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1. INTRODUCTION 

The analysis of human gait is a fertile research field with 
various applications related to healthcare, in particular – to 
monitoring of elderly persons. Gait analysis can be used, e.g., for 
estimating the risk of falling [1], diagnosing cognitive 
impairments [2] and optimising the rehabilitation after a stroke 
[3]. Such analysis may involve the estimation of [4] 

– angles between body segments, 

– ground-reaction forces, 

– electromyographic signals, 

– spatiotemporal gait parameters. 
This paper is focused on the estimation of the latter, and in 
particular of [5]: 

– length and duration of steps and strides, 

– walking speed, 

– cadence (or the number of steps per minute), 

– duration of the phases of a gait cycle. 
The gait cycle is the time interval encompassing the repeatable 

pattern of movement performed during walking, i.e. a single 

stride or two steps (one by each foot). Within the gait cycle, the 
so-called swing phase and stance phase can be identified. These 
phases correspond to the time intervals when a given foot is 
moving or resting on the floor, respectively. The duration of the 
so-called double-support phase, during which both feet contact the 
floor, is also of interest for healthcare practitioners [2]. 

Important information, useful from the healthcare 
perspective, can be extracted from the average values of the 
aforementioned parameters and from some indicators 
characterising their variability [6]. Estimates of those parameters 
can also be used for obtaining information about gait asymmetry, 
which is considered particularly useful in the treatment of stroke-
induced hemiplegia [7]. The gait asymmetry is typically quantified 
by comparing the values of some parameters, characterising the 
left and right sides of the body, e.g. by computing the ratio 
between the duration of the stance phases of the two feet [3]. 

The spatiotemporal gait parameters can be estimated by a 
trained clinician using a stopwatch; the simplicity and low cost of 
such an examination method are behind its prevalence, although 
its accuracy and repeatability are quite limited [8]. A technological 
solution that allows for more reliable analysis of gait, relatively 
widespread in research laboratories and clinical facilities, involves 
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the use of platforms or treadmills equipped with pressure 
sensors. Even more detailed and useful information can be 
obtained by means of optoelectronic systems based on multiple 
video cameras, tracking the motion of special markers attached 
to the person’s body; however, such systems are quite expensive 
and need to be installed in a large room. The last decade has 
brought about the development of other gait-analysis techniques 
based on various types of sensors, including wearable sensors, 
which seem to be applied most frequently. This paper is devoted 
to a technique whose applicability potential has not yet been fully 
explored, viz. a technique based on depth sensors. 

In the last decade, the possibility of using depth sensors for 
the analysis of human gait has attracted considerable interest of 
the scientific community. This interest seems to be justified by 
the facts that 1) such sensors are relatively inexpensive and 
commercially available, and 2) the acquisition of data 
representative of human movement can be quite fast and 
convenient, viz. it can be performed in the natural conditions of 
overground walking, without requiring the person to wear any 
devices or markers on the body or clothes. Moreover, the data 
acquired by means of such sensors convey quite detailed and rich 
information about human movement, allowing for both its 
spatiotemporal and kinematic analysis. Such sensors do not 
seem, however, as reliable – in terms of the attainable 
measurement uncertainty – as marker-based optoelectronic 
systems or pressure-measuring platforms. Furthermore, unlike 
wearable sensors, depth sensors have a limited field of view to 
which the examination must be confined, and their reliability 
depends – to some extent – on the angle at which the examined 
person is observed. Given their advantages and disadvantages 
with respect to other technologies applicable for gait analysis, the 
depth sensors are often considered potentially useful for rapid 
screening of patients prior to more detailed diagnostic 
procedures. The gait-analysis systems based on depth sensors 
may, therefore, become quite common in clinical practice and in-
home monitoring; the development of suitable data-processing 
methods and research aimed at assessing the validity of those 
methods is thus necessary [9]. A recent review of issues related 
to the development of gait-analysis systems based on depth 
sensors and other techniques can be found in [10], Chapter 8. 

