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1. INTRODUCTION 

The problem of the nature of probability has become a topic 
in measurement science for over twenty years, as a part of the 
debate on the expression and evaluation of measurement 
uncertainty, significantly raised by the publication of the Guide 
to the expression of uncertainty in measurement (GUM) [1] and 
of its long lasting and still ongoing revision process [2]. In the 
debate, the opposition between the Bayesian and the frequentist 
schools of thoughts in statistics soon emerged, which involves 
the consideration of the nature of probability. In this regard, 
some authors pursue an explicit adoption of a Bayesian paradigm 
for the overall context of uncertainty evaluation [3], [4], others 
instead suggest maintaining a more open attitude [5], [6], even 
when expressing a preference for the Bayesian view [7], or to 
include the frequentist approach [8], when appropriate. 

Here the focus is put on measurement modelling and 
probability is regarded as a logical and mathematical tool for 
developing such models, in such a way as to account for 
uncertainty. Alternative choices could be done, for example 
those based on the evidence theory [9], [10], but here only 
probability is discussed and investigated. Measurement 

modelling has been recently the subject of investigation, not only 
in respect to practical issues [11], but also to theoretical and 
foundational aspects [12], [13]. Yet the “nature” of probability in 
such modelling seems to have not been discussed explicitly, 
which is instead the goal of this communication. Basically, it is 
here suggested that probability can be regarded as an appropriate 
logic for developing models of measurement when uncertainty 
must be accounted for.  

Therefore, in Section 2 deterministic measurement modelling 
will be firstly addressed. Then, in Section 3, the logical approach 
to probability here proposed will be presented. Its application to 
probabilistic measurement modelling will be addressed in Section 
4 and conclusions will be drawn in Section 5.  

2. DETERMINISTIC MEASUREMENT MODELLING  

2.1. Generic modelling issues 

It is here suggested that probability can be understood as a 
logic for developing measurement models. The notion of model 
thus needs reviewing. To establish some terminology, let us 
consider a system as a set of entities with relations among them 
[14]. A model can be thus understood as an abstract system, 
capable of describing a class of real systems. For example, if we 
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consider the height of the inhabitants of a generic town, the 

model, 𝑀, can be expressed by a function, ℎ: 𝑈 → 𝑋, that 
associate to each inhabitant his/her height, on a proper height 
scale. For maximum simplicity, in the following illustrative 
examples height will be considered as a purely ordinal property, 

and 𝑋 the set of the numbers expressing height on an ordinal 
scale. Therefore, the model can be synthetically expressed by the 
triple: 

𝑀 = (𝑈, 𝑋, ℎ). (1) 

Let us now introduce the distinction between deterministic 

and probabilistic models. A typical statement related to model 𝑀 
is: 

ℎ(𝑢) = 𝑥 , (2) 

with 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑋. Yet the truth of this statement is 

undefined, till a specific town, 𝑇, is considered. With reference to 

𝑇, instead, if 𝐴 denotes the set of its inhabitants, 𝑋𝐴 the set of 

their height values and ℎ𝐴 the corresponding height function, the 

model is now specialised to 𝑇, that is: 

𝑀(𝑇) = (𝐴, 𝑋𝐴, ℎ𝐴). (3) 

Suppose for example that in 𝑇 there are just 3 inhabitants, 

𝐴 = {𝑎, 𝑏, 𝑐}, that 𝑋 = {1,2}, and ℎ𝐴 = {(𝑎, 2), (𝑏, 1), (𝑐, 1)}, 
then  

(𝐴, 𝑋𝐴, ℎ𝐴) = ({𝑎, 𝑏, 𝑐}, {1,2}, {(𝑎, 2), (𝑏, 1), (𝑐, 1)}). (4) 

The structure in Equation (4) provides a sematic, that is a 

criterion of truth for the deterministic model 𝑀, since it allows 
us to ascertain the truth of any statement involved in the model. 

