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1. INTRODUCTION 

Type 1 Diabetes (T1D) is an autoimmune condition in which 
the immune system attacks and destroys the pancreatic cells (β 
cells) that produce insulin [1]. Recent epidemiological research 
(e.g., [2], [3]) estimate that the T1D worldwide prevalence is 9.5 
per ten thousand people.  

Along with regular exogenous insulin injection, T1D patients 
have to lead a healthy lifestyle and carefully manage the levels of 
blood sugar to prevent complications, such as hypoglycaemia 
and hyperglycaemia [4]. In particular, the management of the 
postprandial glucose response is a major issue for T1D patients 
[5]. 

The technological advantages in healthcare and the progress 
in wearable devices [6], [7] have led to the development of 
Artificial Pancreas (AP) [8], a closed-loop systems that combines 
a Continuous Glucose Monitoring (CGM) and, a control 
algorithm based on heuristics and theoretical knowledge, 
automating the insulin release via an insulin pump [9]. While the 
ideal goal is to design a fully closed-loop system, actual clinical 
scenarios depend on several physiological factors, e.g., delays in 
insulin assimilation. At the present time, only Hybrid Closed-
Loop Systems (HCLSs) are available for medical practice. 
Although basal insulin is automatically delivered with little to no 
issue, these systems are unable to adequately manage the 
postprandial response, so the patient is forced to manually set up 
the pre-prandial dose of insulin [10]. Thus, a crucial part of 
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HCLS devices consists of the algorithm responsible of 
maintaining the levels of blood glucose in a safety range. Several 
control strategies have been designed and presented in literature, 
spanning from proportional-integral-derivative control to fuzzy 
logic control [11]. Nonetheless, the Postprandial Glucose 
Response (PGR) still remains a main open issue in APs [12]. 
Research on this topic focused mostly on carbohydrates’ intakes, 
ignoring additional aspects relative to mealtime, such as other 
nutritional factors (lipids, proteins, etc.) or psycho-physiological 
status [13], [14]. Artificial Intelligence (AI), and in particular 
Machine Learning (ML), is increasingly providing new 
opportunities in AP designs by boosting the extraction of 
information from big biological data [15]–[17]. An example of 
promising AI-based strategies for AP is offered by Artificial 
Neural Networks (ANNs), which aim to early detect hypo- and 
hyper-glycaemia events, and to consequently enhance insulin 
administration [18].  

However, it is worth pointing out that, at the state of the art, 
even these ANNs models considered mostly carbohydrates, 
without taking into account other nutritional factors [19]. As a 
matter of fact, the nutritional properties of meals can impact 
Blood Glucose Level (BGL), significantly affecting PGR. For 
instance, clinical trials have demonstrated that high-fat/protein 
meals require more insulin than lower-fat/protein meals with 
identical carbohydrate content. Hence, the design of models 
based on meal composition rather than just carbohydrates intake 
seems significant [20].  

Starting from these considerations, a study of the impact of 
nutritional factors over the 60 minutes (min) after a meal was 
conducted by ML methods. In particular, the effect of nutritional 
factors such as carbohydrates, proteins, lipids, fibres, and meal 
energy intake, on postprandial blood glucose response was 
analysed. Relying on models presented in [21] and [22], we 
proposed a model able to predict the glycaemic curve over the 
60 minutes from the meal, by considering the nutritional factors. 
More in detail, the impact of the nutritional factors was 
investigated by feeding the model with a different combination 
of BGLs, insulin doses, and nutritional factors, by validating the 
model on both public and self-produced data. 

The paper is organised as follows. In section 2 an overview of 
the state-of-the-art of ML solutions in the managing of 
postprandial (after the meal) blood glucose response was 
presented. In section 3 the datasets employed, and the proposed 
method were described. The experimental setup is reported in 
section 4. Section 5 and section 6 show results and discussion, 
respectively. Finally, in the concluding section the key points of 
the work are summarised, and the future steps are outlined. 

1. RELATED WORK 

ML has gained increasing attention in several research fields, 
and especially in health-related tasks [23]–[27]. Among the ML 
techniques, the use of ANNs in prediction of blood glucose was 
investigated in several studies [28]–[35], using data from real T1D 
patients and virtual patients [36], as those obtained with 
UVA/Padova simulator [37]. This tool allows the generation of 
virtual subjects through complex physiological models, enabling 
users to control the experimental parameters. Nonetheless, due 
to the difficulty of tuning its elements and interpreting the 
results, actual data from real patients are sometimes preferred for 
the examination of specific realistic scenarios. 

