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1. INTRODUCTION 

In today’s competitive market, manufacturing enterprises are 
faced with the challenge of achieving high productivity, short 
delivery times and a high level of delivery capability despite ever-
shorter planning horizons, a large number of external planning 
changes and increasing planning complexity [1], [2]. This high 
degree of complexity in planning is no longer effectively and 
affordably manageable for humans [3]. On the one hand, there 
are high demands on flexibility and reaction times in planning 
and, on the other hand, high requirements regarding availability 
of production facilities, equipment and machines [4].  

However, current systems for production planning and 
control (PPC) neither incorporate technical innovations nor 
social requirements and are therefore not able to meet the current 
challenges [5]. Likewise, current maintenance processes and 
strategies are not sufficiently prepared for these challenges [6]. 

Considering the advancement towards Industry 4.0, new 
opportunities arise due to innovative technologies and 
approaches such as Industrial Internet of Things (IIoT) 
applications [7], horizontal and vertical communication within a 
production system by means of Open Platform Communications 
Unified Architecture (OPC UA) [8] or the use of artificial 
intelligence (AI) methods for data analysis, forecasting, 
optimization and planning [9].  

The degree of autonomy of such a cyber physical production 
system (CPPS) describes the ability to plan, control and initiate 
actions autonomously [10]. Approaches to autonomous 
production control (APC) represent suitable ways to increase the 
degree of autonomy of a CPPS [11], [12]  

Therefore, APC represent suitable possibilities to deal with 
the aforementioned requirements [13].  

However, these approaches are currently limited to lab 
research and are not ready for industrial applications [14]. Most 
of the current approaches are based on idealised assumptions 
such as maximum availability (i.e. 95-98%) or do not take many 

ABSTRACT 
Autonomous production control (APC) is able to deal with challenges, inter alia, high delivery accuracy, shorter planning horizons, 
increasing product and process complexity, and frequent changes. However, several state-of-the-art approaches do not consider 
maintenance factors contributing to operational and tactical decisions in production planning and control. The incomprehensiveness of 
the decision models and related decision support tools cause inefficiency in production planning and thus lead to a low acceptance in 
the manufacturing enterprises. To overcome this challenge, this paper presents a conceptual cost-based model for integrating different 
maintenance strategies in autonomous production control. The model provides relevant decision aspects and a cost function for 
different maintenance strategies using on a market-based approach. The present work thus makes a positive contribution to cope with 
the high demands on flexibility and response times in planning while at the same time ensuring high plant productivity. 

mailto:robert.glawar@fraunhofer.at


 

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 157 

decisive factors such as maintenance strategies into account. For 
example, the question such as “how the current state of a 
production plant or machine can affect production control” is 
not taken into consideration [15]. Exactly these factors, as 
exemplified, are decisive for the acceptance and implementation 
maturity of autonomous approaches in industrial companies. 
Hence, the aim of the present work is to take a further step 
towards implementation maturity by integrating different 
maintenance strategies in APC. 

2. MAINTENANCE IN APC 

Autonomous production control (APC) has the potential to 
deliver optimal and resource efficient processes as well as higher 
quality and variations of products than conventional, centralized 
decision-making systems [16] Adaptive, decentralised production 
control can reduce planning efforts [17], enable shorter reaction 
times in planning [18] and create greater planning flexibility [19]. 

Since in most cases not all decisions in a production system 
are made autonomously, a CPPS typically includes a combination 
of hierarchical and heterarchical mechanisms for control [20]. 
Since approaches to autonomous production control are able to 
deal quickly and flexibly with unplanned changes within the 
production system, they are used in the context of CPPS to 
represent decision-making processes that require a high degree 
of responsiveness [21].  

To ensure high level of acceptance among operational 
planning staff, it is particularly important that the underlying 
models comprehensively take relevant factors of the production 
system into account and thus making robust decisions [22]. 
Current studies show that a large number of research activities 
are concerned with the development of approaches to 
autonomous production control [23].  

Current approaches focus on the description of the 
interactions between different parts of a production system from 

different perspectives. A typical task is to assign a waiting 
workpiece, which is to be processed in the course of a production 
job, to a machine or a workstation taking into account available 
resources, logistical parameters and the smoothing of the job 
load. Existing APC approaches are usually either carried out as 
event-driven sequencing [18] or agent-based sequencing [24]. 