For example, ℎ(𝑎) = 2 is true, whilst ℎ(𝑏) = 2 is false. The 

general truth criterion is thus, for town 𝑇, 𝑢 ∈ 𝐴, 𝑥 ∈ 𝑋𝐴: 

ℎ(𝑢) = 𝑥 ↔ (𝑢, 𝑥) ∈ ℎ𝐴. (5) 

Let us call 𝑇 an instance of the model 𝑀: then a model is 
deterministic if for any instance of the model all the statements 
concerning the model are either true or false. Conversely, we will 
call probabilistic a model where for at least one of its instances 
there is at least one statement concerning the model for which 
its state of truth cannot be ascertain, but only a probability can 
be assigned to it. The transition from a deterministic to a 
probabilistic description will be discussed in Section 3. 

2.2. Modelling the measurand 

Measurement modelling concerns both the measurand and 
the measurement process. The modelling of the measurand aims 
at ensuring that the property of interest can be measured and it 
is thus closely related to the measurability issue [15]. At a 

foundational level, this implies assuming that the quantity1 under 
consideration can be measured on an appropriate measurement 
scale, i.e., that it possesses the required empirical properties. For 
example, (empirical) order is required for an ordinal scale, whilst 
order and difference are needed in the case of an interval scale. 
At a more operational level, modelling the measurand may 
account for the interactions it has with the environment and with 
the measuring system, to ensure that they do not hinder 
measurement, to compensate them, if possible, and to account 
for them in the uncertainty budget.  

 
1 “Quantity” here stands for “measurable property”. 
2 Note that here the term “object” has to be understood as “the carrier 

of the property to be measured” irrespectively of it being a concrete object, 

Here only the first aspect, that is the possess of proper 
empirical properties, is briefly discussed. This is typically the 
scope of the so-called representational theory and it can be 
summarised by one or more representation theorems. For 
example, taking again the case of height of persons, still 
considering it as an ordinal property, an operation of empirical 
comparison needs considering, that allows us to determine, for 

any pairs of persons, 𝑢 and 𝑣, whether 𝑢 is taller than 𝑣, 𝑢 ≻ℎ 𝑣, 

or 𝑣 is taller than 𝑢, 𝑣 ≻ℎ 𝑢, or they are equally tall, 𝑢 ∼ℎ 𝑣. One 
such operation, provided that is transitive, ensures that the 
function “height of persons”, introduced in the previous section, 
exists. The corresponding model is now: 

𝑀′ = (𝑈, 𝑋, ≽, 𝑚) , (6) 

where ℎ, height, has been replaced by the more general 

symbol 𝑚, “measure”, and the subscript ℎ has been dropped 
accordingly. Then, the corresponding representation theorem 
reads: 

𝑢 ≽ 𝑣 ↔ 𝑚(𝑢) ≥ 𝑚(𝑣) . (7) 

Yet, although the existence of the function ℎ is 
mathematically ensured by the properties of the empirical 

relation ≽ℎ, its actual experimental determination requires a 
measurement process, which is to be modelled now. 

2.3. Modelling the measurement process 

For modelling the measurement process, the approach 
proposed in Reference [16] is here followed and only very briefly 
recalled. It is suggested that measurement can be parsed in two 
phases, called observation and restitution. In the observation phase 

the “object”2 carrying the property to be measured interacts with 
the measurement system, in such a way that an observable 
output, called instrument indication, is produced, based on which 
a measurement value can be assigned to the measurand. The 
successive phase, where the result is produced, based on the 
instrument indication and accounting for calibration results 
(calibration curve), is here called restitution. This approach is 
essentially in agreement with others recently proposed in the 
literature [17]-[20]. For example, in the case of persons’ height, 
the measuring device may consist of a platform, on which the 
subject to be measured must stand erect, and of an ultrasonic 
sensor, placed at a fixed height over the head of the subject. The 

instrument generates a signal whose intensity, 𝑦, is proportional 
to the distance of the sensor from the top of the head of the 
subject, which constitutes the instrument indication. 

