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1. INTRODUCTION

In a manufacturing environment, critical decisions about
process and product quality depend on the quality of the 
measurement systems. Measurement systems analysis 
(MSA) is a set of statistical techniques used to quantify the 
uncertainty of the measurement instruments. [1] and [2] 
provided a review of gauge repeatability and reproducibility 
(R&R) methods for assessing the precision of measurement 
systems. In the case of univariate measurement systems, 
several MSA-approval metrics are commonly used. For an 
overview on this topic we suggest [3] and [4]. 

In current manufacturing industry processes are often 
characterized by many important characteristics. 
Accordingly, [5] proposed multivariate extensions of three 
commonly used MSA-approval criteria using the volume of 
constant-density contours to characterize the variability of 
the measurement system. These multivariate MSA-metrics 
require a multivariate analysis of variance (MANOVA) for 
estimating the covariance matrices for one factor and two-
factor gauge studies. 

In order to ensure constant flows of reliable data, 
manufacturers should periodically assess their measurement 

systems and the costs involved in maintaining well 
performing measurement systems are normally relevant. 
This issue motivates the present work.  

Multivariate measurement systems analysis is usually 
performed by designing suitable gauge (R&R) experiments 
ignoring available data generated by the measurement 
system while used for inspection or process control. In 
recent literature, the use of these measurements from 
regular use of the instrument has been suggested for 
univariate MSA studies (see e.g, [6]). Here we propose the 
following approach. In the initial set up, after the 
multivariate measurement instrument is assessed as 
adequate, its performances are assumed as benchmark. 
Therefore, using the data from the regular activity of the 
instrument, the periodic assessments of the measurement 
device are performed by comparing the present precision 
with the benchmark through a statistical test. Since the 
proposed method does not require a multivariate gauge 
study, our proposal can be a useful tool for reducing the 
costs of multivariate MSA carried out with a certain 
frequency. 

Here is the outline of the paper. The next section 
introduces the multivariate measurement error model, 
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describes the multivariate MSA-approval criteria proposed 
in recent literature and explains the multivariate analysis of 
variance (MANOVA) method for estimating the covariance 
matrices of interest. Section 3 develops the test for assessing 
the multivariate measurement instruments. Section 4 
studies the performances of the proposed method. Finally, 
the last section contains a discussion and the conclusions. 

2. MULTIVARIATE MEASUREMENT SYSTEM ANALYSIS 

Let 
 1 2, ,..., mX X X X

 (1) 
represent the vector of m quality characteristics with 

mean vector µ and covariance matrix  positive definite. 
We assume that the multivariate process data are from a 
multivariate normal distribution. 

Let us denote with 
 1 2, ,...,  mLSL LSL LSLLSL

, (2) 
 1 2, ,...,  mUSL USL USLUSL

, (3) 
and 

 1 2, ,...,  mT T TT
 (4) 

the m-vectors values of the lower specification limits, upper 
specification limits and target values, respectively. 

MSA methodology assumes the model 
 Y X e  (5) 

where Y is the vector of the observable quality 
characteristics, which is usually obtained from some 
physical measurements, X is the true quality characteristics 
vector and e is the multivariate measurement error vector. 
It is assumed that 
e  ,0 eN Σ  (6) 

with c positive definite and that X and e are independent. 
As a result, 

Y  , yN μ Σ  (7) 

where  y eΣ Σ Σ . 

Let us denote with i, ei and yi (i=1,2,…,m) the 
eigenvalues of , e and y, respectively. 

In the multivariate framework, [5] developed 
multivariate versions of three univariate gauge-approval 
criteria. The author proposed the following statistics. 

The multivariate precision-to-tolerance ratio, which is 
defined as the m-th root of the ratio of (1-)100% volume 
of the multivariate error distribution and the volume of the 
tolerance region. This ratio, according to the specification 
of the tolerance region, simplifies to 
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when a hypercube-shaped tolerance region is used, and 
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for the case of a hyperellipsoid-shaped tolerance region. In 
the above equations (·) is the gamma function, 
TOLi=USLi-LSLi and 2

,m is the 100(1-)-th percentile of 
the 2 distribution with m degrees of freedom with (1-) 
usually fixed at 0.99. Therefore the P/T1m and P/T2m criteria 
compare the multivariate instrument variability, computed 
on the base of the constant-density contour ellipsoid, with 
the multivariate tolerance region (hypercube or 
hyperellipsoid). 

