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1. INTRODUCTION 

Nowadays there is a more and more common need for 
continuous data collection on a specified area. The simplest way 
for such data collection is using wireless sensor networks 
(WSN) [1], [2]. In most applications, a WSN consists of two 
parts: one data collection unit (also known as a sink or base 
station) and a large number of tiny sensor nodes. Typically, 
both sensor nodes and sink remain static after deployment. 
Sensor nodes, which are equipped with various sensor units, are 
capable of sensing the physical world and providing data to the 
sink through single-hop or multi-hope routing [3]. Sensors are 
usually powered by batteries, which cannot be replaced in some 
applications, e.g., battlefield surveillance.[4]. Since the data loss 
rate is increasing with the distance and each data transmission 
rate is associated with an energy consumption rate, which is 
modelled as a non-decreasing staircase function of the distance 
[5], the remote data sending is uses a lot of energy and this 
deteriorates network lifetime. For these reasons, the data 
transmission is executed by data collection robots [6], [7]. There 
are many applications of this technology in literature from 
recent years. For example, in [8] it is reviewed a range of 
techniques related to mobile robots in WSNs. In paper [9], 
considered deploying a flying robotic network to monitor 

mobile targets in an area of interest for a specific time period 
with using WSNs. In the work [10] investigated using a mobile 
sink, which is attached to a bus, to collect data in WSNs with 
nonuniform node distribution. However, the robots have 
limited velocity and this way the data delay is significantly 
increasing. Since transmitting over a short distance is more 
reliable than long distance, using robots improves the data 
collection rate. In addition, in terms of security, sending mobile 
sinks to collect data is more secure than transmitting via 
multihop communication [11]. This may be important in some 
military applications, as well. 

In paper [12] the authors raise and solve a problem of viable 
path planning for data collection unicycle robots in a sensing 
field with obstacles. The robots must visit all sensing nodes and 
then return to the base station and upload the collected data. 
Path planning for the robots is a crucial problem since the 
constructed paths directly relate to the performance such as the 
delivery delay and energy consumption of the system. In a 
sensing field there are obstacles as well and the robots must not 
collide with them. 

The data collection is carried out by unicycle Dubins-car 
[13], which can only move with constants velocity and bounded 
angular velocity, so it can move only on straight lines and turn 
with bounded turning radius.  
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Using mobile robots to collect data from wireless sensor network can reduce energy dissipation and this way improves network 
lifetime. Our problem is to plan paths for unicycle robots to visit a set of sensor nodes and download data on a sensing field with 
obstacles while minimizing the path length and the collecting time. Reconstructing the path of an intruder in a guarded area is also a 
possible application of this technology. During path planning we greatly emphasize the handling of obstacles. If the area contains 
many or large obstacles, the robots may spend long time for avoid them so this is a critical point of finding the minimal path. This 
paper proposes a new approach for handling obstacles during path planning. A new algorithm is developed to plan the visiting 
sequence of nodes taking into consideration the obstacles as well. 

mailto:olasz-szabo.sara@edu.bme.hu


 

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 2 

For successful path planning it is necessary to determine the 
criteria of an adequate path. In paper [12] the authors define a 
viable path which is smooth, collision-free with sensor 
nodes/base station and obstacles, closed, and provides enough 
contact time with all the sensor nodes. Because of the kinematic 
properties of the robots the path must be smooth. Safety 
boundary is determined around obstacles and nodes for the 
sake of collision-free path. All nodes are bounded with a 
visiting circle with the minimum turning radius of the unicycle 
robot. The minimum turning radius depends on the speed of 
the robot and its maximum angular velocity. Moreover, all 
obstacle’s convex hull are bounded with a safety margin, since 
in case of the shortest path the robot should move on the 
boundary of the convex hull. The path must be closed because 
of the periodical data collection. The robot downloads data 
only when it moves around the visiting circle, so it makes round 
trips around the node as long as it collects all the data from the 
sensor node. During path planning it is assumed that the 
location of all nodes and obstacles as well as the shapes of the 
obstacles are known. Between two objects - nodes and 
obstacles - there are always defined four tangents but any 
tangents that intersect other obstacle are removed. So when the 
robot arrives to a node on a tangent it starts downloading data 
and during it makes round trips as long as it collects all the data 
from the node and then it leaves the node on a tangent. So a 
path consists of an adequate configuration of tangents and arcs 
around objects at the safety distance. 

