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1. INTRODUCTION 

Impedance spectroscopy [1] is used in different fields 
ranging from biomedical applications [2] to electrochemical 
applications such as the study of fuel cells [3]. Other 
applications include monitoring of anti-corrosion coatings [4] 
and sensor modelling, for example, of a humidity sensor [5]. 
The first step in performing impedance spectroscopy consists 
on obtaining the impedance spectral response [6]. This can be 
accomplished for example using an impedance vector-analyser 
or through a two-channel data acquisition system where a sine-
fitting algorithm [7] is used to extract the impedance magnitude 
and phase [8]. An improved version of the basic sine-fitting 
algorithm, called 7-parameter sine-fitting [9], that is well suited 
as a digital signal processing algorithm to estimate the 
impedance parameters has been proposed. 

Usually, to fit the acquired spectral data, some knowledge of 
the underlying processes is needed to suitably choose a circuit 
topology that models the process under study. With a known 
circuit topology, the Complex Non-Linear Least Squares 
(CNLS) method can be used to obtain the circuit parameters of 
the chosen model [10]. The CNLS implemented in [11] is based 
on the Levenberg-Marquardt algorithm and requires the input 
of the starting search values and then, it will efficiently 
converge to the local minima near this set of initial parameters. 

To avoid the convergence to the local minima, a new approach 
[12] based on a hybrid genetic algorithm (GA) [13] was 
proposed. This approach has been used to characterize a 
viscosity measurement system [14]. 

Gene Expression Programming (GEP) [15] was proposed as 
a method to search for suitable circuit topologies without any 
prior knowledge of the equivalent circuit [16]. In that work, a 
basic genetic algorithm was used to estimate the values of the 
circuit components. A different approach, based on GEP and 
cultural algorithms, was used for the modelling of 
electrochemical phenomena in [17]. 

In this work, which is an extended version of [18], GEP is 
interleaved with an improved version of the genetic algorithm 
to identify the circuit topology and circuit component values. A 
more effective fitness function, which works well for 
impedance responses that include resonances, is also used in 
this paper. In order to make the numerical simulations more 
realistic, measurement uncertainty is included for the magnitude 
and phase impedance data. Further validation of the algorithm 
is performed by its application to impedance measurements 
performed on a circuit that models the humidity sensor 
presented in [19] and on the viscosity sensor used in [14]. 

Impedance circuit identification through spectroscopy is often used to characterize sensors. When the circuit topology is known, it has 
been shown that the component values can be obtained by genetic algorithms. Also, gene expression programming can be used to 
search  for an adequate  circuit  topology.  In  this paper, an  improved version of  the  impedance  circuit  identification based on gene 
expression programming and hybrid genetic algorithm is presented to both identify the circuit and estimate its parameters. Simulation 
results are used to validate the proposed algorithm  in different situations. Further validation  is presented from measurements on a 
circuit that models a humidity sensor and also from measurements on a viscosity sensor.
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2. EVOLUTIONARY ALGORITHMS 

Equivalent circuit identification from impedance 
spectroscopy involves identifying the circuit topology and then 
optimizing the values of each component in that circuit. This is 
accomplished in two interleaved steps; (i) a GEP 
implementation is used to identify potential circuit network 
topologies that can model the measured impedance; (ii) a hybrid 
genetic algorithm is applied to each topology to obtain the 
values of the components that minimize the cost function. In 
the next subsections these two algorithms are described. 

2.1. Equivalent Impedance Parameters Estimation 

For a given circuit topology, the optimization of the 
component values is performed using a hybrid genetic 
algorithm [12]. Initially, a population of M chromosomes is 
created where each chromosome is composed by the values of 
each component in the current circuit topology. The fitness of 
each chromosome is usually evaluated through the cost 
function 
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where  iZ   is the measured impedance at angular 

frequencies 2i if  ,  est iZ   is the estimated impedance 

obtained with the component values in the chromosome and P 
is the number of measurement frequencies. However, in circuits 
that exhibit resonance-like behaviour, the frequency points in 
the resonance region could have little weight in the final value 
of the cost function. This led to having good candidate circuits 
being discarded by the genetic algorithm. To tackle this issue, a 
different cost function that does not suffer from these 
problems was used 
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With this cost function, the absolute error of the impedance 
estimation is normalized by the estimated impedance, therefore 
giving more weight to frequency points in the resonance region. 
If information regarding the quality of each measurement value 
is available (e.g., experimental standard deviation), weights can 
be used in (2) to make sure that the fitting algorithm is more 
influenced by the measurement values with reduced uncertainty. 