As example, in [33] the authors analysed the performance of 
a Feed-Forward Neural Network (FFNN) model for real-time 

prediction of glucose implementing a prediction horizon (PH) of 
75 min. The FFNN was trained using a training set that included 
CGM values collected in 17 patients. Overall, the reported root-
mean-square deviation (RMSE) was (43.9 ± 6.5) mg/dL.  

In [34], a glucose prediction algorithm that combines CGM 
readings and information on carbohydrate intake was proposed, 
by testing both on virtual patients, and real datasets. Results on 
simulated and real data showed that for a prediction horizon 
(PH) of 30 min, RMSE was calculated as (14.0 ± 4.1) mg/dl and 
(9.4 ± 1.5) mg/dl, respectively.  

In [35], a multilayer convolutional neural network (CNN) 
followed by a recurrent neural network with long short-term 
memory (LSTM) cells was investigated for the prediction of 
blood glucose with PHs of 30 and 60 min. The study was 
conducted on both virtual patients and T1D real patients with 
CGM sensors, by achieving RMSE results of (21.07 ± 2.35) 
mg/dl (PH = 30 min) and (33.27 ± 4.79) mg/dl (PH = 60 min) 
for real data.  

In [21], the authors proposed a FFNN model, by considering 
input as a 30 min sliding window across the blood glucose values 
and associated eight statistics (i.e., minimum, maximum, mean, 
standard deviation, difference between highest and lowest, 
median, kurtosis, and skewness). The obtained RMSE was (2.82 
± 1.00) mg/dL, (6.31 ± 2.43) mg/dL, (10.65 ± 3.87) mg/dL, and 
(15.33 ± 5.88 mg/dL), respectively considering different PHs 
(15, 30, 45, and 60 min). However, the information about 
nutritional factors was not considered in the model. 

Recently, some studies considered the nutritional factors of 
the meal as an important input of the neural networks [22], [38], 
[39], forecasting the glycaemia values after the meal. In this 
regard, in [22] a FFNN to predict post-prandial blood glucose 
values every 2 min up to 4 hours was designed, by using as input 
meal information in two ways. In the former, raw nutrient 
quantities were used. Hence, the network was fed by 
carbohydrates (g), lipids (g), fibers (g), insulin amount 
(pmol/1000) and BGL (mmol/l). In the second way, a bio-
inspired model of glucose absorption curve. In particular, 
numerical parameters such as time elapsed to the peak of the 
curve, time elapsed to 50 % of the peak of the curve, and rate of 
absorption at the maximum of the curve were calculated. Then, 
these curve characteristics were exploited to train the network 
along with insulin amount and BGL. They showed that better 
performance was achieved when the absorption model was 
integrated in the model, with an average RMSE of 1.12 mmol/L 
(PH = 60 min), compared to the RMSE value for the first 
approach (1.816 mmol/L). Nevertheless, among the involved 
subjects, only one was a T1D patient. 

It is worth to note that previous reported studies do not focus 
on the impact of nutritional factors in blood glucose prediction. 
Considering this, a study of the impact of nutritional factors over 
a 60-min time window after the meal was conducted by ML 
methods.  

2. DATASET CHARACTERISTICS AND METHOD 

2.1. Dataset  

DirecNet dataset - The DirecNet is a public dataset of CGM 
measurements, collected by Jaeb Center for Health Research 
[40]. It includes data from child-patients with T1D wearing the 
Medtronic MiniMed Guardian-RT, a HCLS device that recorded 
glucose values at intervals of 5 min. The dataset contains CGM 
data from 50 patients, aged between 3 to 7 or 12 to 18 years, with 
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a T1D for more than 1 year. For approximately 7 days, the blood 
glucose data was continually collected every 5 minutes.  

AI4PG dataset - The AI4PG dataset, provided by Federico II 
University Hospital (Naples, Italy), includes information from 25 
T1D patients wearing the HCLS, Medtronic MiniMed 670G 
system [41]. The dataset reports data on meals, insulin doses, and 
CGM measurements for 6/7 days. Subjects range age was (40 ± 
12) years with a duration of diabetes of (15 ± 12) years. Patients 
completed food diaries with information about meals for 7-days, 
by obtaining a dataset of 1264 meals (breakfasts, lunches, 
dinners) represented as time series of pre- and postprandial 
glycaemic levels (mg/dL). The dataset includes details about the 
Manual Boluses (MBs) administered at mealtime based on 
carbohydrate intake of the meal, and an estimate of 
carbohydrates (g), lipids (g), proteins (g), fibers (g) and energy 
intake (kcal) associated with each meal. The glycaemia levels 
from CGM every 5 min, from 30 min before meal to 60 min after 
meal was reported. The data were collected with informed 
consent from eligible subjects and the protocol was approved by 
the Ethical Committee of Federico II University. 