The paper organized as follows. In Section 2 we summarize 
the basic method [12] and then Section 3 describes the 
proposed concepts for the path planning and also presents our 
new algorithms. In Section 4 we demonstrate simulation results. 

2. SUMMARY OF THE SHORTEST VIABLE PATH PLANNING 
ALGORITHM 

In paper [12] the Shortest Viable Path Planning (SVPP) 
algorithm was defined. The main steps of SVPP are outlined as 

Algorithm 1. This algorithm first computes a 𝛴  permutation of 
nodes without obstacles by solving an Asymmetric Travelling 
Salesman Problem. For this they construct a directed graph, 
where the vertices are the nodes and the length of the edges are 
calculated as follows. The length of the edge between two 
vertices takes into account two aspects: the length of the valid 
path between their visiting circles and the length of the adjusted 

arc on the latter vertex. Thus, the length of the edge from 𝑠1 to 

𝑠2 equals to the summation of the average length of tangents 

and the length of the adjusted arc on the visiting circle of 𝑠2. In 

contrast, the length of the edge from 𝑠2 to 𝑠1 equals to the 
summation of the average length of tangents and the length of 

the adjusted arc on the visiting circle of 𝑠1. With such directed 
graph, they use an ATSP solver [14] to calculate the 

permutation 𝛴 . At this point there can be tangents that 

intersect obstacles in 𝐺(𝑉, 𝐸) Tangent Graph [15]. 𝑉 denotes 

the tangent points and 𝐸 denotes the tangents. 

The second and third step of this algorithm adds the 
blocking obstacles to the permutation and constructs a 

Simplified Tangent Graph. Having 𝛴, 𝐺(𝑉, 𝐸) can be simplified 
by keeping only the tangent edges that connect succeeding 

visiting circles in 𝛴 and the corresponding arc edges. When any 
obstacle blocks the route between any pair of visiting circles, 
the tangents passing the obstacle’s safety boundaries are also 

included in the 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph and the 

algorithm inserts the obstacle to the 𝛴′ permutation between 
the two nodes. One obstacle can block more than one pair of 

nodes. In this case the algorithm inserts the obstacle to the 𝛴′ 
permutation into more than one place. The algorithm 

constructs a 𝐺′(𝑉′, 𝐸′) by keeping the edges and vertices related 
to the permutation of nodes and obstacles while deleting 

others. Obviously, 𝛴 ⊆ 𝛴′. The new graph is called the 

Simplified Tangent Graph 𝐺′(𝑉′, 𝐸′), where 𝑉′ ⊆ 𝑉 and  

𝐸′ ⊆ 𝐸. 

The next step is converting 𝐺′(𝑉′, 𝐸′) to a tree-like graph 𝑇. 
This gives additional information about the succeeding usable 
tangents and arcs. From every object there are four tangents 
departing to the next object, the starting tangent points of these 
are the departure configurations, and there are four tangents 
arriving from the previous object, the tangent points of these 
are the arrival configurations. This means that every object can 
be transformed to 8 vertices in a tree-like graph. The path 

length between two objects in 𝛴′ permutation always consist of 
two components. The first component is the arc around the 
first object from the arrival to the departure tangent point, 
including the additional full circles if these are necessary to 
download the data. The second component is the length of 
tangent between the two tangent points. 

For the calculation of distance between the 𝑖th and 𝑖 + 1th 

(𝑖, ∈  [2, 𝑛′ − 1], where 𝑛’ denote the number of objects in the 
permutation) objects, we need information about the tangent 

and tangent point between the 𝑖 − 1th and 𝑖th objects. One 
should know which tangent point will be used by the tangent 

on the visiting circle of the 𝑖th object in order to calculate the 
arc length on the visiting circle. Figure 1 illustrates this 

Algorithm 1: Shortest Viable Path Planning (SVPP) 

1. Compute 𝛴 by solving ATSP instance based on 𝐺(𝑉, 𝐸) 

2. Compute 𝛴′ by adding those obstacles to 𝛴 that safety 
boundaries block tangents between nodes.  

3. Simplify 𝐺(𝑉, 𝐸) to 𝐺′(𝑉′, 𝐸′) by keeping the edges and the 

vertices related to 𝛴′ and deleting others. 

4. Convert 𝐺′(𝑉′, 𝐸′) to tree-like graph 𝑇.  

5. Given an initial configuration, search the shortest path 𝑃 

in 𝑇.  