The fitness of each chromosome is used to evolve the 
population based on survival of the fittest. Just like in a 
biological population, there is reproduction and mutation. In 
reproduction, pairs of chromosomes are randomly chosen using 
a biased roulette wheel selection scheme where the fittest 
elements have a higher probability of being chosen to 
reproduce. Each pair of chromosomes may create two 
offspring through the crossover operation or move directly to 
the next generation. In mutation,  randomly chosen positions 
on some chromosomes are replaced by random generated 
values. Mutation is vital to maintain population diversity and 
escape local minima of the cost function. 

Traditional minimum search algorithms, such as the 
Levenberg-Marquardt algorithm and the Gauss-Newton 
method, are very sensitive to the starting search values and are 
not able to escape local minimums of the cost function. 
However, genetic algorithms are very efficient in finding the 

region of the absolute minimum of multi-dimensional cost 
functions even when the search space is vast and local minima 
are present nearby [20]. Although genetic algorithms are 
suitable to find the global minimum of the cost function, they 
take a long time to converge to the actual minimum. Therefore, 
a Gauss-Newton method is applied using the final results of the 
genetic algorithm as starting values for the Gauss-Newton 
method. 

2.2. Impedance Network Topology Identification 

The identification of the equivalent impedance network 
topology is performed using GEP. Each candidate circuit is 
expressed as a gene which contains components (R, L and C) 
and operators (series and parallel). The gene is composed of a 
head of size h and a tail of size t, with 1t h  . The head may 
contain components and operators while the tail is comprised 
only of components. This is fundamental to the operation of 
GEP since it guarantees a valid circuit topology under all 
circumstances. 

Each gene is converted into a binary tree by filling it in a 
breadth-first fashion as proposed in [15]. This tree can then be 
recursively run to obtain the equivalent circuit. Breadth-first 
traversal of the tree, also known as width first, consists on 
filling the tree from left to right and top to bottom. When there 
are no more node positions to fill in the current level of the 
tree, the tree filling starts from left to right in the next lower 
level. 

In this implementation of GEP, the binary tree is completely 
bypassed and is only used to help visualize the circuit topology. 
As an example, Figure 1 shows an electric circuit that will be 
used as test impedance in the numerical results. The GEP gene 
that codes this circuit is presented along with the corresponding 
binary tree. The numbers in the tree leafs correspond to the 
type of component R, L or C for 1, 2 or 3, respectively. Notice 
that, in the 21 long gene, only the first 9 elements (shown in 
bold) correspond to the described circuit. The remaining 
elements are also part of the gene but do not define the circuit. 
Also noticeable is that the last 11 elements (the tail) are all 
components. 

Initially, a population of N circuit topologies is randomly 
created according to the previously described rules. The hybrid 
genetic algorithm is then executed for each candidate topology 
gene to optimize its component values and obtain its fitness. 
Afterwards, this population is used to create a new generation 
of circuit topologies trough the GEP operations: replication, 
mutation, transposition and recombination [15]. The new 

          
 

Gene + 1 + 2 // // 1 2 3 + 1 1 2 1 3 1 2 1 2 2 3

Figure 1. Example of circuit  topology and corresponding binary  tree along 
with coding gene for GEP with h + t = 21. The coding region is shown in bold 
and ends at position 9. 
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generation is again evaluated by the hybrid genetic algorithm 
and the process repeats itself until a valid circuit is found (i.e., 
until its fitness is better than a predefined threshold) or the 
maximum number of generations is reached, in which case the 
algorithm failed to find a suitable circuit.  

In the creation of a new generation, GEP operators are 
applied sequentially. The replication operator creates an 
intermediate population by choosing, based on a biased roulette 
wheel selection scheme, which genes survive from the original 
population. The fittest elements have a higher probability of 
being chosen and so multiple copies of them may appear in this 
intermediate population. Genes with low fitness may not be 
chosen at all. 

Mutation is applied to the intermediate population by 
changing the value of a random position inside some randomly 
chosen genes. If the position is inside the head it can be 
mutated into a circuit component or an operation, while if it is 
in the tail it is restricted to mutate only into a circuit 
component. This is mandatory to maintain the structural 
integrity of the genes. 

Insert sequence transposition (IS transposition) is then 
applied to some randomly chosen genes of the population that 
resulted from the mutation. In each chosen gene, a sequence of 
random length is transposed to any position in the head except 
to the root. An example is shown in Figure 2A where, for the 
sake of simplicity, a smaller gene with h + t = 11 is used. The 
insertion sequence has length 2 and starts on position 5. The 
sequence was inserted at the randomly chosen position 2 and 
the head elements below the insertion point are moved 
downstream inside the head. However, to maintain gene 
integrity, the tail remains untouched and the last two positions 
of the original head are discarded. This operator creates a new 
intermediate population to which root insertion sequence 
transposition is applied. 