The multivariate percent R&R ratio, which is defined 
taking the m-th root of the (1-)100% volumes of the gauge 
error distribution and measured-values distribution. The 
statistic in question simplifies in 
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and expresses the relative widths of the multivariate 
distributions of the error e and the measured values Y. 

The third multivariate approval-metric is the 
multivariate-signal-to-noise ratio which compares the (1-
)100% volume of the gauge-error distribution. This 
statistic is 

1/
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The author in [5] also gave the guidelines for gauge 
acceptance. Approval values for P/T1m and P/T2m range from 
0 to 0.3, %R&Rm should be ≤30%, while based on SNRm a 
measurement system is adequate when SNRm≥5. 

2.1. Multivariate MSA in practice 

The covariance matrices , e and y are usually 
unknown, for this reason [5] also proposes a multivariate 
analysis of variance (MANOVA) method of estimating the 
covariance matrices for one-factor and two-factor gauge 
studies. 

According to the adopted notation, Y′=[Y1,Y2,...,Ym] 
represents the measured values or data generated by the 
gauge. Let us consider a random-effects MANOVA model 
[7] where the factors in question are all m-dimensional 
vectors. 

Let us denote the factors as ip  (i=1,2,…,p) for part, jo  

(j=1,2,…,o) for operator, ijpo  for part-operator 

interaction. The error term is denoted by ijkε , where 

k=1,2,…,r indicates the repeated reading of the same part by 
the same operator. Therefore ijkY  is an m-vector containing 

the k-th reading, by operator j, of the i-th part for the m 
quality characteristics. 

In the two-factor gauge study the MANOVA model is: 
   ijk i j jk ijkY p o po ε  (12) 

where the random components ip , jo j, ijpo  and ijkε  are 

mutually independent with distributions ip   ,μ PN Σ , 

 jo   ,0 ON Σ , ijpo   ,0 PON Σ  and ijkε   , 0N Σ , 

respectively. 
Within this framework, 
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Y Y . The mean square for the part-

operator interaction matrix is given by 
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and the MSE matrix is 

     ... ...
1 1 1

1

1   

  
 

p o r

ijk ijk
i j kpo r

MSE Y Y Y Y . (16) 

The covariance matrices are estimated using the expected 
mean squares. The parts covariance matrix is estimated by 

ˆ 
P or

MSP MSPO
Σ , (17) 

the operator factor covariance matrix is estimated by 

ˆ
O pr



MSO MSPO

Σ , (18) 

the part-operator interaction covariance matrix is estimated 
by 

ˆ 
PO r

MSPO MSE
Σ  (19) 

and the covariance matrix of the error terms ijkε  is 

estimated by 
ˆ
 Σ MSE . (20) 
By adopting the gauge R&R notation, P corresponds to 

,the covariance matrix of the quality characteristic. 
Repeatability and reproducibility are given by Σ  and 

O POΣ Σ , respectively. The sum of repeatability and 
reproducibility gives the gauge measurement error 
covariance matrix 

    e O POΣ Σ Σ Σ . (21) 

Therefore, the estimators of the covariance matrices of 
interest are: 
ˆ ˆ PΣ Σ , (22) 

 ˆ ˆ ˆ ˆ
  e O POΣ Σ Σ Σ , (23) 

and 
ˆ ˆ ˆ y eΣ Σ Σ . (24) 

3. A TEST FOR MULTIVARIATE MEASUREMENT SYSTEMS 

The multivariate MSA-approval criteria described in the 
previous section are based on constant-density contours of 
the multivariate normal distribution. A change in the 

precision of a measurement instrument will cause a change 
in the corresponding ellipsoid of constant density. 
Therefore, since we are interested in the detection of a 
worsening in the measurement instrument precision, we 
will focus on significant reduction of the ellipsoid coverage. 

Let us suppose that at the beginning of the 
manufacturing activity, which for notation purpose we 
denote as time T=0, a multivariate MSA is performed and 
that the measurement instrument is assessed as adequate. 
We denote with e0 the precision of the measurement 
instrument, with0 the covariance matrix of the true 
quality characteristic and with y0=0+e0 the covariance 
matrix of the measurements, at time T=0. 