2.2. Proposed Method 

The proposal of this study is the prediction of post-prandial 
glycaemia in T1D patients over one hour after the meal, using a 
FFNN model [42]. The taken approach was inspired by the 
findings reported in [21] and [22], choosing as inputs a 30-min 
window of blood glucose values and 8 associated statistical 
features. More in detail, minimum, maximum, mean, standard 
deviation, pick-to-pick difference, median, kurtosis, and 
skewness were calculated on the glycaemia values. The output is 
the entire glycaemic curve from 5 min to 60 min after the meal, 
and namely 12 output neurons correspond to these values 
sampled every 5 minutes. Prediction performance was then 
evaluated on all the 12 output values simultaneously. The 
number of hidden layers and neurons of the FFNN was set by a 
grid search strategy. To evaluate the performance of the 
proposed system in predicting blood glucose levels, a preliminary 
experiment using DirecNet data was conducted. Subsequentially, 
the system was applied to the self-produced AI4PG dataset. 
Since the goal was to examine how nutritional parameters 
affected postprandial glycaemic response, nine different input 
configurations were tested: 

● #1 Only glycaemia: the model took in input: 
- blood glucose levels (mg/dL) from 30 min before meal 

until mealtime every 5 min 
- glycaemia’s statistical features such as minimum, 

maximum, mean, standard deviation, difference between 

highest and lowest, median, kurtosis, and skewness 
calculated on glycaemia values mentioned above. 

● #2 Insulin, no nutritional factor: in addition to glycaemia values 
and associated statistics, the network also took as input the 
insulin bolus MB (mmol/L).  

● Single-nutritional factors scenarios: in these scenarios, the inputs 
were composed of glycaemia values, statistical features, MB, 
and a single nutritional factor across the following: 
- #3 Carbohydrates (g), 
- #4 Proteins (g), 
- #5 Fibers (g), 
- #6 Lipids (g), and 
- #7 Energy intake (kcal)  
associated with each meal. 

● #8 Insulin, all nutritional factors: the model was supplied 
simultaneously with glycaemia values, statistical attributes, 
insulin bolus and all nutritional factors. 

● #9 No insulin, all nutritional factors: as the previous one except for 
the insulin bolus, the model exploited glycaemia values, 
statistical features, and all nutritional factors. 

The outputs are the 5-min-step values of the blood glucose curve 
over 60 min after the meal. 

Root Mean Square Error (RMSE), defined by equation (1), 
was used to evaluate the prediction performance.  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (

1

𝑇
∑ (𝑦𝑝 −  𝑦𝑚)

2
𝑇

𝑚=1

)

𝑁

𝑝=1

 , (1) 

where 𝑦𝑚 and 𝑦𝑝 represents the measured and predicted BGLs 

at the same instant of time, respectively; 𝑇 is the time, while 𝑁 is 
the total number of blood glucose measurements in the dataset.  

3. EXPERIMENTS  

This section describes the conducted experiments, by 
reporting the pre-processing and the experimental setup. A set 
of preliminary experiments were carried out by using the public 
dataset DirecNet to validate the proposed ML system in the BGL 
prediction task. Then, as the goal of this study was analysing the 
impact of nutritional factors on the BGL prediction capability, 
the system was used on the AI4PG dataset. 

Figure 1 illustrates the key steps of the proposed pipeline, 
which are detailed below.  
  

 

Figure 1. Proposed pipeline. The data pre-processing stage includes the Savitzky-Golay filtering step and statistical features calculation. Then, the dataset is 
split into training, validation, and test set, and scaled using the min-max scaler strategy. Model hyperparameters are tuned by a grid search strategy. Finally, 
the best model is selected. 
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3.1. Pre-processing 

For both public DirecNet and self-produced AI4PG data, the 
pre-processing procedure involved filtering and scaling the data. 

More in detail, from DirecNet dataset, the CGM data 
(mg/dL) of the 12 patients were considered. Based on [43], [44], 
to clean the data from noise and thus improve the performance, 
the data was filtered with Savitzky-Golay technique [45], by 
considering a first-order polynomial with a 15-step filtering 
window on BGLs. Then, the model input was constructed by 
using a 30-minute sliding window across the blood glucose data. 
Moreover, as mentioned, statistical attributes were calculated on 
each window of BGLs data and added as inputs: minimum, 
maximum, mean, standard deviation, difference between highest 
and lowest values, median, kurtosis and skewness.  