First examples that the agent-based simulation is a suitable 
possibility to realize APC by using multi-agent systems are shown 
by Pantförder et al. (2017) [25]. The integration of such an 
approach in a production system on the basis of the UPC-UA 
standard is shown by Hoffmann et al. (2016) [26]. A key success 
factor for autonomous interaction in this context is the design of 
a of a robust system [27]. 

In order to reach such a design, different algorithms may be 
used to schedule the orders. In particular, genetic and 
evolutionary algorithms [28], swarm-based algorithms [29], [30], 
and market models [14] have been successfully used for APC. In 
addition, many current approaches to PPC rely on the 
application of methods of artificial intelligence. Often, ML is 
applied, for example, to predict lead times predict and optimize 
resource utilization [31]. In addition, reinforcement learning is 
used to enable, for example, an autonomous order scheduling 
system [32]. 

However, as shown in Table 1, few approaches deal with the 
integration of maintenance strategies in APC systems. For 
instance, Erol and Sihn (2017) presented a cloud-based 
architecture for intelligent production planning and control 
considering maintenance [33]. Vallhagen et al. (2017) also 
presented a system and information infrastructure to enable 
optimized adaptive production control [34]. Nevertheless, 
neither of these approaches explain which aspects of 
maintenance should be considered and how they should be 
integrated. In the approach presented by Wang et al. (2018), the 
condition of production plants is automatically evaluated and 
thus the production sequence is intelligently adapted. System 

Table 1. Overview Maintenance in autonomous production control. 
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performance is improved by automatically evaluating the state of 
production systems and dynamically configuring processing 
paths for intelligent products and parts. While the implement-
tation as decentralized production control is proposed, the work 
deals in detail with a three-machine problem and neglects the 
dependencies on a higher-level production planning [35]. 

In summary, it can be concluded that none of the identified 
approaches includes a systematic integration of different 
maintenance strategies into autonomous production control. 
However, if this aspect is not taken into account, these 
approaches remain largely unsuitable for industrial application, 
as no valid decisions can be made in the case of unplanned 
outages or planned maintenance, and thus ultimately the 
acceptance of such approaches by operational planning staff is 
not given. In front of this background a comprehensive 
methodology for integrating maintenance strategies in 
autonomous production control has been presented by Glawar 
et al. (2019) [20] and Glawar et al. (2020) [36]. The core of this 
conceptual model, which is presented in detail in section 5, is a 
cost based model for the integrated planning. This model is laid 
out in section 4 based on the relevant aspects for the integration 
of maintenance in APC introduced in section 3. 

3. RELEVANT ASPECTS FOR THE INTEGRATION OF 
MAINTENANCE IN APC 

For the integration of maintenance into APC, an important 
step is to clarify which maintenance aspects are relevant for the 
integration decision. For this purpose, an expert survey has been 
conducted including professionals from industrial sectors, 
namely semiconductor production, metal processing industry, 
condition monitoring and automotive industry as well as national 

and international academic experts. The aim of this survey was 
to discuss the following question with the experts: "How do you 
evaluate the individual aspects of maintenance with regard to 
their relevance for integration into production planning and 
control (PPC)?” The first step was to discuss which aspects of 
Plant Maintenance (aka industrial maintenance) are generally 
important for PPC and for which area of PPC a specific aspect 
is relevant. Using the pair-wise comparison method, it was finally 
determined how relevant the individual aspects are for 
integration into the PPC. The results of this expert survey are 
presented in Table 2. The essential aspects of maintenance are 
listed in the first column and evaluated with regard to their 
relevance for decision-making. In the second column the 
relevance for the integration into the different dimensions of 
PPC is shown. A significant finding is that the relevance for the 
consideration of the individual aspects for the PPC strongly 
depends on the general operational conditions, especially the 
degree of automation, production type and flexibility in case of a 
plant failure. A closer look at the results shows that some aspects 
are particularly relevant for integration into APC, while other 
aspects may have a positive influence on the quality of decisions 
but are not absolutely necessary for integration purpose. In 
addition, there are other aspects of Plant Maintenance which are 
particularly important for integration into medium- and long-
term production planning as well as production controlling. 
These decision factors have not been further addresses during 
the course of the present work. 

