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1. INTRODUCTION 

In operating conditions, monitoring turbomachinery blades 
vibrations is necessary for improving structural health techniques 
and for validating the dynamics of the system [1]. In fact, 
uncontrolled vibrations at or close to natural frequencies, 
combined with high thermo-mechanical loads, can lead to 
damage for the machinery and increase the risk of unexpected 
failures [2]. Traditionally, dynamical analysis and measurement of 
vibrations of rotating blade have been performed using strain 
gauge sensors [3]–[5]. However, this technique can have impact 
on the monitoring procedures [6]. In fact, although strain gauges 
have high accuracy and their usage is well established, they have 
relatively limited lifetime in high-temperature conditions, and, as 
intrusive technique, their installation on rotating systems and 
their data transmission are complex steps to achieve [5]. To 
overcome these problematics, non-contact and non-intrusive 
blade vibration measurement techniques have been developed in 
the past years, based on vibration, temperature [7] and ultra-
sound approaches [5], [8]–[12]. One of the most successful and 

promising on-site techniques for axial turbomachinery blade 
dynamics measurements is called Blade Tip-Timing (BTT) [13], 
[14]. BTT is based on the measurement of instantaneous blade 
tip deflection by detecting advances or delays in the Time of 
Arrival (TOA) of the blade tip by means of sensors installed on 
the casing at fixed angular positions [15]. BTT can use different 
types of sensing probes, such as laser probes [16], [17], 
microwave sensors [4], [18], capacitive sensors [19], magneto 
resistive sensors [20], [21], or optical probes [6], [22]–[24]. While 
the measurement principle is the same for all different sensors, 
the optical probes are usually preferred for their performances in 
accuracy and resolution [6], [25]. The blade-sensor interaction 
generates electrical pulse signals. In ideal conditions, where no 
blade vibration is considered (i.e., rigid blade), the TOA is 
determined a priori given the geometry and the dynamic of the 
system [26], [27]. On the other side, considering blades as 
vibrating flexible structures, blade deflections lead to delays or 
advances of the blade tip with respect to the expected TOA [13], 
[28], [29]. These shifts in the TOA are extracted and used for 
determining the amplitude of deflection of each blade [30]. For 
this reason, a thorough identification and definition of sources 
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of uncertainties for tip timing measurement systems (i.e., 
uncertainty on the measurement of the TOA) is essential for 
obtaining a detailed information on the dynamics of the system 
[31]. This will lead to a reliable structural health monitoring, 
giving insights on instrumentation best practices and information 
for validating numerical models [32]. 

Different studies have been carried out on BTT measurement 
systems, focusing on the uncertainty of specific cases technique 
[33]–[36]. 

This study proposes a complete overview of the uncertainty 
sources of a generic BTT system, and their influence on the 
estimation of the TOA. With regard to this, two different probes 
configuration are analysed, typically employed in BTT 
measurement systems, either with or without a reference sensor. 

2. MATERIALS AND METHODS 

A typical BTT measurement system allows the sampling of 
the relative displacement law s(t), supposed periodic, between 
two points of the blade, expressed in a reference system rotating 
with the blade itself, using a non-contact sensor installed on the 
machine casing. The sensors are usually paired in couple, with 
one being the reference sensor and the other the sensor used to 
measure the blade deformation. The first one is typically installed 
at the base of the blade, where there is no deformation, the other 
is placed at the blade tip. By analysing the resulting signals, it is 
possible to obtain the instants in which the blade passes in front 
of the sensors and measure its deformation. If the tip deflects 
from the base, there will be a Δt, in delay or in advance, between 
the signals obtained by the reference and the non-reference 
sensor. In addition to this, the pulse width of the passage signal 
is representative of the duration of the passage itself. In this way, 
a displacement and velocity value can be measured for each 
transition of the blade in front a pair of sensors. 

The problem lies in the fact that the displacement s(t), as well 
as the velocity v(t), i.e. its first derivative, have generally higher 
frequency components than the passage frequency in front of the 
sensors. Hence, s(t) and v(t) are sub-sampled. Nevertheless, it is 
possible, under particular conditions discussed in [37], to 
calculate the harmonics of s(t), even if the sampling is performed 
in such conditions. A method is described that allows to obtain 
the discrete spectrums of the blade displacement and velocity, s(t) 
and v(t), by solving a system of 2M+1 non-linear equations, with 
M being the number of harmonics to be evaluated. 

3. VELOCITY MEASUREMENT PRINCIPLE AND 
DISPLACEMENT USING REFERENCE SENSOR 

In this section it will be described the working principle of a 
BTT measuring system using a reference sensor.  

Considering a blade on a rotating drum subject to bending 
deformations as shown in Figure 1. Let ω be the angular rotation 
velocity of the disk. 