A depth sensor typically consists of a projector and a camera, 
both operating in the infrared range of electromagnetic radiation. 
The data acquired by means of such a sensor represent its 
distance to the objects present in its field of view. Those data are 
organised in sequences of so-called depth images. In a depth image, 
each pixel represents the three-dimensional position of a point 
belonging to a surface reflecting infrared radiation. An exemplary 
depth image is shown in Figure 1a. 

What makes the depth sensors particularly promising for gait 
analysis is the existence of algorithms for automatic identification 
of human silhouettes and for the localisation of various 
anatomical landmarks, such as the head, the feet, selected joints 
etc. Such an algorithm is implemented in one of the most popular 
devices comprising depth sensors, viz. the Microsoft Kinect 
device [11], including its Kinect v2 model which has been used 
in the experiments reported in this paper. Similar algorithms, 
which can be used for processing data from other depth sensors, 
are available commercially. An exemplary human silhouette, 
identified using the algorithm implemented in the Kinect v2 
device, is shown in Figure 1b. 

Various approaches to the application of depth sensors in the 
systems for gait analysis have been reported in the last decade. 
The difficulties in developing such systems are mainly related to 

the uncertainty of localisation of feet and other anatomical 
landmarks, and from the limitations of the depth sensors’ field 
of view. The techniques proposed so far differ in terms of the 
examination setup (which may involve the use of one or more 
depth sensors, a treadmill, wearable devices etc.), the data-
processing methods used for the identification of the gait-cycle 
phases, and other aspects [12]–[14]. 

The methodology for spatiotemporal gait analysis considered 
in this work consists in obtaining some estimates of feet 
positions using a depth sensor, followed by processing them by 
means of a procedure which comprises the following operations: 

– estimation of feet velocities; 

– identification of the swing and stance phases by thresholding 
feet velocities; 

– estimation of selected spatiotemporal gait parameters; and 

– computation of indicators of gait asymmetry. 
The above-listed operations are described in more detail in 

Section 2. Section 3 is devoted to the description of the 
experiments that were carried out in order to assess the 
applicability potential of the considered methodology for gait 
analysis. The results of these experiments are presented in 
Section 4 and discussed in Section 5 where conclusions are 
drawn. 

The following acronyms appear in the rest of this paper: 

– TVR – total variation regularisation; 

– STR – stance time ratio; 

– GCT – gait cycle time; 

– SPM – steps per minute. 

2. DATA PROCESSING PROCEDURE 

2.1. Estimation of feet velocities 

The estimates of the positions of feet, obtained by means of 
a Kinect v2 device, are subject to non-negligible measurement 
uncertainty. Among the 25 anatomical landmarks, whose 
positions can be estimated using the algorithm implemented in 
that device, the feet and ankles are usually localised with the least 
accuracy [15]. That algorithm performs poorly in distinguishing 
a foot from the ground when the foot is resting; hence, the 
estimates of feet positions are more accurate at the moments 
when the feet are off the ground [16]. The antero-posterior 
component of those estimates (i.e. the one corresponding to the 
walking direction) is more accurate than the vertical one and the 
medio-lateral one; furthermore, those estimates are more 
accurate if the person is walking rather than when the range of 
movement of the feet is small (e.g. in sit-to-stand tests) [15]. 

a)  

 

b) 

 