Assuming the multivariate normality an ellipsoid of 
constant density is defined by 

    1
0 0:    yU CY Y μ Σ Y μ . (25) 

If we assume C=2
,m, then U0 is the boundary of the 

multivariate region in which 100 (1-)% process fall. 
After the initial set up, the measurement device is 

usually used for inspection or process control generating a 
lot of data at no additional costs. Let us consider a time 
interval in which the instrument has been routinely used. 
At time T=t the measurement instrument is characterized 
by a precision et. Usually, the process variability is 
monitored by a suitable control chart thus if no out of 
control signals occur we can assume the stability of the 
process i.e. 0=t. Under these assumptions the variability 
of Y is 

0 yt etΣ Σ Σ . (26) 

In this framework, differences in the variability of the 
observed measures are only caused by changes in the 
precision since yt=y0 if and only if et=e0. 
At time T=t, the 0UY  define the quadratic form

     

     

1

1

0 .

t yt

et

Q 



   

   

Y Y μ Σ Y μ

Y μ Σ Σ Y μ
 (27) 

 tQ Y  under the normality assumption is distributed as a 
2  with m degrees of freedom and has several useful 

properties.  tQ Y  is not constant,   tQ CY  with equality 

only when 0yt yΣ Σ , i.e. 0et eΣ Σ . The minimum and the 

maximum values of  tQ Y  can be determined analytically. 

Using results from [8] we find 

    max maximum eigenvalue of  tQ CY Γ  (28) 

    min minimum eigenvalue of  tQ CY Γ  (29) 

where 1
0

 y ytΓ Σ Σ . 

Therefore, if at time T=t the measurement instrument is 
worse than at time T=0, then the 0UY  define ellipsoids 
with coverage ranging from 

   2
min Pr min m tP Q Y  (30) 

to 
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   2
max Pr max m tP Q Y . (31) 

The difference between (1 ) , the ellipsoid coverage at 
time T=0, and minP  (or maxP ), the ellipsoid coverage at time 
T=t, quantifies the possible worsening in the instrument 
precision at instant t. 

A test for detecting the decreasing of the coverage can be 
derived as shown below. 

Let us consider the null hypothesis that the instrument 
precision at instant T=t is equal to the precision at instant 
T=0 

0 0H : et eΣ Σ  (32) 

If 0H  holds, then 0yt yΣ Σ , Γ I ,   tQ CY  and 

therefore the ellipsoid coverage is min 1  P . 
Let the alternative hypothesis be 

1 0H :  is positive definiteet eΣ Σ  (33) 

If 1H  holds, then   tQ CY  hence the ellipsoid coverage is 

smaller than 1  : min 1  P . 
Let 

1 2 ,...,       m  (34) 

be the eigenvalues of the matrix Γ . Under hypothesis 1H  
we have 

1 1m     (35) 
and the (upper) limit 1 is reached only under 0H . 

Let 1  be the largest eigenvalue of the matrix 
1 1

0
   yt yΩ Γ Σ Σ . (36) 

Then, when 1H  holds 
1

1 1
m

 
    (37) 

with 1 1   only under 0H . 
Let S be the sample covariance matrix of a random 

sample of size n from Y at time t. If 0H  holds, then 
1/2 1/2
0 0( 1)   y yn Σ SΣ  ( , 1)W nI  (38) 

where ( , 1)W nI  denotes a Wishart distribution with 
parameters I and 1n  . From [8] we have that matrix 

1/2 1/2
0 0
 
y yΣ SΣ  and matrix 1

0

yΣ S , have the same eigenvalues. 

Furthermore, also matrices 1
0

yΣ S  and 1

0

ySΣ  have the same 

eigenvalues. Therefore, if we denote with 1̂  the largest 

eigenvalue of the matrix 1
0

ySΣ , then 0H  is not rejected if 

and only if 1 1
ˆ( 1)n u  , where 1u  is the upper  

percentage point of the largest characteristic root of a 
Wishart matrix. 

The advantage of this method is that the measurement 
instrument is assessed by comparing its performance instant 
t with those at instant 0, without the necessity of 
performing a multivariate gauge study (MANOVA): the 
sample covariance matrix S can be estimated using the data 
available by the routine use of the measurement device at 
no additional costs. 

4. CASE STUDIES 

In this Section we discuss the ability of the test for 
detecting worsening in the measurement instrument 
performances.  

Before entering in the details of the case studies it is 
useful to spend a few words reminding that the multivariate 
MSA-metrics are designed thinking at different ways for 
assessing the measurement precision. The 1mP T  and 

2mP T  criteria compare the multivariate instrument 
variability with the multivariate tolerance region 
(hypercube or hyperellipsoid). 