 

Figure 1. The distance between two objects in permutation consist of two 
part: arc and tangent length. 
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problem. The path between two objects is represented by two 
segments in the directed tree graph. These two parts are the arc 
and tangent. So in the tree-like graph the vertices are the 
tangent points and the edges are the arcs and the tangents. The 
direction of edges points to the next part of the path. During 
the representation of the edges one must pay attention to the 
heading constraints. The heading constraint refers to that the 
robot's heading at the beginning of an edge should be equal to 
that at the ending of the last edge. 

The base station is the starting node, so the first element of 
the tree-like graph is one of the points of the base station 
visiting circle's. Because of closed path, the final element of the 
tree-like graph should be also one of the points of the base 
station visiting circle. Since the authors use Dubins-car, they 
construct the tree-like graph both for positive and negative, 
clockwise and anti-clockwise initial direction as well. It can be 
seen that from each arrival configuration of an element there 
are two options to reach the arrival configurations of the next 
element because of the heading constraint. From a given 
starting point the total number of paths starting and ending at 

this point is 2𝑛′−1 taking into consideration that the starting 
and ending direction should be the same because of the 
continuous data collection. 

In paper [12], a dynamic programming based method is used 
to solve the shortest path search in the tree-like graph. 

3. NEW CONCEPTS OF SOLUTION 

In this paper new concepts of SVPP algorithm are 
developed. The new algorithm based on these modifications is 
called Generalized-SVPP algorithm. In the following these 
modifications and new algorithms will be described in detail. 

3.1. Constructing Tangents Graph 

In paper [12] the tangents that intersect visiting circles are 
not included in the Tangent Graph (Assumption 1, see below). 
However, the robot can move collision-free on a tangent that 
does not intersect the circle with centre of node and radius 

𝑑𝑠𝑎𝑓𝑒 . Therefore in the proposed new algorithm tangents that 

do not intersect the circle with 𝑑𝑠𝑎𝑓𝑒  radius around a node are 

available as well (Assumption 2). This way the planned path 
may be shorter in certain cases. 

Assumption 1: The tangents that intersect visiting circles are 
not included in the Tangent Graph. 

Assumption 2: The tangents that intersect visiting circles, 
but do not intersect circles with centre of a node and radius 

𝑑𝑠𝑎𝑓𝑒 , are included in the Tangent Graph. 

3.2. Permutation of Nodes 

At this point the obstacles are not taken into account when 
creating the permutation of nodes. Tangents that are 
intersecting obstacles are allowed in this step. A graph is 
constructed where the vertices are the nodes and the length of 
the edges is the average length of tangents between the two 
nodes. After this there is a searching for the shortest closed 
cycle with all of the nodes, namely the shortest Hamilton cycle 
in this graph. This problem is the Travelling Salesman Problem 

and by solving it the 𝛴 permutation of nodes is determined. 
As it was presented in Section 2, in paper [12] the authors 

take into account the path length necessary to download the 
data and solve this problem with ATSP. The exact path length 
around a visiting circle cannot be determined since the actual 

tangents are not known at this point. This is the reason why the 
average length of the tangents is used.  

3.3. New Concept of Handling Obstacles, Construction of 
Simplified Tangent Graph 

In Algorithm 1 (SVPP) there are two types of problem of 
handling obstacles. First these problems are described and then 
the solutions for them are presented. These problems are 
illustrated in Figure 2. 

1. For example, in Figure 2 between Node-1 and Node-2 
there is only one available tangent. When Obstacle-1 is in 
the permutation, the available tangent between the nodes is 
not feasible in the shortest path planning. But when 
Obstacle-1 is not in the permutation, there may be no 
solution at all depending on the initial configurations due 
to heading constraints. 

2. There can be more obstacles between two nodes so that 
these obstacles block different tangents. For instance, in 
Figure 2 between Node-3 and Node-4 Obstacle-2 and 
Obstacle-3 are blocking different tangents. 

Tangent Directions: The tangent direction is called 
positive-negative (pn) if the robot can make round trip around 
the first node positive - clockwise - direction and around the 
succeeding second node in negative direction. The positive-
positive (pp), negative-positive (np) and negative-negative (nn) 
directions can be defined similarly as well. 

In this paper a new algorithm is proposed instead of the 
second and third step of Algorithm 1. Algorithm 1 creates one 
permutation of nodes and obstacles (Assumption 3). The basic 
idea of the new algorithm is to calculate more than one 
permutation (Assumption 4) and then using these to construct 

the 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph and then the 𝑇 tree-
like graph in order to get better solution. 