As for the self-produced AI4PG data, we considered the 
blood glucose values (mg/dL), the MB (mmol/L), and the 
nutritional factors such as energy intake (kcal) of the meal, 
protein (g), carbohydrates (g), lipids (g), and fibers (g). Data from 
15 patients were used, for a total 1036 meal records. 
Subsequentially, the BGLs were pre-processed by Savitzky-
Golay filter using a first-order polynomial and a 15-step filtering 
window. Therefore, the input of FFNN was composed by 
glycaemic values from 30 min before meal until mealtime every 
5 minutes. In other words, 7 blood glucose values are given in 
parallel as inputs to the model. In addition, as previously 
discussed, the 8 statistics computed on pre-prandial BGLs were 
used as input.  

3.2. Experimental setup 

A Feed Forward Neural Network (FFNN) was investigated 
as a predictor of postprandial blood glucose levels over a 60-min 
time window from the meal. In order to set optimal 
hyperparameters for the proposed FFNN model, a grid search 
strategy was implemented by considering the search spaces 
reported in Table 1. In particular, discrete ranges of values were 
chosen for the number of hidden layers (from 1 to 3), the number 
of neurons per layer (as powers of two) and the learning rate of 
the process. These values fall within reasonable ranges adopted 
in previous studies. Regardless of each single configuration, 
ReLU activation function [46] was chosen for each hidden layer, 
the regularization term (L2 penalty) with weight decay parameter 
was set to 0.0001, Stochastic Gradient Descent (SGD) [47] was 
used as optimization algorithm. The epochs were set to a 
maximum of 1000 with a patience of 20 [42]. For the 
experiments, we exploited intra-subjective and inter-subjective 
approaches on both DirecNet and AI4PG data. The intra-
subjective approach relies on the inherent physiological 
variability among different individuals, examining one patient's 
data at a time and conducting a customized investigation to 
obtain more accurate considerations. Conversely, in the inter-
subject approach, data from all patients are pooled together to 
achieve more universal findings. 

More in detail, for intra-subjective approach, a different 
model for each patient was built. To validate the method, a hold-
out validation strategy was performed by splitting the dataset into 

training, validation, testing sets. In particular, the training set 
contained 70 % of the data, the 10 % of data was used for 
validation, and the 20 % for testing. All data were scaled using 
min-max scaling, by computing the minimum and maximum of 
the training data. Instead, for the inter-subjective case, the data 
of all patients was used to build a single model to investigate the 
possibility that a model trained on data from a different subject 
can generalize to new data. To validate the method, a 5-fold 
cross-validation (CV) was performed. CV is a technique used in 
ML to better evaluate the performance of a predictive model on 
a limited dataset [47]. Generally, in k-fold CV, data are divided 
into k equal-sized folds. The model is trained on k-1 of these 
folds and evaluated on the remaining fold. This process is 
repeated k times and then the performance is averaged across all 
k folds. In this work, for each of the 5 iterations, a portion of the 
training data was used as the validation set, according to a 70 
%/10 % splitting. A min-max scaler was applied considering the 
minimum and maximum values of the training data. 

RMSE was used for model evaluation on the test set. 

4. RESULTS 

In this section, the experimental results both for intra- and 
inter-subjective approaches were reported. 

DirecNet dataset - RMSE between actual and predicted values 
every 5 minutes over a 60-min time window was calculated and 
mean and standard deviation were reported in Table 2. In this 
case, the predictions were based only on BGL, as no information 
about insulin doses and meals is available. In the intra-subjective 
approach, the RMSE is the average on all the considered patients, 
whereas, in the inter-subjective case, the RMSE is the average on 
the 5-fold. As observed, the results are similar in the two 
approaches with a main difference in the standard deviation, that 
in the intra-subject case is greater due to high performance 
variability across different patients. Instead, since each fold 
contains data from different patients, the variability of 
performance between folds was minimal in the inter-subject case. 

AI4PG dataset – In order to evaluate the impact of nutritional 
factors and insulin doses on BGL prediction, a statistical paired 
t-test, with significant level α of 0.05, was exploited. In particular, 
the t-test was used to compare the #1 Only glycaemia results with 
the other ones. The statistical significance was interpreted 
through p-value. 