The remaining metrics do not involve the tolerances: 
% & mR R  expresses the relative widths of the multivariate 
distributions of the errors e and the measured values Y; 

mSNR  compares the width of the multivariate distribution 
of the true quality characteristics X with the corresponding 
volume of the multivariate errors e. Since the test in 
question does not involve the tolerance regions, we expect a 
test behaviour similar to those of % & mR R  and mSNR . 
For this reason we shall compare the outcomes of the test 
only with the MSA-metrics % & mR R  and mSNR .  

We consider as the situation at time T=0 (the 
benchmark) the case discussed by [5], then we examine a 
variety of worsening-precision scenarios at time T=t. For 
each of the proposed scenarios, we compute the 
multivariate MSA-approval metrics presented in Section 2 
and we design suitable simulation experiments for studying 
the performances of the proposed test. 

Let us therefore consider the case discussed by [5] where 
the data come from an automotive body panel gauge-study 
involving m=4 quality characteristics, with p=5 parts, o=2 
operators and r=3 repeated measurements (see Table 1 in 
[5] for the original data). Using a two-factor MANOVA 
method the matrices estimates are 

0.01811 0.01600 0.02180 0.00763

0.01600 0.25163 0.15732 0.35463ˆ
0.02180 0.15732 0.20856 0.39249

0.00763 0.35463 0.39249 0.98631

  
  
   
   

Σ  

0.00094 0.00168 0.00141 0.00189

0.00168 0.00632 0.00475 0.00702ˆ
0.00141 0.00475 0.00486 0.00581

0.00189 0.00702 0.00581 0.00852

 
  
   
  

eΣ  

and 
0.01905 0.01768 0.02321 0.00574

0.01768 0.25795 0.16207 0.36165ˆ
0.02321 0.16207 0.21342 0.39830

0.00574 0.36165 0.38830 0.99483

  
  
   
   

yΣ  

The eigenvalues of the covariance matrices Σ̂ , ˆ
eΣ  and 

ˆ
yΣ  are reported in Table 1. Using equations (10) and (11) 

we obtain % & 12.26061mR R  and 11.30385mSNR  
respectively. The results show that the measurement 
instrument is assessed as acceptable by both the multivariate 
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criteria, therefore it can be used in the manufacturing 

process and for our purposes we can assume 0
ˆ e eΣ Σ , 

0
ˆ Σ Σ  and 0

ˆ y yΣ Σ .  

Now we examine several scenarios where a realistic 
worsening of the measurement instrument after a period of 
use is considered. We base this discussion on the spectral 
decomposition of 0eΣ   

0 0 0 0e e e eΣ U D U  (39) 
where 0 01 02 0( , ,..., )e e e e mU u u u  is the matrix of eigenvectors 
with columns 0e iu  (i=1,2,…,m), and 

 0 01 02 0, ,...,  e e e e mdiagD  is the diagonal matrix of the 

eigenvalues. The diagonal matrix 0eD  is the covariance 
matrix of the latent independent factors that represent the 
primary independent sources of variability introduced by 
the instrument at time T=0. 

The instrument after a period of use is characterised by a 
measurement error covariance matrix:  

et et et etΣ U D U  (40) 
where 1 2( , ,..., )et et et etmU u u u  with columns etiu  

(i=1,2,…,m) and  1 2, ,...,  et et et etmdiagD . 

Many alternative cases for etΣ  worse than 0eΣ  can be 
considered, however etΣ  cannot be attained by changing 
the elements of 0eΣ  arbitrarily. It is realistic to examine 
for etΣ  cases where changes in the variability are due to 
changes in variance of the latent independent factors. In 
other words, the factors that cause the variability in the 
instrument at instant t remain the same as for instant 0, but 
with larger variance. This means that cases for etΣ  with 
practical meaning should be those involving the 
eigenvalues, 0eit ei   for (i=1,2,…,m), but maintaining 
unchanged the eigenvectors ( 0 e etU U ).A change in the 
eigenvectors can be interpreted as a the presence of serious 
problems in the instrument such that the independent 
sources of variability become dependent. It is worth noting 
that this concept has been used also by other authors. For 
instance [9] used this definition of plausible changes in a 
process capability analysis framework. 