3.1. Downtime & costs 

The time for a shutdown, in case of an occurring failure of 
the machine, can be estimated either on the basis of empirical 
knowledge, or calculated on the basis of historical shutdowns. It 

Table 2. Aspects and their importance for APC integration into PPC system evaluated by various domain experts [36]. 
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is important to note that the downtime that occurs usually differs 
significantly depending on whether it is a planned or unplanned 
shutdown. Since downtime costs correlate with the order 
situation, the lost contribution margin in the event of a downtime 
is usually used to calculate the downtime costs. Penalties for 
delayed order completion are also taken into account, if 
applicable. Together with the probability of failure, the 
downtime costs represent an important basis for decision-
making in production control. 

3.2. Maintenance time & costs 

The time for a repair can either be estimated on the basis of 
manufacturer information and empirical knowledge or calculated 
on the basis of historical data (e.g., mean time to repair MTTR). 
Usually, when calculating repair costs, a distinction is made 
between internal and external repair costs, which are usually 
caused by external services. The underlying share of external 
services largely determines the repair time and costs. In the case 
of internal repair costs, the repair time is usually taken into 
account, taking into account the hourly rates of the personnel 
required for the repair, depending on their qualifications, and 
supplemented by the material costs for the necessary spare parts. 
This applies analogously to the occurring maintenance times & 
costs. The repair and maintenance costs calculated in this way are 
important factors in production control for deciding whether 
maintenance should be carried out or even brought forward, or 
whether the risk of a breakdown with subsequent repair should 
be taken. 

3.3. Spare parts availability 

The information on whether the spare parts required for 
repair and maintenance are basically available is decisive for the 
decision within the framework of production control as to 
whether maintenance is triggered or whether an order is 
produced on a system with a certain risk of failure. Depending 
on the type and complexity of a machine as well as the 
organizational form of maintenance, spare parts availability 
represents a more or less important decision aspect. In the case 
that mechanical spare parts can be produced independently with 
relatively little effort or are outsourced to a service provider via 
a service contract, it may not be necessary to integrate this 
decision aspect into production control. 

3.4. Availability of maintenance capacity 

The information as to whether maintenance capacity is 
available for repair or maintenance is essential in the context of 
production control in order to make the decision as to whether 
this should be triggered. Capacities can represent both internal 
personnel resources and external third-party services, which are 
usually not available in unlimited quantities. Depending on the 
type of maintenance organization, this decision aspect is also 
more or less important. While a capacity check can be very 
important in a decentralized maintenance organization that has 
to manage with a narrowly limited capacity, it is less important in 
an organization that provides sufficient resources centrally. 

3.5. Availability of qualifications 

The qualifications required to perform a particular repair or 
maintenance task can also play a relevant role in the decision 
within the framework of production control. However, the 
significance of this decision aspect depends to a large extent on 
the complexity of the equipment as well as the available 
qualifications of the internal personnel resources. While only a 
small number of qualified personnel resources are generally 

available for highly complex plant components such as bionic 
components, the significance decreases for simple mechanical 
plant components, for which a large proportion of the available 
personnel resources are qualified. 

3.6. Planned maintenance orders and planned maintenance 
interval 

Orders that are scheduled for the execution of maintenance 
are very relevant for the PPC as they tie up capacities. While 
internal maintenance tasks only reduce the capacity within a 
period but allow a certain flexibility with regard to sequence 
planning, externally performed tasks often represent a hard 
restriction for production control. The basis for these planned 
maintenance orders are often the defined intervals for (periodic) 
preventive maintenance. Maintenance interval management thus 
represents a key success factor for medium-term production 
planning. It is crucial that this maintenance planning is 
coordinated with the expected fluctuation in production volumes 
in order to prevent equipment from being unavailable in a phase 
of particularly high order levels, while it could be maintained in 
a phase of low order levels. 