Let us call 𝜑 the function that describes this phase: thus, if 𝑎 
is the object to be measured, 

𝑦 = 𝜑(𝑎). (8) 

Calibration requires the pre-constitution of a reference 

(measurement) scale, 𝑅 = {(𝑠1, 𝑥1), (𝑠2, 𝑥2), … , (𝑠𝑛 , 𝑥𝑛)}, 

which includes a set of standards, 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, and their 

corresponding measurement values, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. 
Calibration can be done by inputting such standards to the 
measuring system and recording their corresponding indications, 

thus forming the function 𝜑𝑠 = {(𝑠1, 𝑦1), (𝑠2, 𝑦2), … , (𝑠𝑛 , 𝑦𝑛)}, 

which is a subset of  𝜑, defined above. Based on this information, 

it is possible to obtain a calibration function, 𝑓 =

like a workpiece, or an event, such as a sound or a shock, or even a person, 
in the case of psychometrics [13]. 
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{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}, that establishes a 
correspondence between the value of each standard and the 
corresponding output of the measuring device. Calibration 
allows us to perform measurement, since, once the instrument 
indication has been obtained, it is possible to assign to the 
measurand, in the restitution phase, the value of the standard that 
would have produced the same output, that is 

𝑥̂ = 𝑓−1(𝑦) ≜ 𝑔(𝑦). (9) 

Lastly, we obtain a description of the overall measurement 
process, by combining observation and restitution: 

𝑥̂ = 𝛾(𝑎) = 𝑔(𝜑(𝑎)) = 𝑓−1(𝜑(𝑎)). (10) 

This equation constitutes a basic deterministic model of the 
measurement process. In [20], a more detailed model was 
presented, where the generation of instrument indication was 
more deeply investigated. Yet the structure of that model is 
compatible with the one just recalled, that will be used in the 
following, for the sake of simplicity. 

Let us now show how this model can be turned into 
probabilistic by just shifting from a deterministic to a 
probabilistic semantic, which is the main goal of this 
communication. Prior to doing so, the present approach to 
considering probability theory as a logic must be presented, with 
a special focus on the notions of probabilistic function, with 
associated operations of inversion and composition, which are 
necessary for treating Equation (10). 

3. PROBABILITY AS A LOGIC FOR MODELS FORMULATED 
THROUGH FIRST-ORDER LANGUAGES 

3.1. Probabilistic semantic 

Let us consider models formulated in a first order language, 𝑳, 
that is a language whose elementary propositions concern 
properties of, or relations among, individuals, whilst more 
complex ones can be formed by combining the elementary ones 

through logical operators, such as conjunction, ∧, disjunction, ∨, 

or negation, ¬ [21]. Such a language is rich enough for our 
purposes, as it will appear in the following. Once a statement is 
made, it is of interest to assess its truth or falsity. This is the 
object of semantic, and the basis of a deterministic semantic, for 
statements of our interest, has already been presented in previous 
Section 2.1. The purpose of the proposed theory is to replace a 
deterministic semantic with a probabilistic one [22]. 

 

As we have seen, a deterministic model, 𝑀𝑑 , may be expressed by 

a structure, 𝐻 = (𝐶, 𝑅), where 𝐶 = 𝐴1 × 𝐴2 … × 𝐴𝑝 is a 

Cartesian product of sets and 𝑅 = (𝑅1, 𝑅2, … , 𝑅𝑞), where each 

𝑅𝑖 is a 𝑚𝑖-ary relation on 𝐶, expressed in the language 𝑳. The 

truth of a generic statement, 𝜙, concerning 𝑀𝑑 , can be assessed 
in the following way: 

• if 𝜙 is an elementary proposition, it is true if for some 𝑅𝑖 ∈
𝑅, 𝜙 ∈ 𝑅𝑖 , 

• if instead it is the combination of elementary propositions, 
through logical operators, it is true if it satisfies the truth 
condition of the operators combined with the truth state of 
the elementary propositions involved.  

A probabilistic model, 𝑀𝑝, instead is constituted by a finite 

collection of structures, 𝐸 = {𝐻1 , 𝐻2, … 𝐻𝑀}, all associated to 

the same collection of sets, 𝐶, and a probability distribution 

𝑃(𝐻𝑖) over 𝐸, such that 

𝑃(𝐸) = ∑ 𝑃(𝐻𝑖) = 1𝑀
𝑖=1 . (11) 

Such structures constitute a set of possible realisations of the 
same basic underlying structure and are sometimes suggestively 
called “possible worlds”. Then, the probability of any statement 

𝜙 associated to 𝑀𝑝 is 

𝑃(𝜙) = 𝑃{𝐻 ∈ 𝐸|𝜙} = ∑ 𝑃(𝐻𝑖)

𝐻𝑖∈𝐸|𝜙

, (12) 

where 𝐻 ∈ 𝐸|𝜙 denotes a structure where 𝜙 is true, 

{𝐻 ∈ 𝐸|𝜙} is the subset of 𝐸 that includes all the structures in 

which 𝜙 is true and the sought probability is the sum of the 
probabilities of such structures. To apply this approach to 
measurement, its application to probabilistic m-ary relations and 
to probabilistic functions must be investigated, with a special 
focus on probabilistic inversion. 