In what follows, we consider three cases for etΣ  where 
the eigenvectors remain unchanged. Furthermore, for the 
sake of completeness, we will also consider the case of a 
change in the eigenvectors. 

4.1. Case 1 

Now we examine the case where the eigenvalues of 0eΣ  
are increased by the same additive term  : 

0  et eD D I . (41) 
Note that this case is equivalent to add the diagonal matrix 
 Ι  directly to 0eΣ  

0  et eΣ Σ I , (42) 
since from the spectral decomposition of 0eΣ  we get the 
expression 

 0 0 0 0 0 0 0 0

0

 


     

  
e e e e e e e e

e et

U Σ I U U Σ U U U

D I D
 (43) 

Thus, the eigenvectors remain unchanged, 0 e etU U , and 
the eigenvalues can be expressed as 0eti e i     for 
i=1,2,…,m. Within this case we consider scenarios where 
the worsening term   ranges from 0 to 0.006 with a step 
of 0.0001. Therefore, for each value of  : a) we compute 
the multivariate MSA approval criteria % & mR R  and 

mSNR  and the results are shown in Figure 1; b) using the R-
software we generate 104 samples (n=50,75,100,150) from  
Y   0,  etN μ Σ Σ  where 0  et eΣ Σ I . For each sample 

we compute the statistic   1
ˆ1n  , where 1̂  is the largest 

eigenvalue of the matrix 1
0

ySΣ  and S is the sample 

covariance matrix estimated from the sample. Therefore, 
we evaluate the power of the test computing, for each value 
of   and n, the proportion of rejections of 0H . Note that, 
fixed 0.05  , we used the function qWishartMax of the R-
package RMTstat [10] for computing the critical values of 
the test. The simulation results are summarized in Figure 2 
where, for each sample size, the rejection rates of 
hypothesis 0H  as a function of  are reported. 

Examining the results we note that mSNR  assesses the 
instrument as unacceptable for  ≥ 0.0033, while the test 
concludes, with a power greater than 80%, that instrument 
at time T=t is worse than the instrument at time T=0 for 
 ≥ 0.00325, when the sample size is n=75, and for 
 ≥ 0.00415 when n=50. Therefore, pointing out that 
% & mR R  evaluates the instrument as inadequate for 
 ≥ 0.0059, we can conclude that in this case, for moderate 
sample sizes (n=50 and n=75), the performances of the test 
are among the outcomes of metrics mSNR  and % & mR R . 

4.2. Case 2 

Next, we consider the case where the eigenvalues at time 
T=t are proportional to those at time T=0 

0et eD D . (44) 

Table 1. Eigenvalues of the estimated covariance matrices. 

Σ̂  
1  2  3  4  

1.29428 0.11185 0.05438 0.00410 
ˆ

eΣ  
1e  2e  3e  4e  

0.01908 0.00081 0.00050 0.00025 
ˆ

yΣ  
1y  2y  3y  4y  

1.311189 0.11392 0.05557 0.00457 
 



ACTA IMEKO | www.imeko.org  December 2014 | Volume 3 | Number 4 | 43 

Note that (44) is equivalent to consider the measurement 
error covariance matrix of instrument at instant t to be 
proportional to the instrument precision at instant 0  

0et eΣ Σ  (45)
since we can write  

   0 1 0 0 0 0 0     e e e e e e e etU D U U D U Σ Σ . (46) 

Also in this case, the eigenvectors do not change, 0 e etU U , 
and the eigenvalues are expressed as 0eti e i  , for 
i=1,2,…,m. We perform our study by considering scenarios 
where the worsening factor   ranges from 1 to 10 with a 
step of 0.1.  

For each value of   we proceed as for case 1: a) we 
compute the multivariate MSA approval metrics, the results 
are displayed in Figure 3; b) we generate for each sample 
size (n=50, 75, 100, 125), 104 samples from Y 

 0,  etN μ Σ Σ  where 0et eΣ Σ . For each sample we 

compute the test statistic   1
ˆ1n   and, fixed as before an 

-level of 5%, we evaluate the test power by computing the 
proportion of the 104 replications where 0H  is rejected in 
favour of 1H . The rejection rates for hypothesis 0H  as a 
function of   are shown in Figure 4. 