Figure 1. A depth image in which brighter pixels represent larger distance 
from the sensor (a); a human silhouette, identified in that image by means of 
the Kinect device (b). 
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When compared with the reference data acquired by means 
of marker-based optoelectronic movement-analysis systems, the 
foot position estimates obtained by means of Kinect v2 devices 
have turned out to be somewhat biased [17]. This is, however, of 
lesser practical importance for the gait-analysis methodology 
proposed here, because this methodology refers to the 
differences among the estimates of the positions of feet rather 
than to their absolute values. On the other hand, those estimates 
are subject to random errors. The mean Euclidean distance 
between those estimates and the corresponding reference values 
has been reported to be ca. 8.0 cm [18]. Although such distance 
may be considered negligible in various applications, in the case 
of the proposed methodology it could – if not remedied – 
significantly distort the results of data processing; that is because 
this methodology involves the numerical differentiation of 
sequences of foot position estimates, and differentiation is 
numerically ill-conditioned, which means that small errors can be 
very significantly amplified in its course. An exemplary foot 
trajectory and the results of its differentiation by means of the 
central-difference method, without any prior denoising, are 
shown in Figure 2. As discussed in the following subsections, the 
visible abrupt changes in the estimates of foot velocity would 
hinder the identification of the stance and swing phases 
according to the proposed methodology. In order to prevent this 
effect, the foot position estimates were denoised prior to their 
numerical differentiation. 

In the context of the analysis of human movement, the 
technique most commonly used for denoising depth-sensor-
based estimates of positions of anatomical landmarks is low-pass 
filtering by means of a Butterworth filter of order 2, 3 or 4 with 
a cut-off frequency from the range [2, 10] Hz (cf., e.g., [13], [18], 
[19]). In this study, this denoising technique was compared with 
two other techniques, less frequently considered in this context: 
the Savitzky-Golay filter and the total-variation regularisation 
technique (the TVR technique). 

Filtering by means of a Savitzky-Golay filter is equivalent to 
approximating the data – within a moving window – by means 
of a fixed-degree polynomial [20]; both the length of the moving 
window and the degree of the approximating polynomial need to 
be optimised empirically. This technique is particularly useful for 
denoising data representative of a smooth signal – i.e. a signal 

adequately modelled by a mathematical function which has some 
continuous derivatives – while, at the same time, preserving the 
width and height of the peaks present in that signal [21]. 

The Savitzky-Golay filter is a low-pass filter whose cut-off 
frequency increases with the increasing polynomial degree and 
with the decreasing window length. Unlike the Butterworth filter, 
the Savitzky-Golay filter is characterised by a linear phase 
response. It has similarly flat passband but less attenuation in the 
stopband than the Butterworth filter [22]. The frequency 
characteristics of exemplary filters of both kinds are presented in 
Figure 3, their impulse responses – in Figure 4. 

The TVR technique is well-suited for processing piecewise-
linear rather than smooth signals [23]. It seems potentially useful 
for denoising the estimates of the antero-posterior position of a 
foot during walking, because that position is constant during the 
stance phase and changing approximately linearly during the 
swing phase. This technique is characterised by a single scalar 
regularisation parameter whose value needs to be optimised 
empirically. 

If the Savitzky-Golay filter or the TVR technique is applied, 
the estimates of the derivative can be obtained directly, without 

a) 

 
b) 

 

Figure 2. An exemplary sequence of data acquired by means of a Kinect v2 
device, representative of the antero-posterior position of the left foot of a 
person who was walking toward that device (a), and the results of numerical 
differentiation of that sequence using the central-difference method (b). 

a) 

 
b) 

 

Figure 3. The frequency characteristics of the Savitzky-Golay filter with 19-
sample window and 2-degree approximating polynomial, and of the 
Butterworth filter of order 2 with the cut-off frequency 1.4 Hz. 

a) 

 
b) 

 

Figure 4. The impulse response of the Savitzky-Golay filter with 19-sample 
window and 2-degree approximating polynomial (a), and of the Butterworth 
filter of order 2 with the cut-off frequency 1.4 Hz (b). 
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computing the denoised sequence of data. However, in the 
experiments reported herein, better results were obtained by 
computing the velocity estimates using the central-difference 
method on the basis of the denoised position estimates. A recent 
review of methods of numerical differentiation, which can be 
used in this context, can be found in [10], Chapter 5. 