3.7. Probability of failure 

The probability of failure significantly determines the risk of 
a plant or machine failure during production and thus influences 
production control decisions. Depending on the maintenance 
strategy applied, different approaches exist to calculate the 
probability of failure. In the simplest case, information from the 
manufacturer or internal empirical values (e.g. Mean Time 
Between Failure - MTBF) are used to calculate the probability of 
failure. Often, historical data based on statistical methods, such 
as the Weibull distribution, can also be used to calculate the 
probability of failure. Ideally, the probability of failure is 
determined based on the actual condition of the plant and a 
corresponding forecast for the next failure. 

3.8. Condition of the plant or machine components 

If the condition of a plant or machine can be reliably 
measured, estimated or calculated, it represents an essential 
decision-making factor for the PPS. In the context of medium-
term production planning and spare parts planning, it is possible 
to react as soon as a component exhibits a critical condition, for 
example, by ensuring that the corresponding spare parts are 
available or by initiating planned maintenance. In the context of 
production control, the risk of failure can be taken into account 
based on the change in the condition of the machine for example 
in the context of sequence planning or machine assignment. 

3.9. Technical plant availability 

Technical plant availability, which describes what proportion 
of the available operating time a plant is technically available, is a 
key aspect of medium-term production planning. Depending on 
the availability, the plants are scheduled to a greater or lesser 
extent. Technical plant availability also represents a hard 
restriction for the maximum possible production quantity. 

4. DEVELOPMENT OF A COST FUNCTION FOR AN 
INTEGRATED PLANNING 

Different algorithms can be used to determine the order of 
the orders within the autonomous production control. Many of 
these algorithms use a cost function to prioritize or determine 
the production sequence. For example, when applying the 
market principle for APC, orders are allocated to individual 



 

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 160 

production units based on a cost function. In this paper, a cost 
function for autonomous production control is developed using 
the market principle for autonomous production control as an 
example:  

𝐾PA = ∑ 𝐾S + ∑ 𝐾Pf + ∑ 𝐾Pv × 𝑋p + ∑ 𝐾Tv × 𝑋t . (1) 

A possible formulation of the costs of a production order, as 
shown in (1), is presented by Rötzer and Schwaiger [37]. In this 
description, the costs of a production order (KPA) consist of 
individual location costs (KS) fixed process costs (KPf) variable 
process costs (KPv) and variable transport costs (KTv) as well as 
the production quantity (XP) and the number of transports (Xt). 
Transportation costs (KTv) represent the expenses for the 
necessary transports (Xt) to move the workload to be produced 
within the production system. They include, for example, costs 
for material supply and provision, transports between different 
workplaces and production facilities, as well as expenses for 
intermediate, inward and outward storage of the produced 
worklist. Fixed production costs (KPf). represent the portion of 
production costs that is independent of the amount of work in 
process (XP)-That is, fixed production costs are constant for each 
production order. This includes, for example, the expenses for 
setup between the production orders but also administrative 
costs for order processing. In comparison, variable production 
costs (KPv) depend on the amount of work produced. 

Typical variable production costs are, for example, costs for 
material, auxiliary and operating supplies, expenses for the actual 
production depending on the processing time, as well as 
expenses for the necessary energy input during production. The 
variable process costs of a production thus consist of costs due 
to production backlog, production time, setup times, and the 
inventory necessary for production, as well as maintenance costs 
[38]. In this context, the availability of the machines and the delay 
of the end of the order are particularly relevant for the evaluation 
of a production order [39]. For this reason, it is necessary to 
explicitly add the maintenance-relevant factors in a cost function 
to describe the costs of a production order. 

Since different maintenance strategies make different 
demands on production control, but also allow for different 
information, it is advisable to use different cost functions for the 
different maintenance strategies. The cost functions are 
successively designed to build on each other, so that it is possible 
to use them in a production system that uses different 
maintenance strategies for the different assets and their 
components. 