3.2. Probabilistic relations 

If 𝑅(𝑢1, 𝑢2, … 𝑢𝑚) is an m-ary relation and 𝐸 is a finite 

collection of structures, 𝐻𝑖(𝐶, 𝑅𝑖), where the truth of 𝑅 can be 
ascertained, we obtain: 

𝑃(𝑅(𝑎1, 𝑎2, … 𝑎𝑚)) = 𝑃{𝐻 ∈ 𝐸|𝑅(𝑎1, 𝑎2, … 𝑎𝑚)} =

∑ 𝑃(𝐻𝑖)𝐻𝑖∈𝐸|𝑅(𝑎1,𝑎2,…𝑎𝑚)  . 
(13) 

Probabilistic relations were treated in detail in Reference [22] 
and thus are not pursued further here. 

3.3. Probabilistic functions 

Considering a function 𝑓: 𝐴 → 𝐵, the associated structure is 

𝐻 = (𝐴 × 𝐵, 𝑓), and the generic statement 𝑣 = 𝑓(𝑢) denotes a 

binary relation on 𝐴 × 𝐵 such that ∀𝑢 ∈ 𝐴, ∃𝑣 ∈ 𝐵(𝑣 =
𝑓(𝑢) ), and ∀𝑢 ∈ 𝐴∀𝑣, 𝑧 ∈ 𝐵(𝑣 = 𝑓(𝑢)  ∧ 𝑧 = 𝑓(𝑢) → 𝑣 =
𝑧). Let us then consider a finite collection, 𝐸, of such structures 

and an associated probability distribution on 𝐸. Then the 

probability that the above statement holds true for a pair (𝑎, 𝑏), 

𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, can be calculated by: 

𝑃(𝑓(𝑎) = 𝑏) = 𝑃{𝐻 ∈ 𝐸|𝑓(𝑎) = 𝑏} = ∑ 𝑃(𝐻𝑖)𝐻𝑖|𝑓(𝑎)=𝑏 . (14) 

3.4. Probabilistic inversion 

Consider now the probabilistic inverse to the function 𝑓 in 

the previous subsection, i.e., 𝑔: 𝐵 → 𝐴. Let us consider first the 
possibility of calculating directly the probability associated to 

each value of 𝑔 from the knowledge of the corresponding direct 

function 𝑓, through the very definition of inverse function, by 
establishing the following rule: 

𝑃(𝑔(𝑏) = 𝑎) ∝ 𝑃{𝐻 ∈ 𝐸|𝑓(𝑎) = 𝑏} = ∑ 𝑃(𝐻𝑖)𝐻𝑖|𝑓(𝑎)=𝑏 . (15) 

After imposing the closure condition ∑ 𝑃(𝑔(𝑏) = 𝑢)𝑢∈𝐴 =1, we 
obtain the rule: 

𝑃(𝑔(𝑏) = 𝑎) =
∑ 𝑃(𝐻𝑖)𝐻𝑖|𝑓(𝑎)=𝑏

∑ 𝑃(𝑓(𝑢)=𝑏)𝑢∈𝐴
. (16) 

Let us briefly discuss the relationship between probabilistic 
inversion, as here presented, and the Bayes-Laplace rule. To do 

that, let now 𝑢 and 𝑣 be two variables that denotes generic 

elements of 𝐴 and 𝐵, respectively, and let 𝑎 and 𝑏 be two specific 

elements of  𝐴 and 𝐵, respectively. Then we can form the atomic 

statements 𝜙 = (𝑢 = 𝑎) and 𝜓 = (𝑣 = 𝑏), that means, for 

example, that, in some circumstance, the element 𝑎 ∈ 𝐴 
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occurred and the element 𝑏 ∈ 𝐵 occurred. Then function 𝑓 

induces a conditional probability measure on 𝐴 × 𝐵, defined by: 