Assumption 3: One permutation of nodes and obstacles is 
created. The original SVPP (Algorithm 1) uses this Assumption. 

Assumption 4: More than one permutation of nodes and 
obstacles are created. The new Algorithm 2 created by applying 
this Assumption. 

Instead of the second and third step of Algorithm 1 the 
following Algorithm 2 is used. 

At first stage four copies of 𝛴 permutation of nodes are 
created, then for every two nodes the blocking obstacles of all 

 

Figure 2. An example of blocked tangents are illustrated with dashed line. 
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the four tangents are determined. When one of the tangents 
intersects an obstacle, the obstacle is inserted to the proper 
position in the feasible permutation determined by the tangent 
direction. Note that when more than one obstacle is 
intersected, they are inserted to the feasible permutation 
according to their distance from the previous node. Then the 
duplicate solutions are eliminated, and after this the previous 
algorithm is repeated as long as there are no new intersected 

obstacles. While repeating this algorithm, in the first step the 𝛴′ 
permutations of nodes and blocking obstacles is used instead of 

the 𝛴 permutation. 
In first case both of the direct tangents and the edges 

passing the obstacle safety boundaries are also inserted into the 
Simplified Tangent Graph. In case one tangent blocked by 
more than one obstacles, all tangents and tangent points 
between the two nodes, between any obstacle and the two 
nodes, and between any two obstacles are inserted into the 
Simplified Tangent Graph if these tangents are not blocked. 
The Simplified Tangent Graph contains all of the tangents and 
tangent points from any permutations. Besides, it also contains 
all of the arcs between the tangent points. 

3.4. Constructing the Tree-like Graph 

The Dubins-car moves on tangents or arcs. In case of 
obstacles it moves on arcs between the arrival and the departure 
configurations and around the visiting circle while it downloads 
all the data from the sensor node. Because of heading 
constraint the tangent direction determines the direction around 
the next object. And the direction around the object determines 
the available departure tangents. There are two tangents 

available for a given direction for any two objects. In case of 
one permutation there are two departure configurations for 
every object, but if there is more than one permutation the 
count of departure configurations depend on the permutations 
and the Simplified Tangent Graph. In paper [12] there is only 
one permutation, so there are some cases when it causes 
problems as it was shown it the previous section. The new 
Algorithm 2 proposed in the present article may achieve shorter 
path and give more general solution, but the tree-like graph 
become more complex. The new algorithm can select the 
shorter path from more available options. In this paper 
Algorithm 3 and Algorithm 4 are recommended to construct 
the tree-like graph for cases with one and more than one 
permutation, respectively. 

We demonstrate the transformation from Simplified 
Tangent Graph into tree-like graph with help of example field 
in Figure 3. For constructing the tree-like graph, in the first step 
two starting and two ending vertices are created for both the 
positive and negative initial direction. It is illustrated in Figure 4 
a) picture. 

Algorithm 2: Add Obstacles to Permutations 

1. Create four copies of 𝛴 permutation  
2. For every two nodes determine the blocking obstacles of all 

the four tangents and insert these obstacles to the proper 
positions in the feasible permutations according to their 
distance from the previous node. 

3. Eliminate the duplicate permutations. 
4.  Jump to 1. and repeat the algorithm while there are 

intersecting obstacles. In this case instead of 𝛴 we use 

𝛴′permutations.  

Algorithm 3: Constructing the 𝑇 in case of one 𝛴′ permutation Algorithm 2--Add Obstacles to Permutations 

1. For both negative and positive direction add starting and 

ending point as vertices to 𝑇. 

2. According to 𝛴′add 4 arrival and 4 departure tangent points 

for all objects to the 𝑇 
3. Determine all arc length between all possible arrival and 

departure configurations taking into consideration the 
heading constraint and the possible different arc length 
calculation methods of the nodes and obstacles. Add arc 

lengths as the length of the edges to the 𝑇 between the 
corresponding vertices. 

4. Around the visiting circle of the base station determine arc 
length between the starting point and the arrival and 

departure configurations. Add this as edge length to 𝑇 to the 
proper position. 

5. According to 𝛴′ add all tangents between all consecutive 

objects to the 𝑇 taking into consideration the heading 
constraint. 

5. Create four copies of 𝛴 permutation  
6. For every two nodes determine the blocking obstacles of all 

the four tangents and insert these obstacles to the proper 
positions in the feasible permutations according to their 
distance from the previous node. 