Root insertion sequence transposition (RIS transposition) is 
very similar to the previous operator, except that the insertion 
point is always the root. The insertion sequence is also of 

random length but must start with an operation. Figure 2B 
illustrates this behaviour, where the insertion sequence has 
length 3 and starts in position 5. It is inserted at the root and 
the remaining head elements are moved downstream, with the 
last 3 elements being discarded in order to maintain the original 
tail. 

The next operation is the 1 point recombination. Two genes 
and a crossover point are randomly chosen. Then, the two 
genes exchange part of their information as shown in 
Figure 2C. In the example, the crossover point is 3 and 
therefore positions 1 to 3 are exchanged between the two 
genes. The last operation is the 2 point recombination, where 2 
crossover points are chosen. In the example presented in Figure 
2D, positions 3 to 7 are exchanged between the two genes. In 
recombination, the integrity of the gene structure is always 
assured. 

At the end of this sequence of operations, a new generation 
of candidate circuits has been created. Also, due to the use of 
elitism, a copy of the best circuit topology is always included in 
the new population. These operations can profoundly change 
the population genes and, although the genes are of fixed 
length, their circuit coding region varies, resulting in trees of 
different sizes and complexity. This means that GEP can add 
branches to the circuit or eliminate them, while searching for 
the circuit that best fits the measured data. Before applying the 
GA, a basic circuit simplify algorithm searches the tree for 
operations that have, on the two leafs, identical type 
components. These correspond for example to two identical 
type components in series or in parallel and can be replaced by 
a single component.  

3. NUMERICAL RESULTS 

In this section, the circuit in Figure 1 is used to test the 
proposed algorithm and the threshold to stop the algorithm is 
set at 0.0002%  . The spectral response of this impedance 
with Rs = 10 , R = 1000 , Ls = L = 1 mH and C = 1 F was 
calculated for P = 100 linearly spaced frequency points in the 
100 Hz to 10 kHz range and random errors were included in 
the data to simulate real measurement conditions, with an 
uncertainty of 0.08% in the impedance magnitude and 0.05º in 
its phase. The encoding gene chosen by the algorithm is 
presented in Figure 3, along with its corresponding binary tree. 
The resulting equivalent circuit is presented in Figure 4 with the 
estimated component values. The corresponding frequency 
responses are shown in Figure 5. 

Although the equivalent circuit does not have the same 
topology as the original impedance circuit, the effect of the 

 
Figure 2. Examples of the main GEP operations on genes with h + t = 11. 

 
 

Gene + // // + 3 + // 1 2 2 1 3 2 2 2 1 3 2 2 2 2

Figure 3. Encoding gene (in bold) and corresponding binary tree obtained by 
GEP  and  hybrid  genetic  algorithm  for  the  impedance  in  Figure  1  with 

RS = 10 , R = 1000 , LS = L = 1 mH and C = 1 F. 
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capacitor in the first parallel circuit (the 4.934 pF capacitor) and 
of the inductor in series with the resistance in the second part 
of the circuit (the 900.3 H inductor) are negligible in the 
frequency range under study, as can be seen in Figure 5 where 
the spectral response of the two circuits is shown. Different 
runs of the algorithm yield different equivalent circuits, but 
always in good agreement with the spectral response of the 
original circuit. It should be noted that, in many applications, an 
equivalent circuit with physical meaning is needed, which is a 
requirement that is currently not satisfied by the GEP and GA 
algorithm. 

In Figure 6, the errors of the fit for this situation are 
presented. In Figure 6A, the difference between the magnitudes 
of the simulated and estimated impedance are shown, while in 
Figure 6B, the difference of the simulated and estimated phase 
are depicted. Note that, the cost function must combine the 
magnitude and phase information to estimate a single value that 
quantifies the fit of each circuit and corresponding estimated 
circuit parameters. So, in Figure 6C the magnitude of the 
difference between the two impedances (corresponding to the 
distance between the two complex numbers that represent the 
estimated and simulated impedances) is shown. In order to 
ensure that higher impedance magnitudes that occur at certain 
frequencies don’t overly influence the cost function solely due 
to their higher magnitude, the magnitude of the difference 
between the estimated and simulated impedance are normalized 
by the estimated impedance magnitude. This corresponds to 
each frequency point in cost function (2) and is shown, for this 
case, in Figure 6D. The average of the squared values 
represented in Figure 6D corresponds to the fitting error. In 

this situation 61.2 10 0.00012%    . 

Since it is not realistic to measure impedance values for 100 
different frequencies, the usefulness of the proposed algorithm 
depends on its performance with fewer measurements. In 
Figures 7, 8 and 9 the results obtained with only 10 frequency 
points are presented.   

The circuit topology is quite similar to the original circuit 
with just the addition of a capacitor in parallel with the correct 
circuit. 