4.1. REACTIVE MAINTENANCE STRATEGY 

The reactive maintenance strategy is characterized by the fact 
that the system components are operated until failure and 
therefore the failure probability and the associated costs are not 
relevant for decision-making. This is also reflected in the 
representation of the cost function of a production order under 
consideration of reactive maintenance KRM, cf. (2). The cost 
function takes into account not only the sum of the fixed 
production costs Kf, variable production costs Kp, transport costs 
Kt, as well as the current order load Xp, and the number of 
transports Xt, but also the maintenance cost ratio Km. The 
maintenance cost ratio describes the maintenance costs per 
production quantity produced. The maintenance costs under 
consideration include the costs for maintenance and repair of the 
various elements of the production system, the costs for spare 
parts stocking, and external service costs. 

𝐾RM = ∑ 𝐾f + ∑ 𝐾v × 𝑋p + ∑ 𝐾t × 𝑋t + ∑ 𝐾m × 𝑋p (2) 

4.2. PERIODIC PREVENTIVE MAINTENANCE STRATEGY 

In periodic preventive maintenance, measures are planned 
preventively either time-dependently, for example weekly, 
quarterly or annually, or load-dependently, for example after a 
certain number of operating hours or switching operations. 
Hence, the cost function of a production order, taking into 
account preventive maintenance KPM, cf. (3). It also takes into 
account the risk of an unplanned production downtime Rdtp, 

 

Figure 1. Costs of abased production order under consideration of multiple maintenance strategies [36].   
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costs in the event of a downtime event Kdt, as well as any costs 
for contractual penalties due to schedule variances KP.  

The costs in case of a downtime event are, for example, the 
lost contribution margin of the planned worklist in case of an 
unplanned downtime, as well as costs for repairs. These 
downtime costs are dependent on the current order load Xp as 
shown in (4). The default risk in the case of periodic preventive 
maintenance Rdtp, can be calculated based on historical failures. 
For this purpose, the probability density function fp(TSLF) is 
used for integration, where TSLF describes the time since last 
failure, cf. (5). Normally, a normal distribution is assumed, cf. (6). 
While the normal distribution is calculated based on historical 
failures, the expected value is assumed by the MTBF. 

𝐾PM = ∑ 𝐾f + ∑ 𝐾v × 𝑋p + ∑ 𝐾t × 𝑋t

+ ∑ 𝐾m × 𝑋p + ∑ 𝐾dt × 𝑅dtp + ∑ 𝐾p × 𝑅dtp 
(3) 

𝐾dt = f(𝑋p) (4) 

𝑅dtp = ∫ fp(𝑇𝑆𝐿𝐹) d𝑇𝑆𝐿𝐹
𝑇𝑆𝐿𝐹

0

 (5) 

𝑓𝑝(𝑇𝑆𝐿𝐹) =
1

𝜎√2 π 
e−

1
2

(
𝑇𝑆𝐿𝐹−𝑀𝑇𝐵𝐹

𝜎
)

2

 (6) 

4.3. CONDITION-BASED MAINTENANCE STRATEGY 

The cost function of a production order under consideration 
of condition-based maintenance KCM, cf. (7), corresponds largely 
to the cost function of preventive maintenance and also includes 
the risk of an unplanned production downtime Rdtc applying 
condition-based maintenance strategies. In this case, in which a 
maintenance task is planned depending on the actual condition 
of a component, Rdtc is calculated by a condition-based function 
fc at the respective time of the condition determination tc and 
the determined condition C at this time, cf. (8). The 
determination of this function is usually based on empirical 
studies or on already known equations or manufacturer data. In 
many cases, especially if a complex empirical determination is not 
economical, it is sufficient to assign a fixed default risk Rdtc to 
defined states C based on empirical knowledge. 

𝐾CM = ∑ 𝐾f + ∑ 𝐾v × 𝑋p + ∑ 𝐾t × 𝑋t

+ ∑ 𝐾m × 𝑋p + ∑ 𝐾dt × 𝑅dtc + ∑ 𝐾p × 𝑅dtc 
(7) 

𝑅dtc = 𝑓𝑐(𝑡𝑐; 𝐶) (8) 

4.4. PREDICTIVE MAINTENANCE STRATEGY  

In predictive maintenance (PdM), maintenance tasks are 
planned depending on prognosis of remaining useful life (RUL). 
The cost function of a production order, therefore, takes into 
account KPdM, cf. (9), the risk of an unplanned production 
downtime (Rdrpdm). The failure risk is calculated analogous to the 
condition-based maintenance by a function fp which is 
determined by the RUL i.e. the remaining degree of wear and 
tear of the machine component, cf. (10). This function must also 
be known or empirically determined.  