7. Eliminate the duplicate permutations. 
8.  Jump to 1. and repeat the algorithm while there are 

intersecting obstacles. In this case instead of 𝛴 we use 

𝛴′permutations.  

Algorithm 4: Constructing the 𝑇 in case of more than one 𝛴′ 
permutation 

Algorithm 2--Add Obstacles to Permutations 

1. Apply Algorithm 3 to the Σ permutation of nodes. Add 

edges only that are the member of 𝐺′(𝑉′, 𝐸′). 

2. Do for all 𝛴′permutations: 

1.) If there are only one obstacle in the 𝑖th place between 
two nodes: run step 2-4 of Algorithm 3 for the 

𝜎𝑖−1, 𝜎𝑖 , 𝜎𝑖+1 object. Only if the edges are in the 

𝐺′(𝑉′, 𝐸′). 
2.) If there are more than one obstacles between two 

nodes. Let denote the obstacles by 𝜕𝑂 = {𝜕𝑜1, … , 𝜕𝑜𝑗}: 

do step 1.) for all 𝜕𝑜𝑖 ∈  𝜕𝑂 obstacle in the given 
permutation and for the nodes before and after the 
obstacle. Run step 2-4 of Algorithm 3 for all pair of 

obstacles 𝜕𝑜𝑖 ∈  𝜕𝑂. Run it in that case also if these are 
not subsequent elements in the permutation. Naturally 
only in case when the vertices and edges are in 

𝐺′(𝑉′, 𝐸′). 

9. Create four copies of 𝛴 permutation  
10. For every two nodes determine the blocking obstacles of all 

the four tangents and insert these obstacles to the proper 
positions in the feasible permutations according to their 
distance from the previous node. 

11. Eliminate the duplicate permutations. 
12.  Jump to 1. and repeat the algorithm while there are 

intersecting obstacles. In this case instead of 𝛴 we use 

𝛴′permutations.  

 

Figure 3. An example field of tree-like graph construction with 
 𝛴 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑, 𝑪𝟒} permutation of nodes 
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a) Add starting and ending points as vertices 

 

b) Add tangent points of nodes as vertices 

 

c) Add arc length around the nodes between the 
arrival and departure configurations as edges 

 

d) Add tangent length between the departure 
and arrival configurations as edges 

 

e) Add tangent points that tangents between the 
obstacles and nodes in Simplified Tangents Graph 
as vertices 

 

f) Add arc length around the obstacles and the 
connecting nodes as edges 

 

 

g) Add tangents between the obstacles and 
nodes as edges 

 

Figure 4. An example of tree-like graph construction from Figure 3 using Algorithm 4. Obstacles are denoted by purple. The vertices of the same rectangle 
denote the tangent points of the same object 
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After this the nodes are inserted into the graph, according to 

permutation 𝛴. Using 𝐺′(𝑉′, 𝐸′) vertices are created from the 
tangent points (Figure 4 b) picture). The next step is to 
determine the edges between the vertices. The length of edges 
between the starting point and the departure configurations of 
the visiting circle of the base node is equal to the arc length 
between the starting point and the departure configurations. 

The next step is to determine the arc length between the 
arrival and departure configurations around the node taking 
into account the heading constraint. In next step edges are 

added to 𝑇 between the ending vertices and the arrival 
configurations of the base node's visiting circle (Figure 4 c) 
picture). Finally, between the departure configuration and the 
arrival configurations of the next node, the length of the edges 
are the length of the tangents with the proper direction (Figure 
4 c) picture). This step should be done for all nodes in the order 

given by 𝛴 permutation.  
Next step is to add obstacles to the tree-like graph according 

to 𝛴′ permutation and 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph. In 
case of Figure 3 Obstacle-1 blocks tangents between Node-2 
and Node-3. First those departure tangent points are added as 
vertices of the visiting circle of Node-2 which are also on a 
tangent of Obstacle-1. In addition, the arrival configuration of 
the obstacle coming from Node-2 and departure configurations 
coming from the obstacle to the Node-3 are added as vertices 
to the tree-like graph. Finally, the arrival configurations of the 
Node-3 are added to tree-like graph (Figure 4 e) picture). 
Adding edges is similar as it was previously (Figure 4 f)-g) 
picture). 

It might occur that there is more than one obstacle between 
two nodes. In this case all existing tangent points and tangents 
between the previous and next nodes to/from all obstacles are 
added as vertices and edges to the tree-like graph. The tangents 
and tangent points between all pair of obstacles in the proper 
edge direction are added as vertices and edges. 