Two reference systems are considered: a fixed one (O', s') and 
a second rotating one (O, s). Both s and s' are curvilinear abscissae 
defined on the circumference containing the blade tips, of radius 
R. In this reference systems, s identifies the position of the 
undeformed blade tip, hence s(t) represents the circumferential 
component of the blade tip displacement over time. It is assumed 
that this displacement changes in time according to a periodic 
law: 

𝑠(𝑡) = 𝑆 ∙ 𝑓(𝑡), (1) 

where 𝑓(𝑡) is a periodic function of period T, fundamental 
frequency f0 = l/T and unitary amplitude, multiplied by a scalar 
S, greater than 0. The function s(t) is the measurand, sampled by 
the BTT measurement technique. Deriving the displacement s(t) 
the velocity v(t) is obtained. Considering the relative motion 
between drum and casing:  

𝑣(𝑡) = 𝑣′(𝑡) −  𝑣0′(𝑡) (2) 

with v’(t) being the velocity in the rotating system and vo’(t) the 
absolute velocity due to drum rotation.  

The blade deflection can be measured by analysing the signals 
generated by the two sensors arranged as shown in Figure 1. 
Figure 2 shows the qualitive representation of these two signals. 
The blade passage is detected when the signal exceeds a 
threshold value Sg. In conditions of undeflected blade, there will 
be a fixed time delay between the threshold crossing of signals 
from sensor 1 and 2. If the blade is deformed, the time delay ΔtAC 

will differ from the one obtained in the previous condition. 
Hence, it is possible to measure the blade deformation by 
measuring ΔtAC.  

This method is valid if some key hypotheses are met; these 
assumptions will inevitably lead to an increase in measurement 
uncertainty.  

First, it is considered that the time interval ΔtAC does not vary 
due to the irregularity of the rotation, hence the angular speed ω 
of the drum remains strictly constant. Second, the ΔtAC in the 

undeformed configuration is equal to the mean ∆tAC̅̅ ̅̅ ̅̅  when the 
blades are vibrating: 

∆𝑡AC
̅̅ ̅̅ ̅̅ =  

1

𝑁
 ∑ ∆𝑡AC(𝑖)

𝑁

𝑖=1

 . (3) 

With these hypotheses, the time delays due to the oscillation 
s(t) can be calculated from: 

𝛿(∆𝑡AC) =  ∆𝑡AC −  ∆𝑡AC
̅̅ ̅̅ ̅̅  . (4) 

Associating the times intervals ΔtAB and ΔtCD respectively to 
the distance δAB and δCD along which the sensors see the blade 
tip, defined as distances corresponding to the crossing of the 
threshold Sg as illustrated in Figure 2, it is possible to compute 
the average velocity respectively between A and B and between 
C and D by the following two equations: 

 

Figure 1. Proposed measuring set-up using a reference sensor (facing the 
base of the blade) to measure the deformation. 
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𝑣0
′ =  

𝛿AB

∆𝑡AB

 ∙
𝑅

𝑟
 (5) 

𝑣′ =  
𝛿CD

∆𝑡CD

 . (6) 

Being the duration of these signals very short, such quantities 
can be reasonably considered as the instantaneous velocity of the 
blade tip and base. Assuming that both s and the blade tip 
velocity remain constant during the passage occurred in ΔtCD, the 
displacement can be calculated as follows:  

𝑠(𝑖) =  
𝛿CD

∆𝑡CD

∙ 𝛿(∆𝑡AC) (7) 

The value of v, assuming that vo’(t) remains constant during 
ΔtAC using (2) can be expressed as: 

𝑣(𝑖) =  
𝛿CD

∆𝑡CD

− 
𝛿AB

∆𝑡AB

 ∙
𝑅

𝑟
 (8) 

The usage in (7) and (8) of the instantaneous velocities of 
rotation allows a considerable extension of the applicability of 
the BTT measurement methods on machines with high degrees 
of irregularity compared to the ones presented in [15], [30], [38], 
where velocity is calculated as ω R, hence assumed constant 
during the entire revolution. In the method proposed here, vo’ 
remains constant only in the ΔtAC period. 

In fact, by using (7) and (8) at each instant of passage of the 
blade in front of a couple of fixed sensors, s(i) and v(i) values are 
calculated.  

4. METHOD WITHOUT REFERENCE SENSOR 

In many applications, it is not possible to install a reference 
sensor in a position useful to detect the passage of a not 
deformed part of the blade, i.e., the blade base. In these cases, it 
is possible to install the sensors as shown in Figure 3, facing only 
the blade tip. It is assumed once again that the time interval does 
not change due to the irregularity of the rotation between the two 
pulses and that the Δt, relative to the passage of the blade in the 
undeformed configuration, is equal to the average value of Δt 
measured over a certain number of revolutions. The time delays 
δ(Δt(i)) are therefore calculated with respect to these average 
values. Assuming a strictly-constant tangential velocity equal to 
ωR, the measured blade deflection Si, as shown in Figure 4, can 
be calculated by the following relation: 

𝑆𝑖 =  𝜔 ∙ 𝑅 ∙  𝛿(∆𝑡(𝑖)) (9) 

Hence, for each couple of pulses, we can have one pair of 
displacement samples s and s’. Average displacement can be 
estimated by (s + s’)/2 and a velocity value v can be estimated by 
(s’-s)/td, where td is the pulse width. 