Exemplary estimates of feet velocities, obtained by means of 
the three above-described denoising techniques, are shown in 
Figure 5. 

2.2. Identification of gait-cycle phases 

The swing phase and the stance phase were identified as the 
time intervals in which the velocity of the examined foot is above 
or below – respectively – an empirically selected threshold. Two 
variants of threshold values were considered here: 

– a fixed absolute value; 

– a value relative to the maximum velocity estimate present in 
the set of data under analysis. 
Exemplary results of this operation are shown in Figure 6. 

2.3. Estimation of spatiotemporal gait parameters 

The length and duration of the steps were estimated 
according to the definitions provided in the documentation of 
the Zebris FDM gait analysis system [24]. The estimates of the 
duration of the left and right stance phase and the double-
support phase were divided by the duration of the gait cycle. The 
average walking speed was estimated by dividing the total 
distance, travelled during the experiment, by the total walking 
time. The cadence was estimated by computing the inverse of the 
duration of the steps, averaged over all observed left and right 
steps. The estimates of each spatiotemporal gait parameter, 
differing from their median value by more than an empirically 
selected threshold value, were identified as outliers and removed 
from the set of results. 

For brevity, some spatiotemporal gait parameters whose 
values can be inferred from the values of the parameters 

mentioned above – such as the stride length or the duration of 
the swing phase – are omitted here. 

2.4. Quantification of gait asymmetry 

The following indicator – which, to the best authors’ 
knowledge, has not been considered in any previous studies – 
can be used for quantifying gait asymmetry: 
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where ( )Lv t  and ( )Rv t  denote the horizontal speed of the left 

and right foot – respectively – at a time instant t belonging to the 
time interval under analysis [0, T]. This indicator can be 
interpreted as the maximum of a quasi-correlation between the 
trajectories of both feet; its values close to 1 indicate near-perfect 
symmetry, and smaller values – lesser symmetry. The stance time 
ratio (STR), defined as follows: 
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– where LST  and RST  denote the stance time of the left and 

right foot, respectively – was used as a reference indicator of gait 
asymmetry [3]. 

3. EXPERIMENTATION PROGRAMME 

A set of experiments was completed in order to assess the 
applicabilitiy potential of the considered methodology for 
spatiotemporal gait analysis. The data representative of the 
human gait were acquired by means of a Kinect v2 device and a 
Zebris FDM pressure-measurement platform simultaneously. 
Three persons walked over the platform 33 times in total. The 
depth sensor’s line of sight coincided with the walking direction. 
The sketch of the experimental setup is shown in Figure 7. 

a) 

 
b) 

 
c) 

 

Figure 5. The estimates of the feet velocities, obtained by means of numerical 
differentiation of some exemplary feet trajectories denoised using the 
Butterworth filter (a), the Savitzky-Golay filter (b) and the TVR technique (c). 

 

Figure 6. The exemplary results of the identification of the gait-cycle phases 
by thresholding the estimates of the foot velocity. 

 

Figure 7. Sketch of the experimental setup. 
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Subsets of data from the depth sensor, representative of the 
2.8 m displacement which comprised the space covered by the 
platform – with a certain margin – were extracted. According to 
the examination procedure associated with the Zebris platform, 
the examined persons’ passages across the platform were 
grouped into triplets and the results corresponding to each triplet 
of passages were averaged; thus, 11 pairs of the estimates of each 
parameter were obtained (i.e. the pairs comprising one depth-
sensor-based estimate and one Zebris-platform-based estimate). 
The mean error and the standard deviation of errors of the 
depth-sensor-based estimates were evaluated by treating the 
Zebris-platform-based estimates as the reference. The data-
processing software associated with the Zebris platform was 
used for evaluating the standard deviation of the Zebris-
platform-based estimates of spatiotemporal gait parameters. 