In paper [12] the SVPP algorithm handles obstacles in the 
same way as nodes when these are added to the tree-like graph. 

The authors iterate step by step on permutation 𝛴′ by adding all 
tangent points to the tree-like graph as vertices. Then they add 
arcs and tangents to the tree-like graph as edges taking into 
consideration the heading constraint. The tree-like graph 
constructed from the Figure 3 sensing field can be seen on 
Figure 5 using both Algorithm 3 and Algorithm 4. During the 
construction of the tree-like graph according to Algorithm 4 
first vertices were created from nodes denoted by black then 
the edges were added between them. Then the tangent points 
of obstacles were added as vertices denoted by purple and the 
associated edges were also added. The different objects are 
separated with rectangles in the figure. It can be seen that in 
Figure 5 on the second picture there are direct tangents 
between Node-2 and Node-3, namely edge between vertices 
N2_pp and N2toN3_pp, but on the first picture of Figure 5 
there are only paths using edges that passing Obstacle-1 (this is 
because of Assumption 1 and Assumption 3). 

Theorem Using our new Assumption 2 and Assumption 4 
the planned path always better or equal to the path that using 
the original Assumption 1 and Assumption 3. 

Proof The Simplified Tangents Graph in case of 
Assumption 2 or 4 always contains all edges and vertices from 
Simplified Tangents Graph using Assumption 1 and 3. 
Therefore the tree-like graph using Assumption 2 and 4 always 
contains the tree-like graph using Assumption 1 and 3 as well. 
So the tree-like graph using Assumption 2 and 4 contains all 
paths that the tree-like graph using Assumption 1 and 3 and 
possibly even more paths. Therefore, the shortest path in the 
tree-like graph using Assumption 2 and 4 always shorter or 
equal to the shortest path of the tree-like graph using 
Assumption 1 and 3. □ 

 

Figure 5. An example of tree-like graph construction from Figure 3 using Algorithm 3 and Algorithm 4. Obstacles are denoted by purple. 



 

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 7 

3.5. Searching the Shortest Path in a Tree-like Graph 

After the tree-like graph was created, it was searched for the 
shortest path. There are many different way to find the shortest 
path. Here in this paper the Dijkstra algorithm [16] were 
applied. The searching for the shortest path was carried out in 
both positive and negative initial direction and then the shorter 
was selected. 

3.6.  Complexity of G-SVPP algorithm 

To end this section, we analyse the time complexity of G-
SVPP algorithm both of Assumption 1 and 3 or Assumption 2 
and 4 cases. First step is solving TSP with use of Miller-Tucker-

Zemlin formulation [17] with 𝒪(𝑛2 + 𝑛) computation effort. 

In Step 2, we check 𝑛 pairs of visiting circles to see whether 
they are blocked by any boundary of convex hull. In each 

checking, check all the 𝑚 obstacles and then the time 

complexity is 𝒪(𝑛𝑚). In Step 3, we do a constant number of 

operations to each permutation each element in Σ′, then the 

time complexity of the simplifying procedure is ∑ 𝒪(𝑛′𝑖)
𝑛

Σ′

𝑖=1
, 

where 𝑛′𝑖 denote the length of the 𝑖th permutation of Σ′ for 

each permutation and 𝑛Σ′  denote the number of permutations 

of Σ′. Converting 𝐺′(𝑉′, 𝐸′) to 𝑇 costs 𝒪(1) in Step 4. The 

shortest path searching of the 𝑇 is implemented Dijkstra 
algorithm [16]. The computation effort of Dijkstra algorithm is 

𝒪(|𝐸′| + |𝑉′|2) = 𝒪(|𝑉′|2) so that depend on the number of 

vertices of 𝑇 tree like graph. In case Assumption 1 and 3 the 𝑇 

tree like graph contains maximum 8𝑛′ + 4 vertices, since there 

are four arrival and four departure configurations all objects, 
and two starting and two ending vertices of the base station. In 
case Assumption 2 and 4 the tree-like graph in worst case 

contains ∑ 8𝑛′
𝑖

𝑛
Σ′

𝑖=1
+ 4 vertices. Therefore, the worst case 

computation effort in case Assumption 2 and 4 is 𝑛Σ′
2 times 

larger than the maximum computation error in case 

Assumption 1 and 3. However, in most cases the Σ′ 
permutations differ from each other in only a few elements so 
the computation error is more smaller than in the worst case. 