To estimate the vibration frequency, we can use the following 
considerations. If the displacement of the blade is: 

𝑠 = 𝐴 ∙ cos(𝜔 𝑡). (10) 

Deriving it, the blad tip velocity v is obtained and can be 
expressed by: 

𝑣 =  −𝐴 ∙ 𝜔 ∙ sin(𝜔 𝑡). (11) 

By computing the ratio between the minimum and maximum 
value of s and v, it is possible to estimate the vibration frequency:  

𝑓 =
𝑣max − 𝑣min

𝑠max − 𝑠min

 . (12) 

5. VIBRATION HARMONICS CALCULATION 

The sampling of blade tip vibration by BTT technique 
produces a series of displacement and velocity samples on the 
rotating reference system: one for each passage of the rotating 
blade in front of the couple of the sensors. At each instant of 

 

Figure 2. Time history of the outputs of sensors 1 (reference on the base) and 
2 (on the tip) typically in Volt: the blade is passing when the output exceeds 
the threshold value Sthreshold. 

 

Figure 3. Measuring technique without reference sensor. 

 

Figure 4. Blade Vibration and Sensor Output over time; Measured blade 
deflection at the i-th passage, resulting from the variation δ(Δt(i)). 
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passage, i.e., at time t(i), a deflection value s(i) and a velocity value 
v(i) are calculated.  

The relative motion of the blade tip can be in general 
described by a periodic function over time. As vibrations, this 
periodic motion can be effectively described by a relatively small 
number of harmonics, with the energy being almost completely 
contained in the first harmonics. 

The two functions s(t) and v(t) can be in general approximated 
by a Fourier series limited to M harmonics: 

𝑠(𝑡) =  ∑ 𝐴𝑗 ∙ cos(2 π 𝑣0 𝑗 𝑡) + 𝐵𝑗 ∙ sin(2 π 𝑣0 𝑗 𝑡)

𝑀

𝑗=1

 (13) 

𝑣(𝑡) = 2 π 𝑣0 ∙

∙  ∑ −𝐴𝑗 ∙ sin(2 π 𝑣0 𝑗 𝑡) + 𝐵𝑗 ∙ cos(2 π 𝑣0 𝑗 𝑡)

𝑀

𝑗=1

. 
(14) 

The values of s(t) and v(t) are measured at the instants t(i), not 
necessarily equally distributed in time, as the sensors could be 
placed on the turbine casting at not equi-spaced angles. These 
values s(i) and v(i) can be used to write a system of nonlinear 
equations with unknowns that are the fundamental frequency 
and the 2 M coefficients Aj and Bj of the harmonics. Thus, 
(2 M + 1) equations can be written; to solve this system, it is 
necessary to get enough samples of s(t) and v(t), at least (2 M + 1) 
or more. So, in principle, by the acquisitions of the (2 M + 1) s(i) 
and v(i) samples and the solution of a non-linear system of 
equations, it is possible to estimate the discrete spectrum of the 
harmonics of the vibration. With more than (2 M + 1) samples 
of s(i) and v(i), a least square approach is also possible. The limits 
of these ideas have been discussed in [37], where a complete 
theoretical approach is illustrated. 

6. UNCERTAINTY SOURCES 

The hypotheses made for the description of the BTT 
measurement principle of velocity and displacements samples of 
a rotating blade tip, limit the applicability of the methods. The 
main parameters of the rotating disk with a vibrating blade are ω, 
R, i, v, and s. A first uncertainty source can be identified in the 
variation of the ΔtAC due to the irregularity rotation, expressed 
by: 

𝑖 =
𝜔max − 𝜔min

𝜔average

 , (15) 

with ω being the angular speed of the rotating drum. As a first 
linear approximation, this uncertainty source can be estimated as 
follows: 

𝐸𝑖 = 𝑖 ∙  𝛥𝑡AC (16) 

It was previously assumed that s(t) and v(t) do not change in 
the time period ΔtAC. A linear estimation of changes of s(t) and 
v(t) during ΔtAC can be expressed by the following relations: 

𝐸𝑠 = [
𝑑𝑠

𝑑𝑡
] ∙ 𝛥𝑡AC (17) 

𝐸𝑣 = [
𝑑𝑣

𝑑𝑡
] ∙ 𝛥𝑡AC . (18) 