In (11), a determination of the RUL using a Weibull function 
is shown. Here, T represents the characteristic life, beta the shape 
parameter and wi an influence factor to account for changing 
operating conditions of the Weibull function. In summary, 

Figure 1 shows the composition of the developed cost function 
depending on the applied maintenance strategy and visualizes the 
relationship between the individual cost factors 

𝐾PdM = ∑ 𝐾f + ∑ 𝐾v × 𝑋p + ∑ 𝐾t × 𝑋t

+ ∑ 𝐾m × 𝑋p + ∑ 𝐾dt × 𝑅dtpdm

+ ∑ 𝐾p × 𝑅dtpdm 

(9) 

𝑅dtpdm = fp(𝑅𝑈𝐿) (10) 

𝑅𝑈𝐿 = e
−(

𝑡
𝑇 × 𝑤𝑖

)
𝛽

 
(11) 

5. CONCEPTUAL MODEL FOR INTEGRATING MAINTENANCE 
STRATEGIES IN APC 

The model for the integration of different maintenance 
strategies in APC is designed using three subsystems: i) a 
maintenance system, ii) a system for autonomous production 
control and iii) a system for production planning. In Figure 2, 
these subsystems and their interrelations are shown in detail. The 
system for autonomous production control maps the level for 
machine-to-machine (M2M) communication of the APC model. 
It regulates the real-time communication of the different 
elements of a production system with the aim of autonomously 
determining a production sequence based on the requirements 
of the production control system (the production orders) and the 
current framework conditions of the production system. To 
achieve this goal, real-time communication between different 
machine agents (MA), work piece agents (WPA) and resource 
agents (RA) is necessary (information flow A). An MA represents 
the different machines and plants of a production system. WPAs 
represent the open worklist within a production system. 
Depending on the production environment, an open worklist 
can be a concrete workpiece, production lot or any clearly 
identifiable portion of the production quantity. An RA 
represents further elements of a production system which are of 
interest for the task of production control. Depending on the 
production environment, these can be, for example, tools, 
workstations, measuring equipment, transport equipment and all 
other resources, which have a significant influence on the 
determination of the production sequence. The M2M 
communication between MA, WPA and RA takes place via a 
Message Transport System (MTS), which communicates 
between the elements of the production system and an Order 
Agent (OA) via an Agent Management System (AMS) and a 
Directory Facilitator (DF). The AMS manages the specific 
addresses of the individual agents (information flow B). In 
comparison, the DF manages the specific attributes and 
properties of each individual agent (information flow C). 
Examples of these attributes are the probability of failure, 
downtime costs, and repair and maintenance costs, which are 
communicated directly from the maintenance system to the DF 
(information flow D). 

Further attributes describe, for example, the ability of an agent 
to determine which possible production steps can be carried out 
at the respective MA or which processing times result from this. 
The MTS distributes messages between the different agents and 
between agents and OA (information flow E). The MST 
transports information about the attributes and properties of the 
respective agents and production orders, which it receives from 
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DF and OA. The MST transports this information from a 
specific address that it receives from AMS to another specific 
address that is also provided by AMS. The OA also receives 
information about spare parts availability, maintenance capacity 
availability, and available qualifications from the maintenance 
system (information flow F). With this information, taking into 
account the current production sequence, planned maintenance 
orders can be defined and confirmed to the maintenance system 
(information flow G). The operational control of these 
maintenance orders, as well as the control of production orders, 
takes place via communication between the various agents and 
DF and AMS using MTS. The central task of the system for APC 
is to determine the production sequence based on real-time M2M 
communication. Different scheduling models can be used to 

fulfil this task and to determine a sequential order for each of the 
different production orders provided by the OA. The production 
orders to be scheduled are typically created and managed by an 
Enterprise resource planning (ERP) or Manufacturing execution 
system (MES). In the present work, a "marketplace-based" 
model is used to illustrate the integration of the system for APC.  
In this case, the OA receives a demand in the form of a 
production order from an ERP or MES system. This demand is 
matched by a supply of capacities of the MAs and RAs 
representing the production capacities of the production system 
such as machine resources, work centre resources, tool resources 
or transport resources. The information necessary to describe the 
supply is provided to the OA by means of MST via the attributes 

 

Figure 2. Process model for the integrated planning of maintenance and APC [36].  
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of the production resources relevant for the production order in 
question, which are managed in the DF. 