The cycle of data processing was repeated six times, according 
to six variants of the procedure described in Section 2 – the 
variants being the combinations of the three denoising 
techniques (the Butterworth filter, the Savitzky-Golay filter and 
the TVR technique) and two options of velocity threshold values 
(absolute or relative to the maximum velocity estimate). 

4. RESULTS 

The values of the parameters of data-processing methods, 
optimised empirically in such a way as to minimise the 
differences between the depth-sensor-based and Zebris-
platform-based estimates of the spatiotemporal gait parameters, 
are presented in Table 1. The selected values of the parameters 
of the Savitzky-Golay filter correspond to the cut-off frequency 
of 1.53 Hz. 

The mean errors and standard deviations of the estimates of 
spatiotemporal gait parameters are presented in Table 2. The use 
of the absolute velocity threshold consistently yielded better 
results than the use of the relative threshold in all cases; hence, 
for brevity, only the results obtained using the absolute threshold 
are presented in Table 2. 

The values of the indicators of gait asymmetry LRr  and STR, 

determined for all the recorded passages (the latter – on the basis 
of the data from both the depth sensor and the Zebris platform), 
are shown in Figure 8. The reported experiments involved only 
healthy persons whose gait was quite symmetric; thus, all these 

values are close to 1. To further assess the informative value of 

the proposed indicator LRr , another experiment, including 

emulation of asymmetric gait, was performed. During this 
experiment, a single healthy person walked first naturally and 
next – making fast steps with the right foot and slow steps with 

the left foot. The values 1.00LRr =  and 0.99STR =  were 

obtained for natural gait, whereas LR 0.86r =  and 0.77STR =  

– for emulated asymmetric gait. The results of this experiment 
are illustrated in Figure 9. 

5. DISCUSSION AND CONCLUSION 

All three denoising techniques, introduced in Section 2.1, 
allowed for obtaining estimates of spatiotemporal gait 
parameters subject to quite similar uncertainty. In the case of the 
step times, the TVR technique yielded more biased estimates but 
less dispersed than the low-pass filters. In the cases of other 
parameters, differences in the uncertainty indicators could be 
noticed among the different denoising techniques, but the 
reported results do not justify the indication of any of them as 
capable of providing the most reliable results.  

The absolute (rather than the relative) value of the velocity 
threshold can be recommended for further study. 

Table 1. Empirically selected values of the parameters of data-processing 
methods in six variants of the procedure for estimation of spatiotemporal 
gait parameters. 

Butterworth filter 

 Absolute threshold Relative threshold 

Order 2 4 

Cut-off frequency 1.4 Hz 3.6 Hz 

Velocity threshold 1.7 m/s 40 % 

Savitzky-Golay filter 

 Absolute threshold Relative threshold 

Window length 19 samples 19 samples 

Polynomial degree 2 2 

Velocity threshold 1.7 m/s 42 % 

TVR technique 

 Absolute threshold Relative threshold 

Regularisation parameter 8 · 10–4 1 · 10–3 

Velocity threshold 1.6 m/s 50 % 

Table 2. Mean values and the standard deviations of the errors corrupting the estimates of spatiotemporal gait parameters, obtained by means of the depth 
sensor, and the standard deviations of the corresponding reference estimates obtained by means of the Zebris platform; the symbols L and R indicate the left 
and right side of the body; GCT is the acronym of gait-cycle time; SPM – of steps per minute. 

 
Depth-sensor-based estimates Zebris-platform-

based estimates 

 Mean error Standard deviation of errors Standard 
deviation 

of estimates 
 Butterworth 

filter 
Savitzky-Golay 

filter 
TVR 

technique 
Butterworth 

filter 
Savitzky-Golay 

filter 
TVR 

technique 

Step time (L) –0.004 s –0.004 s –0.009 s 0.019 s 0.022 s 0.016 s 0.009 s 

Step time (R) 0.000 s 0.001 s 0.008 s 0.020 s 0.023 s 0.021 s 0.013 s 

Step length (L) –1.4 cm –0.8 cm –2.1 cm 1.8 cm 3.4 cm 3.2 cm 1.4 cm 

Step length (R) –0.4 cm –0.9 cm 0.1 cm 3.8 cm 3.6 cm 4.1 cm 1.5 cm 

Stance time (L) 0.1 % GCT 0.9 % GCT –0.5 % GCT 2.5 % GCT 2.1 % GCT 2.3 % GCT 0.5 % GCT 