In this case % & mR R  assesses the measurement 
instrument as inadequate for  ≥7.4. The test concludes 
that the instrument at instant t is worse than the instrument 

m

at instant 0, with a power greater than 80%, when  δ≥7.2,  
δ≥6.2, and δ≥5.6 for n=75, n=100 and n=125 respectively. 
Therefore,  considering  that   using  SNR  the instrument is 
unacceptable for  ≥5.2, we conclude that for sample sizes 
ranging from n=75 to n=125 the results of the test are 
among the outcomes of metrics mSNR  and % & mR R . 

4.3. Case 3 

Since in the previous cases we examined cases where all 
the eigenvalues simultaneously change, now we discuss the 
case where only several eigenvalues change their values. Let 
us consider the scenario where three eigenvalues are 
increased by a factor   ranging from 1 to 20 with a step of 
0.25: 

 01 02 03 04, , ,   et e e e ediagD (47)

and the covariance matrix etΣ  is given by 0 0et e et eΣ U D U . 
For each value of   we have followed the same procedure 
as for Cases 1 and 2: the results are summarized in Figures 5 
and 6. 

The pattern of the results is similar to that observed for 
Case 1. mSNR assesses the instrument as unacceptable for 
≥9 and % & mR R  for  ≥16, while the test concludes, that 
the instrument at time T=t is worse than the instrument at 
time 0, with a power greater than 80%, when  ≥8 and 
≥10 for n=75 and n=50 respectively. 

Figure 4. H0 rejection rates versus    for Case 2. 

Figure 2. H0 rejection rates versus    for Case 1. 

Figure 3. Multivariate MSA‐approval criteria as a function of    for Case 2. 

Figure 1. Multivariate MSA‐approval criteria as a function of    for Case 1. 
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4.4. Case 4 

Finally, let us examine the situation where the variations 
involve also the eigenvectors, which can be interpreted as 
the presence of a serious problem in the measurement 
instrument. We examine the case where the first two 
diagonal elements of etΣ  increase, while the other matrix 
elements are equal to the corresponding elements of 0eΣ : 

0.00094 0.00168 0.00141 0.00189

0.00168 0.00632 0.00475 0.00702

0.00141 0.00475 0.00486 0.00581

0.00189 0.00702 0.00581 0.00852




 
  
   
  

etΣ  (48) 

In the analysis the term   ranges from 1 to 8 with a step 
of 0.1. Figure 7 shows the multivariate MSA metrics 
computed for each values of  . The Monte Carlo 
experiment has been performed as in the previous cases and 
the results are summarized in Figure 8. 

The results show that the test tends to be more sensitive 
to the increasing of   than % & mR R  and mSNR . For 
instance, for n=50 the power of the test is greater than 80% 
for  ≥6, while mSNR  evaluates the instrument as 
inadequate for  ≥6.2. Note that in this case, although the 
multivariate metric % & mR R  detects the worsening in the 
measurement instrument, it assesses the instrument as 
acceptable for all the values considered of  . 

Summarizing, in the cases examined we aimed to study 
the performances of the test in realistic worsening scenarios 
of the measurement instrument after a period of use. The 
results show that the test provides outcomes with an 
appreciable level of agreement with the issues of % & mR R

and mSNR . 

5. DISCUSSION AND CONCLUSIONS

As any activity involving personnel, materials, tools and
equipment, MSA usually requires a non-negligible financial 
support. Furthermore, the fact that these systems measure 
more than a single quality characteristic and that periodic 
assessments of measurement system performance are often 
required engages manufacturers in important challenges. 

In this work, we have proposed a method which can be 
an additional tool for assessing the statistical properties of a 
multivariate measurement system.  

The method makes use of the data that are routinely 
available from the regular activity of the instrument and 
offers the possibility of assessing multivariate measurement 
systems without the necessity of performing a multivariate 
gauge study (MANOVA).  
 Since the illustrated strategy can be implemented at 
almost no additional costs it may carried out 
more frequently than a MANOVA gauge study. 
Therefore, the synergic use of the proposed approach and 

Figure 5. Multivariate MSA‐approval criteria as a function of    for Case 3. 

Figure 7. Multivariate MSA‐approval criteria as a function of    for Case 4.  Figure 8. H0 rejection rates versus    for Case 4. 

Figure 6. H0 rejection rates versus    for Case 3. 
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the traditional multivariate gauge R&R studies can 
be: effective for reducing the costs of a multivariate 
MSA performed with a certain frequency; a useful 
strategy for improving the overall quality of 
multivariate measurement systems.  
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