𝑃 =
1

(𝑡i − 𝑡e)
× (𝑡c − 𝑡i) × 𝐾min (12) 

Using the information on supply and demand, OA is able to 
determine the priority of each production order, cf. (12). The 
priority P is calculated by taking into account the desired 
completion date tc, the possible order start time ti, the order 
receipt time te, and a priority factor Kmin. The OA can calculate 
the priority factor necessary to determine the priority using the 
information received from the MTS based on the information 
managed in the DF. To determine the priority factor, the cost 
function, presented in this paper, is used here. 

𝑝𝑚𝑖𝑛 = min[𝑝(𝑥)] ; 0 < 𝑥 < 𝑛𝑀𝐴 (13) 

Due to the structure of the underlying cost function, the 
priority of a manufacturing order increases the higher the costs 
of the manufacturing order and therefore the priority factor. 
Similarly, the greater the difference between the current time and 
the incoming order, the higher the priority. The higher the 
desired production duration of the worklist to be produced, the 
lower the priority of the underlying manufacturing order is 
calculated. Since it is usually assumed that both the variable 
production costs and the risk of an unplanned downtime differ 
between the different machines and plants of a production 
system, it is necessary to calculate the priority factor for the 
number of possible MA (nMA), and then determine the minimum 
of the possible priority factors (pmin), cf. (13). Based on this 
minimum, the final step is to determine the sequence rank N of 
the production order to be produced on the assigned MA, cf. 
(14). For this purpose, the priority rank (P(i)) of the individual 
available Production Orders (PAn), is determined in order of the 
minimum priority: 

𝑁 = rank(P(i)) < min{𝑃𝐴𝑛} . (14) 

Based on the sequence rank N and the lead time tpt, which the 
OA can determine using the information it receives from DF via 
the MTS and the current time tact, the OA can determine the 
estimated time of completion tN, (15), and communicate this 
together with the defined production sequence to the production 
planning system (information flow j). For example, the OA 
provides this information to a MES via the MST or an alternative 
interface. 

𝑡N = 𝑡act + ∑ 𝑡pt

𝑁

0

 (15) 

6. OUTLOOK AND FURTHER RESEARCH 

6.1. Evaluation of Economic Plausibility  

In further research of Glawar et al. (2021) the presented 
model has been implemented and evaluated [40]. Since an 
implementation in a real time environment is yet hard to realize 
an implementation using an agent-based simulation approach 
based on a real industrial use case in the automotive industry has 
been realized. On this basis, the conditions for a successful, and 
cost-effective implementation of the model in industry are 
derived. In this Use-case the benefits of integrating maintenance 
strategies in APC can be described as follows [40]: 

a. An increase in on-time delivery of more than 9% by 
reducing schedule deviations due to backlogs of 
production jobs. Since the condition of a machine is 
already taken into consideration during the production 
control, even a simultaneous failure of several machines 
has little impact on the adherence to delivery dates. 

b. A reduction in the cost of manual rescheduling of 
approximately € 29,500 per year, since in the event of an 
unplanned machine failure the sequence and machine 
assignment can be adjusted autonomously. 

c. Increase of the uptime by using the potential of modern 
maintenance strategies by approx. 4% to over 96% and 
thus a reduction of maintenance costs of approx. € 
52,000 per year. 

d. Increase in productivity, which is defined as parts 
produced per hour, by over 5.6%. 

6.2. Integration into maintenance cost controlling 

The cost function developed in this thesis aims at integrating 
the relevant aspects of maintenance for autonomous production 
control. In a further step, this cost consideration can also be used 
as a basis for integration into maintenance cost controlling. Such 
an analysis enables the formalization of the relationship between 
key figures such as the proportion of external costs or the 
maintenance ratio and the operational logistical targets such as 
lead time and adherence to delivery dates as well as the 
productivity of the production system. The maintenance ratio 
describes the maintenance costs incurred in relation to a period 
under consideration. It is therefore an essential component of 
production costs and can already be used in rough-cut planning 
and in sequencing. This makes it possible to consider the 
resulting effects at the tactical level and to derive measures for 
achieving an overall optimum, independent of a fixed defined 
maintenance budget.  