Stance time (R) –0.2 % GCT –0.3 % GCT –2.1 % GCT 1.0 % GCT 1.1 % GCT 2.1 % GCT 0.8 % GCT 

Double-support time 0.6 % GCT 0.9 % GCT –1.9 % GCT 4.1 % GCT 2.6 % GCT 3.6 % GCT 0.8 % GCT 

Walking speed –1.4 cm/s –1.4 cm/s –1.4 cm/s 2.9 cm/s 2.9 cm/s 2.9 cm/s 5.1 cm/s 

Cadence 0.70 SPM 0.54 SPM 0.31 SPM 2.25 SPM 2.37 SPM 2.12 SPM 2.46 SPM 
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The mean differences between the depth-sensor-based 
estimates of spatiotemporal gait parameters and the 
corresponding reference values were quite small, whereas the 
standard deviations of the depth-sensor-based estimates were 
somewhat larger than those of the reference values but within 
the same order of magnitude. These results indicate a high 
applicability potential of the considered methodology for gait 
analysis: the somewhat larger uncertainty of the estimates may be 
justified by the considerably smaller cost and complexity of the 
examination setup and procedure, if compared to the use of the 
Zebris platform. 

Moreover, the considered methodology enables one to 
quantify gait asymmetry. In the experiments involving healthy 
persons, the values of all considered indicators of gait asymmetry 
– presented in Figure 8 – are, as expected, close to 1; the 
dispersion of the values of the proposed indicator rLR, defined by 
Equation (1), is the smallest. In the experiment including the 
emulation of asymmetric gait – whose results are presented in 
Figure 9 – significantly different values of the indicators were 
obtained for symmetric and asymmetric gait. The 
aforementioned experimental results suggest that the proposed 
indicator may become quite useful in clinical practice; however, 

more experimental work is needed to reliably assess its capability 
to properly characterise the degree of gait asymmetry. 

The following practical considerations can be made based on 
the experiments: 

– The value of the foot velocity threshold has a significant 
impact on the uncertainty of the estimates of spatiotemporal 
gait parameters; in most experiments, the values 1.6–1.7 m/s 
have yielded the best results. The choice of the type of the 
low-pass filter used for denoising the foot position estimates 
does not seem to significantly affect the results, but the values 
of that filter’s parameters need to be selected carefully. 

– The best results can be obtained if the examined person walks 
towards the depth sensor along its line of sight; if the walking 
direction does not parallel that line, the feet occlude each 
other from time to time and, consequently, the reliability of 
the obtained results is significantly reduced. 

– Certain kinds of examined person’s clothing, such as skirts or 
wide trousers, significantly hinder the localisation of the feet 
on the basis of depth-sensor data, making it impossible to 
obtain reliable estimates of spatiotemporal gait parameters. 
The authors’ plans for future work include: 

– the implementation and testing of other data-processing 
methods aimed at identifying gait-cycle phases, including the 
methods based on the distances between the examined 
person’s knees [13] and on the vertical oscillations of that 
person’s centre of mass [14]; 

– the experiments aimed at assessing the uncertainty of 
identification of gait-cycle phases, involving the use of a 
reference optoelectronic gait-analysis system (which, in 
contrast to the Zebris platform, is capable of providing not 
only the reference values of spatiotemporal gait parameters, 
but also the reference three-dimensional trajectories of the 
feet); 

– the experiments involving persons whose ability to walk is 
impaired, in particular – whose gait is significantly 
asymmetrical. 
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