corresponding to 9 mm subsonic short gun shoot 
noised by a diesel engine.  

 

Figure 16. Recorded signal corresponding to .22 mm subsonic short gun shoot 
with reflections.  

 

Figure 17. Recorded signal corresponding to a door slam.  

 

Figure 18. Recorded signal corresponding to a bubble wrap popping.  
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the ‘false alarm’ with a 100% success rate but, on the other hand, 
approximately 30% of the false alarms are identified as gunshots. 
The main reason for this is the limited number of signals 
corresponding to the false alarms and their diversity. To improve 
the classifier learning, a significant number of impulse acoustic 
events similar to gunshots have to be recorded in real scenarios 
and used it for classifier training. On the other hand, if the 
acoustic detection system will be complemented by visual 
detection an operator can restrain a False Alarms Occurrences. 
The results also show that SVC achieves slightly better results 
than NN in false alarm detection, while NBC’s success rate is 
below 90% even for a proper classification into gunshots classes. 
For this reason, NBC is not used for the classification into 
individual calibers.  

Table 2 shows the results of the classification into individual 
calibers by the NN. The NN performs well in classification into 
the caliber of a gunshot, where it was able to classify more than 
95% correctly for a 9 mm caliber, more than 82 % for 6.35 mm 
caliber and more than 96% for .22 caliber. On the other hand, 
NN classifies almost 26% of false alarms as gunshots (9 mm 
caliber mostly). For the sake of comparison, results obtained 
through SVC are summarised in Table 3. 

The SVC classified almost 80% of false alarms correctly, but 
the classification of gunshots into correct caliber classes is less 
successful than for NN. For example, 6.35 mm caliber successful 
classification is less than 80% in comparison with 96% for the 
NN. The efficiency of NN classification strongly depends on the 
amount and variability of the false alarm signals. Based on the 
tested results, only the NN classifier was implemented to the 
ADS. In the future, more false alarm scenarios have to be 
recorded and used for the classifier training. 

The tested measurements show that the presented ADS can 
successfully detect, locate and classify the impulse event. The 
ADS consists of sensor units operates on the principle of the 
modified median filter, and central remote unit, which calculates 
the location of the acoustic event and classify it using NN and 
CW and MFC algorithms. The tested acoustic signals were taken 
at different open and closed shooting ranges, where at least three 
acoustic units recorded the detected impulse acoustic event. The 
NN classifier can classify an individual caliber of a used firearm 
with a very high success rate, which is for some calibers more 
than 95%. As a next step, the System for Acoustic Detection will 
be deployed in an environment (residential area) to test it in real 
conditions. 

4. CONCLUSION 

The system for acoustic detection, localisation, and 
classification into a firearm caliber was presented. The system 

consists of sensor units that continuously monitor acoustic 
events around the unit and the central remote unit. The sensor 
units use a modified median filter algorithm to state if there is a 
possibility of a gunshot. The central remote unit – PC, then 
evaluates the signal through advanced signal processing and 
classification to determine if there is a gunshot or a false alarm 
event. The system can localise the event on the principle of 
measuring the time delay between the event and each 
microphone of the sensor unit and knowing their positions. The 
accuracy of the localisation depends on the number and the 
density of the sensor units. The central remote units use 
Continuous Wavelet and Mel Frequency Transformation 
methods to get the features for a neural network classifier.  

Gunshots of different calibers and various false alarms similar 
to gunshots were recorded on shooting ranges to test the system. 
More than 600 signals were recorded and tested. 

The system shows the ability to detect the gunshot with 100% 
accuracy and to correctly classify the caliber of a gun with a high 
accuracy depending on the individual caliber. Considering the 
limited size of false alarms training dataset, such results are 
impressive. However, all measurements were measured in a 
similar environment. To practically employ the ADS in real 
conditions, a significantly larger dataset in a real environment, 
such as urban areas, should be examined for future tests and unit 
improvements. 

In the future, the proposed Systems for Acoustic Detection 
can be used as a standalone unit placed in schools, campuses, 
shopping centers or other public areas in general, to detect, 
localise and classify gunshot events and to increase the safety of 
the civil population. 
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