4. SIMULATION RESULTS 

In the present paper a 200 m × 200 m virtual field was 
simulated with 40 nodes, of which one is the base station and 
the other 39 are sensor nodes. The base node is Node-1. Each 

sensor node stores 𝑔 = 0.5 MB data and to the base node  

𝑔𝐵 = (𝑛 − 1) 0.5 MB = 19.5 MB collected data is uploaded 
by the robot for further analysis. The data transmission rate at 

the visiting circle is 𝑟 = 250 kB/s. In a sensing field there are 

15 obstacles as well. The robot speed is 𝑣 = 4 m/s and the 

maximal angular velocity is |𝑢𝑀|  ≤ 1 rad/s, therefore the 
minimal turning radius and also the visiting circle’s radius is 

𝑅𝑚𝑖𝑛 = 𝑣 𝑢𝑀⁄ = 4 m the robot must move at least 𝑑𝑠𝑎𝑓𝑒 =

0.5 m distance from an object in order to avoid to collision.  

The next step is to construct the 𝐺(𝑉, 𝐸) Tangent Graph, 
for this the tangents and the tangent points between the objects 
are determined and then the edges are deleted according to 
Assumption 1 or Assumption 2. The difference between the 
two assumptions can be seen in Figure 6. It can be seen in 
Figure 6 that the proposed Assumption 2 produces more 
tangents, since this allows tangents that intersect visiting circle 

but not intersect circle with centre of node and radius 𝑑𝑠𝑎𝑓𝑒 .  

Therefore, increases the number of possible paths so it is 
feasible shorter path planning. But at the same time, it requires 
more computations as well. 

The next step is to determine the 𝛴 permutation of nodes 

and then construct the 𝛴′permutation or permutations with 
obstacles depending on Assumption 3 or Assumption 4. Using 

𝛴′ the 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph is constructed. The 

𝐺′(𝑉′, 𝐸′) using Assumption 3 and Assumption 4 can be seen 
in Figure 7 and Figure 8. In Figure 7 the Tangents Graph 

 

Figure 6. The difference between the 𝐺(𝑉, 𝐸) Tangent Graphs using 
Assumption 1 and Assumption 2. 

 

 
a) 

 
b) 

Figure 7. 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph using Assumption 1 and Assumption 3 . 
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constructed by Assumption 1 is simplified by applying 
Assumption 3. Similarly, in Figure 8 it can be seen the 

𝐺′(𝑉′, 𝐸′) applying Assumption 2 and Assumption 4. In Figure 
8 it can be seen that using the Assumption 2 and Assumption 4 
proposed in this article, the tangents that intersect visiting 
circles are available and more permutations can be constructed 

so there are more available tangents in a 𝐺′(𝑉′, 𝐸′) and 
therefore in the tree-like graph as well. In this way, there are 
more possible paths and therefore the algorithm may plan 
shorter path. In this case the constructed tree-like graph is more 
complex than in case of Assumption 3. When we use 
Assumption 1 and Assumption 3 there can be at most 4 arrival 
and 4 departure tangents for every object in the order of the 
permutation. Usually there are four-four arrival and departure 
tangents, but for example in Figure 7, between Obstacle-13 and 
Obstacle-3 there are just 3 available tangents. In Figure 8 it can 
be seen the case of Assumption 2 and Assumption 4. Since in 
the second picture the fourth tangent intersects the safety circle 
of Node-10 it is also not available in the Simplified Tangent 
Graph. In Figure 8 there are direct tangents between Node-24 
and Obstacle-3 and one of them intersects the visiting circle of 

Node-26, but in Figure 7 the robot must visit Obstacle-13 first. 
In Figure 8 there are three available tangents between the 
visiting circles of Node-37 and Node-3, but in Figure 7 
(Assumptions 1 and 3) the robot can only move on tangents 
that passing Obstacle-6. 

The next step is to construct the 𝑇 tree-like graphs for both 
cases Assumption 1 and 3 or Assumption 2 and 4. Finally, in 
the tree-like graph a search for the shortest path is carried out 
both for positive and negative initial direction as well. In Figure 
9 and Figure 10 it can be seen that the planned path using the 
new Assumptions 2 and 4 proposed in the present article is 
shorter than in the original case. In this example, the planned 
path with positive and negative initial direction only differs in 
the tangents that are belonging to the base station. Using 
Assumptions 2 and 4 the planned path between the Node-24 
and Obstacle-3 use tangent that intersect the visiting circle of 
Node-26, therefore a shorter path can be achieved using the 
new Assumptions of the present article. Applying Assumptions 
1 and 3 between Node-3 and Node-37, the planned path uses 
tangents that pass the Obstacle-6. On the contrary, if 
Assumptions 2 and 4 are applied, the planned path uses direct 

 

 

 
a) 

 
b) 

Figure 8. 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph using Assumption 2 and Assumption 4 . 