𝑃(𝜓|𝜙) = 𝑃((𝑣 = 𝑏)|(𝑢 = 𝑎) ) = 𝑃(𝑏 = 𝑓(𝑎)). (17) 

Then the (inverse) conditional probability 𝑃(𝜙|𝜓), equals the 
probability of the inverse function, and can be calculated through 
the Bayes-Laplace rule, with a uniform prior, that is 

𝑃(𝜙|𝜓) = 𝑃((𝑢 = 𝑎)|(𝑣 = 𝑏)) = 

𝑃((𝑣 = 𝑏)|(𝑢 = 𝑎) )

𝑃((𝑣 = 𝑏))
= 𝑃(𝑎 = 𝑔(𝑏)) 

(18) 

Therefore, in this context, the Bayes Laplace rule can be interpreted 
as a procedure for calculating the inverse of a probabilistic function. 
Consequently, its use in measurement can be presented just as a 
step in measurement modelling, as it will be shown in the next 
section, without taking any commitment to Bayesian statistics, 
with its philosophical and epistemological implications [23].  

3.5. Composition of probabilistic functions 

Lastly, let 𝑓, 𝑔, and ℎ be three probabilistic functions, 𝑓: 𝐴 →

𝐵, 𝑔: 𝐵 → 𝐶 and ℎ: 𝐴 → 𝐶, where for 𝑢 ∈ 𝐴, ℎ(𝑢) = 𝑔(𝑓(𝑢)). 

Then the probability of statements concerning ℎ can be assessed 
through the rule: 

𝑃(𝑤 = ℎ(𝑢)) = ∑ 𝑃

𝑣∈𝐵

(𝑤 = 𝑔(𝑣))𝑃(𝑣 = 𝑓(𝑢)) (19) 

where 𝑤 ∈ 𝐶. Let us now apply the above rules to the 
probabilistic modelling of measurement processes. 

4. PROBABILITY AS A LOGIC FOR MEASUREMENT 
MODELLING 

4.1. Modelling the measurand 

In Section 2.2 a deterministic model was developed, based on 
Equations (6) and (7). Such model implies that empirical relations 
appearing in it are uncertainty-free. If, instead, the intrinsic 
uncertainty of the measurand, which basically corresponds to the 
“definitional uncertainty” in the VIM, needs considering, such 
model must be turned into probabilistic. This can be done, by 
applying Equation (13), to Equation (7), which ultimately yields 

𝑃(𝑢 ≽ 𝑣) = 𝑃(ℎ(𝑢) ≥ ℎ(𝑣)), (20) 

as proved in Reference [22] and similar results can be obtained 
for all the scales of practical interest. 

4.2. Modelling the measurement process 

The overall modelling of the measurement process has been 
outlined in Section 2.3, where it was suggested that the overall 
measurement process can be described by the measurement 

function 𝛾: 𝐴 → 𝑋, characterised by Equation (10). Therefore, a 
proper structure for the measurement process is 

𝑀" = (𝐴 × 𝑌 × 𝑋, 𝜑, 𝑓, 𝛾). (21) 

Yet, this description does not include the modelling of the 
measurand and does not allow to account for the associated 
intrinsic or definitional uncertainty, as previously discussed. This is 
acceptable in practice when such uncertainty is considered 

 
3 See Reference [22] for additional details of this representational side of 

the question. 

negligible. Yet in the general case, models 𝑀′ and 𝑀" must be 
merged, yielding (for a purely ordinal quantity) the structure: 

𝑁 = (𝐴 × 𝑌 × 𝑋, ≽, 𝑚, 𝜑, 𝑓, 𝛾). (22) 

As anticipated, this overall model can be interpreted either as 
deterministic of probabilistic, after interpreting the relations, 
variable and/or functions involved accordingly. Recalling the 
previously presented equations, we obtain for a generic 

probabilistic statement concerning the measurement function 𝛾, 

in model 𝑀′: 

𝑃(𝑥̂ = 𝛾(𝑎)) = 𝑃 (𝑥̂ = 𝑓−1(𝜑(𝑎))) =

∑
𝑃(𝑦=𝑓(𝑥))

∑ 𝑃(𝑦=𝑓(𝑤))𝑤

𝑃(𝑦 = 𝜑(𝑎))