As can be seen from the results reported in Table 3, a positive 
statistical significance was obtained when the FFNN was fed by 
nutritional factors individually considered. As expected, 
carbohydrates are the factor that has the greatest impact on 
blood glucose prediction [48] in the first 60 minutes after the 
meal, but also other factors such as proteins, fibers, lipids, and 
the energy played a key role.  
Instead, for inter-subjective approach shown in Table 4, no 
statistical significance was found as a p-value always greater than 
the significant level α, reflecting the need to model inter-
individual variability. As a matter of fact, clinical studies showed 
a significant role of the individual characteristics in postprandial 
glucose [49]. 

Table 1. Search space adopted during the grid search. 

Hyperparameters Search Space 

number of hidden layers  [1, 2, 3] 

number of neurons  [32, 64, 128, 256] 

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01] 

Table 2. Mean RMSE with standard deviation for BGL prediction in intra-
subjective and inter-subjective approach on DirecNet dataset. 

Approach mean ± std (mg/dL) 

Intra-subjective 11.4 ± 3.3 

Inter-subjective 11.8 ± 0.9 



 

ACTA IMEKO | www.imeko.org June 2023 | Volume 12 | Number 2 | 5 

5. DISCUSSION 

The goal of this study was to investigate the influence of 
nutritional factors on BGL forecasts.  

To do this, a set of preliminary experiments on a DirecNet 
public dataset allowed to verify the capability of proposed ML-
model in BGLs prediction with respect to the literature. 
However, in literature studies the role of nutritional factors, 
which could help to achieve more effective BGL predictors, is 
not widely investigated.  

This study showed, for the intra-subjective case on AI4PG 
data, that not only carbohydrates but also other nutritional 
factors such as protein, lipids, fibers, and the caloric intake of 
the meal have an impact on the prediction of BGL over a 60-
min time window after a meal.  

It is interesting to note that considering all the nutritional 
factors simultaneously leads to a lower effect on the performance 
with respect to the use of just one nutritional factor. This could 
be due to the Peaking Phenomenon [42], [50] of the proposed 
model, according to which, for finite training sets, the 
performance of a model does not improve as the increasing of 
the features number (in this case nutritional factors). Another 
reason could be a negative interaction between the nutritional 
factors involved.  

Instead, for the inter-subjective case, the nutritional factors 
do not contribute to appreciably improved BGL predictions. 
Thus, the postprandial glycaemic response seems strongly related 
to individual subject characteristics and this agrees with clinical 
studies [48], [49], [51] that have demonstrated a postprandial 
glucose response almost constant in the same subject, while it 
changes among different subjects.  

Hence, a better knowledge of how nutritional factors affect 
BGL prediction could enhance the algorithms controlling insulin 
infusion in HCLS and the calculation of insulin bolus. 

6. CONCLUSIONS 

The goal of this study was to explore how nutritional factors 
may affect the prediction of post-prandial BGL in the 60 minutes 
after mealtime, via machine learning methods. 

A set of experiments to test BGLs prediction by a Feed 
Forward Neural Network was conducted on the self-collected 
AI4PG dataset, which also contained various data of interest like 
insulin doses and intakes of nutritional factors. First, the model 
was validated on the public DirecNet dataset, demonstrating 
capability to be able to obtain an acceptable prediction 
performance over a 60-minute time window. Then, a prediction 
performance analysis was computed on the AI4PG dataset, 
considering different nutritional factors as inputs to evaluate the 
impact of each of them. Finally, the case in which all the 
nutritional factors are considered simultaneously as input was 
explored. 

The obtained results show that nutritional factor information 
can be relevant in BGL forecasts, but this information should be 
employed in a subject-specific fashion. Clearly, this does not 
exclude the possibility of exploring into alternative machine 
learning strategies based on transferring knowledge across 
different datasets, such as Transfer Learning techniques (e.g. 
[52], [53]).  

This study focused on the impact on BGL predictions of 
different nutritional factors in a 60-minute time window after a 
meal. In addition to the global RMSE performance, one could 
also evaluate the performance on different time horizons. For 
instance, this was already investigated in [54], though the 
temporal resolution was coarser (15 minutes in spite of 5 
minutes). In this framework, one could also investigate the 
impact of nutritional factors at different time scales (greater than 
60 minutes). Moreover, eXplainable Artificial Intelligence (XAI) 
[55]–[59] methods could be help in explaining the input-output 
relationships and so the impact of different scenarios on BGL 
prediction. Finally, using more sophisticated neural network 
models, like Long Short-Term Memory, could improve the 
outcome. 
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