 

Figure 9. The resulted shortest path with negative initial direction of the 𝑇 tree-like graph both for the cases using Assumption 1 and Assumption 3 or 
Assumption 2 and Assumption 4. The length of the planned path are 2341.94𝑚 and 2290.85𝑚, respectively. 
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tangents between the two nodes and this way the determined 
arc length is shorter.  

Each sensor node data downloading requires  

𝑙 = 𝑔
𝑣

𝑟
= 8 m arc length. The visiting circles circumference 

equal to 𝐾 = 25.12 m. Therefore the robot must take at least 
approximately one third of the visiting circle's circumference to 
have enough time for data transmission. It can be seen that the 
algorithm preferably chooses tangents between Node-31, 
Node-32 and Node-33 in such a way that the robot is not 
required to make extra round trips around these nodes. 

As a test, the path planning was run for ten different virtual 
sensing fields. The length of the planned paths can be seen on 
Table 1. The solutions using Assumption 1 and 3 are compared 
with the solutions using Assumption 2 and 4. As it was proven 
in the Theorem, using the new assumptions proposed in the 
present article the planned path always better or equal to the 
path using the original assumptions presented in [6]. The 

number of vertices on a 𝑇 tree-like graph also represented in 
Table 1. The maximum difference between the number of 

vertices of Assumption 2 and 4 or Assumption 1 or 3 is 54, in 
test field 5. In this case the computation effort in case of 

Assumptions 2 and 4 is increased by 27 % compared to 
Assumptions 1 and 3. At the same time the planned path in 

case of Assumptions 2 and 4 is 92 m shorter than Assumptions 

1 and 3. That means, 𝑡 =
92 m

4 m/s
= 23 s time for each period, 

therefore the robot can make 6 extra round trip for a day. 

5. CONCLUSIONS 

In the present paper a path planning algorithm was 
developed for unicycle robots between sensor nodes. The task 
is to collect all the data from the sensor nodes and then upload 
it to the base node. To increase the effectiveness of data 
collection, the length and the duration of the trip should be 
minimized, while also maintaining a collision-free path around 
the nodes and obstacles. New algorithms were developed for 
handling the obstacles and new assumptions were applied to 
reach a collision-free state. A new algorithm for tree-like graph 
generation was also developed, where the search of the shortest 
viable path will take place finally. The present paper finished 
with the detailed presentation of simulation results. The 
preparation of the field and the steps of path planning 
algorithm were illustrated with figures. The present article also 
compared the results of the new algorithm with the results of a 
previous research. In conclusion, the new algorithm presented 
in this article proved to achieve shorter paths then the earlier 
algorithms. 

 

Figure 10 The resulted shortest path with positive initial direction of the 𝑇 tree-like graph both for the cases using Assumption 1 and Assumption 3 or 
Assumption 2 and Assumption 4. The length of the planned path are 2337.64𝑚 and 2286.55𝑚. 

Table 1 The length of the planned path for different virtual sensing fields using both positive and negative starting directions. |𝑉′| denote the number of 
vertices of the tree-like graph on which it depends the computation error. 

Test  
field 

Assumption 1 and 3 Assumption 2 and 4 

Positive Negative |𝑽′| Positive Negative |𝑽′| 

1 2326.23m 2233.61m 372 2254.71m 2222.65m 386 

2 2393.66m 2387.67m 418 2332.58m 2326.59m 462 

3 2305.82m 2313.80m 404 2270.74m 2278.72m 444 

4 2372.37m 2359.42m 436 2363.87m 2350.92m 466 

5 2413.25m 2403.51m 412 2321.40m 2311.65m 466 

6 2294.77m 2288.91m 402 2193.65m 2189.18m 452 

7 2335.53m 2317.82m 396 2312.25m 2294.55m 426 

8 2330.93m 2324.78m 378 2330.51m 2324.36m 386 

9 2247.02m 2262.38m 372 2238.79m 2254.14m 386 

10 2301.88m 2311.12m 360 2301.88m 2311.12m 368 
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