Assuming the time history of s(t) is a simple sinusoidal 
vibration: 

𝑠(𝑡) = 𝑆 ∙ sin(2 π 𝑣 𝑡) (19) 

the following relations are obtained: 

[
𝑑𝑠

𝑑𝑡
]

max
=  2 π ∙ 𝑣 ∙ 𝑠 (20) 

[
𝑑𝑣

𝑑𝑡
]

max
=  4 π2 ∙ 𝑣2 ∙ 𝑠 . (21) 

By replacing these values in (17) and (18), it is possible to 
estimate the maximum effect on uncertainty due to changing of 
s and v over ΔtAC: 

𝐸𝑠 = 2 π ∙ 𝑣 ∙ 𝑠 ∙ 𝛥𝑡AC (22) 

𝐸𝑣 = 4 π2 ∙ 𝑣2 ∙ 𝑠 ∙ 𝛥𝑡AC . (23) 

Considering that the maximum of ΔtAC is obtained when the 
absolute speed of the blade tip is at minimum, (22) and (23) 
become: 

𝐸𝑠 = 2 π ∙ 𝑣 ∙ 𝑠 ∙
𝛿AC

𝜔 𝑅 − 2 π 𝑣 𝑠
 (24) 

𝐸𝑣 = 4 π2 ∙ 𝑣2 ∙ 𝑠 ∙
𝛿AC

𝜔 𝑅 − 2 π 𝑣 𝑠
 . (25) 

(16), (24) and (25) estimate the uncertainty amplitude, therefore 
can be used to identify the conditions of applicability of the 
measurement methods previously described.  
Knowing this, it is possible to change the parameters of the 
measurement system, in order to properly choose and install the 
sensors in convenient locations, as well as find the optimal 
acquisition set up. 

The resolution Δs of the displacement measurement is given 
by the δ(ΔtAC ) resolution. Starting from: 

𝑅𝑠 =
∆𝑠

𝑆
 (26) 

and being trs the resolution in the time measurements, i.e., 
sampling time, we can write: 

𝑡𝑟𝑠 =  𝑅𝑠 (𝛿(∆𝑡AC))max (27) 

and being: 

(𝛿(∆𝑡AC))max =  
𝑆

𝜔 ∙ 𝑅
 . (28) 

trs strictly affects the resolution on the measurement of the 
displacement s. A useful equation can be defined to relate trs to 
Rs. This relation becomes fundamental when choosing the 
resolution of the time measurement, in order to achieve the 
target resolution of the blade tip displacement s 

𝑡𝑟𝑠 =  𝑅𝑠 

𝑆

𝜔 ∙ 𝑅
 . (29) 

The resolution on blade tip velocity measurement depends 
essentially on δ(ΔtCD) measurement resolution. As for the 
displacement measurements, the following equation is obtained: 

𝑡𝑟𝑣 =  𝑅𝑣 ∙ (𝛿(∆𝑡CD))max (30) 

and being 
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(∆𝑡CD)min =  
𝛿CD

𝜔 + 2 𝜋 ∙ 𝑣 ∙ 𝑠
 (31) 

(∆𝑡CD)max =  
𝛿CD

𝜔 − 2 π ∙ 𝑣 ∙ 𝑠
 (32) 

Hence 

(𝛿(∆𝑡CD))max =
(∆𝑡CD)max − (∆𝑡CD)min

2
 . (33) 

Therefore, from (33), it is possible to define another useful 
formula to choose sampling time of sensor signals in order to 
have a sufficient resolution for tip time velocity measurement: 

𝑡𝑟𝑣 =  2 π ∙ 𝑆 ∙ 𝛿CD ∙
𝑅𝑣

𝜔2 ∙ 𝑅2 − 4 π2 ∙ 𝑣2 ∙ 𝑠2
 (34) 

Further causes of uncertainty can also be due to: variations of 
δAB and δCD; definition of the threshold Sg; relative radial motion 
between sensor and blade tip; noise in sensors signals. This 
analysis has been developed in [39]. 

7. CONCLUSION 

Some basic models for blade tip timing measurement systems 
have been defined: the first using one of the two sensors as a 
reference; the second with both sensors facing the blade tip.  
Although the second approach is more versatile and easier to 
install, using one sensor as a reference is needed when the 
analysed machineries have higher degrees of irregularity. 

Uncertainty on the parameters of these models has been 
theoretically analysed. Some simple formulas to relate the 
uncertainty and resolution obtained with reference to 
measurement system chosen parameters and sensor installation 
have been proposed. These formulas could be very useful to 
make proper choices over measurement system components, in 
relation to blade tips expected vibration characteristics and 
turbomachine parameters. So, this work can be used for blade tip 
timing measurement system design and installation guidelines. 
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