Existing models for maintenance cost controlling such as the 
Cost prove model [41] model planned and unplanned 
maintenance costs and attempt to derive optimization measures 
based on any deviation from a defined budget in order to achieve 
the ideal operating point between planned and unplanned 
measures for maintenance. In comparison, by taking into 
account the developed cost function depending on the current 
and future expected production program as well as the current 
risk of failure of the equipment necessary for the workers of this 
production program, the Maintenance Costs are dynamically 
adjusted.  

This creates transparency for the performance of 
maintenance by quantifying the benefit of concrete measures on 
the operating result in costs and thus justifying, for example, the 
exceeding of a target budget while ensuring adherence to 
schedules and productivity. 

An example of integration in maintenance cost controlling is 
shown in Figure 3. Maintenance cost controlling supplies 
relevant cost variables to production control, which pursues the 
goal of minimizing the costs for a production order while taking 
maintenance into account. If a deviation from the original 
maintenance budget occurs, the effect on productivity and on-
time delivery is used in a mathematical reference model to 
optimize maintenance cost controlling. This results in new target 
costs for maintenance, which influences the initiation of planned 
measures depending on the risk of failure and the respective 
machine condition.  
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In order to create such a mathematical reference model, it is 
expedient to differentiate between planned and unplanned cost 
factors, as explained by Ansari [38] and to model these in order 
to achieve an overall optimum. 

7. CONCLUSIONS 

In the present paper a novel model for integrating 
maintenance strategies in autonomous production control has 
been presented. Relevant decision aspects have been discussed 
and a cost function for an integrated planning using a market-
based approach have been laid out. It is based on the key 
elements of a CPPS and their relations to establish a complete 
but fully, efficiently integrated component in PPC.  

Essential findings are the identified and evaluated aspects of 
maintenance which are decision relevant for the integration into 
the production control. The most relevant aspects are taken into 
account in the developed cost function for integrated planning, 
thus providing a robust basis for the implementation of APC in 
industrial practice. Only through clear guidelines on how 
autonomous control behaves in the event of a failure and how 
the case of an increased risk of failure is taken into account, a 
acceptance for the implementation of APC can be achieved. 

Against this background, the developed cost-based model 
contributes to bringing approaches to APC a further step 
towards implementation maturity and thus provides an 
innovative approach to communication between production and 
maintenance planning - both from a practical and a scientific 
point of view.  

However, further research questions remain open: 
1) The implementation of the present process model in a 

real production environment and a corresponding 
evaluation of the benefits in industrial practice represent 
the logical next step. This requires a well-thought-out 
roadmap, since such an implementation deeply affects 
different areas of a production system. In addition, 
there is the challenge of preparing personnel for the new 
way of working using autonomous production control 
and providing appropriate qualification measures in 
good time. 

2) The present model is limited to the mapping of a 
manufacturing area and negates at this point the 
dependencies with respect to the higher-level planning 
to the present or subsequent areas of the production 
system. In particular, the challenges to the integration 
of autonomous and human agents have to be addressed. 

3) Similarly, the impact of short-term production control 
at the operational level on the tactical and strategic 
levels, such as production controlling, poses exciting 
challenges for further research activities. In particular, 
integration into maintenance cost controlling, as 
outlined schematically in section 6.2 can offer a 
significant contribution to quantifying the contribution 
of maintenance to the achievement of operational 
targets in this context. 

4) Approaches that make use of artificial intelligence 
methods represent interesting alternatives for the 
relatively simple market-based model used in the 
present model- In this context, reinforcement learning 
approaches in particular represent an alternative which, 
in the view of the author, should be explored in this 
context in the future. 

5)  In order to be able to apply this approach easily and 
quickly to further use cases in the future, research 
should be conducted in the direction of automated 
parameter optimization, for example by means of 
simulation studies. 
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