𝑦

. 
(23) 

On the other hand, if we want to account for intrinsic 

uncertainty also, we should refer to model 𝑁 and consider 𝑚 as 
a probabilistic function as well. Note, in this regard, that the 

function 𝜑: 𝐴 → 𝑌, only depends (at least ideally) on the way in 

which the object 𝑎 realises and manifests the quantity, 𝑥, of 

interest. Let us call it 𝑥𝑎 = 𝑚(𝑎). Therefore, 

𝑦 = 𝜑(𝑎) = 𝑓(𝑚(𝑎)). (24) 

4.3. A very simple numerical illustrative example 

Let us finally illustrate the entire procedure by a very simple 
numerical example, concerning the (purely ordinal) height of 

three subjects, call them John (𝑎), Paul (𝑏) and Evelyn (𝑐). 
Suppose John is definitely taller than the other two, so that 

𝑃(𝑎 ≻ 𝑏) = 𝑃(𝑎 ≻ 𝑐) = 1.0. Let instead Paul be almost as tall 

as Evelyn”, with 𝑃(𝑏~𝑐) = 0.6,  𝑃(𝑏 ≻ 𝑐) = 0.1 and  𝑃(𝑐 ≻
𝑏) = 0.3. Then it is easy to check that a proper function 

𝑚: {𝑎, 𝑏, 𝑐} → {1,2} will have3:  

𝑃(𝑚(𝑎) = 1) = 0.0; 𝑃(𝑚(𝑎) = 2) = 1.0; 

𝑃(𝑚(𝑏) = 1) = 0.9; 𝑃(𝑚(𝑏) = 2) = 0.1; 
𝑃(𝑚(𝑐) = 1) = 0.7; 𝑃(𝑚(𝑐) = 2) = 0.3. 

Let us now consider the calibration function, 𝑓: 𝑋 → 𝑋 and 

let 𝑋 = {1,2} and the probability of 𝑓 be such that: 

𝑃(𝑓(1) = 1) = 0.8; 𝑃(𝑓(1) = 2) = 0.2; 
𝑃(𝑓(2) = 1) = 0.1; 𝑃(𝑓(2) = 2) = 0.9. 

Then the probability of the inverse function 𝑔 is such that: 

𝑃(𝑔(1) = 1) = 8/9; 𝑃(𝑔(1) = 2) = 1/9; 
𝑃(𝑔(2) = 1) = 2/11; 𝑃(𝑔(2) = 2) = 9/11. 

The observation function 𝜑, is obtained by composing 𝑓 and 

𝑚, according to Equation (19), which yields: 

𝑃(𝜑(𝑎) = 1) = 0.10; 𝑃(𝜑(𝑎) = 2) = 0.90; 
𝑃(𝜑(𝑏) = 1) = 0.73; 𝑃(𝜑(𝑏) = 2) = 0.27; 
𝑃(𝜑(𝑐) = 1) = 0.59; 𝑃(𝜑(𝑐) = 2) = 0.41. 

Lastly, the measurement function 𝛾 outcomes from the 

composition of 𝑔 with 𝜑, yielding: 

𝑃(𝛾(𝑎) = 1) = 0.251; 𝑃(𝛾(𝑎) = 2) = 0.749; 
𝑃(𝛾(𝑏) = 1) = 0.698; 𝑃(𝛾(𝑏) = 2) = 0.302; 
𝑃(𝛾(𝑐) = 1) = 0.599; 𝑃(𝛾(𝑐) = 2) = 0.401. 

5. CONCLUSION 

The problem of the interpretation of probability in 
measurement has been considered and it was suggested to regard 
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probability theory as a logic for developing probabilistic models. 
A remarkable feature of this approach is that after modelling 
measurement through the relations holding among the 
transformations involved, the model can be treated as either 
deterministic or probabilistic, depending upon the chosen 
sematic. Alternative approaches can be considered, such as the 
fuzzy logic or the possibility theory [9], [10]. All these approaches 
have their merits and limitations, and the choice may be done 
depending upon the assumptions made in the development of 
the model. The logicistic approach here developed may 
overcome some reservations about probability theory, related to 
the limits of the frequentistic and the subjectivistic approaches, 
and may thus contribute to a wider use of the probabilistic 
approach. 
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