As can be seen in Figure 8, the magnitude and phase 
responses of the estimated circuit closely match the original 
circuit frequency responses. Therefore, the extra capacitor 
relative to the original circuit (the 14.26 pF capacitor), has a 
negligible effect on the overall impedance at the frequency 
range under study. Note that, even without any measured point 
in the resonance region, the algorithm still finds a correct 
equivalent circuit. Figure 9 presents the normalized impedance 
errors for this case, corresponding to a fitting error of 

0.00013%  . 
In the third analysis of the performance of the proposed 

algorithm, the circuit of Figure 1 is considered, but the 
simulated impedance values are narrowly centred near the 
resonance. In this case, 11 frequency points are used in the 
4 kHz to 6 kHz range. In Figure 10, the magnitude frequency 
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Figure 5. Impedance magnitude and phase of the circuit  in Figure 1 (lines), 
estimated  impedance magnitude and phase corresponding to the circuit  in
Figure 4 (dashed lines overlapped with lines) and frequency points used for 
estimation (squares for magnitude and circles for phase). 
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Figure 6. Four representations of the fitting errors. 

 
Figure  4.  Circuit  topology  and  component  values  corresponding  to  the 
binary tree shown in Figure 3. 
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response of the original circuit and that of the estimated circuit 
are compared with the values considered for the circuit 
estimation. Although the frequency points are very close to the 
resonance, the magnitude estimation is quite good even in the 
complete frequency range represented. 

Figure 11 shows the results obtained for the phase. In this 
case, the overall estimation is quite good near the resonance but 
nearer the edges of the complete frequency range, there are 
some small noticeable differences. In this case, the error of the 
fit is 0.00014%   (Figure 12). 

4. EXPERIMENTAL RESULTS 

The next step in testing the developed algorithm is to 
evaluate its performance when applied to real measured data. 
Measurements were performed in a circuit that models a 
humidity sensor [19] and in a previously analysed viscosity 
sensor [14]. 

4.1. Humidity Sensor Circuit Model 

The circuit that models the humidity sensor is represented in 
Figure 13. The component values of the equivalent circuit of 
the sensor change with relative humidity and the case 
corresponding to a relative humidity of 54% is considered. The 
component values are presented in Table 1. 

The circuit in Figure 13 with the component values shown 
in Table 1 was assembled and its spectral response was 
measured for P = 11 logarithmic spaced frequency points in the 
1 Hz to 100 kHz range. The proposed algorithm was then 
applied to these measurements to find the equivalent circuit and 

 
Figure  7.  Circuit  topology  and  component  values  obtained  with  the
proposed  algorithm  for  10  different  frequencies  in  the  100 Hz  to  10  kHz
range. 
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Figure 8. Impedance magnitude and phase of the circuit  in Figure 1 (lines),
estimated  impedance magnitude and phase corresponding to the circuit  in
Figure 7 (dashed lines overlapped with lines) and frequency points used for
estimation (squares for magnitude and circles for phase).  
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Figure 9. Normalized impedance errors for 10 linearly spaced frequencies in
the 100 Hz to 10 kHz range. 
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Figure 10.  Impedance magnitude of the circuit  in Figure 1 (line), estimated 
impedance  magnitude  corresponding  to  the  original  circuit  (dashed  line
overlapped  with  line)  and  frequency  points  used  for  the  estimation 
(squares) in the 4 kHz to 6 kHz range. 
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Figure  11.  Impedance  phase  of  the  circuit  in  Figure  1  (line),  estimated 
impedance  phase  corresponding  to  the  original  circuit  (dashed  line)  and 
frequency  points  used  for  the  estimation  (circles)  in  the  4  kHz  to  6  kHz
range.  
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Figure 12. Normalized  impedance errors for 11  linearly spaced frequencies 
in the 4 kHz to 6 kHz range. 
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respective component values. Figure 14 shows an example of 
the encoding gene and the respective binary tree that was found 
by the algorithm. The corresponding equivalent circuit with the 
component values is presented in Figure 15. 

Although different runs of the algorithm on the measured 
data yield different equivalent circuits that do not resemble the 
original circuit topology shown in Figure 13, the spectral 
response of the resulting circuit closely matches the 
measurements performed on the original circuit, as shown in 
Figure 16. Thus, it is possible to conclude that the circuit in 
Figure 15 is equivalent, at least in the measured frequency 
range, to the original circuit although it might not be equivalent 
to the sensor equivalent circuit at different relative humidity 
values. The error of the fit is 0.032%   (the threshold was 
set, in this case, to 0.035% due to noisy measurements). 

4.2. Viscosity Sensor 

The viscosity sensor consists on a vibrating wire cell whose 
resonance characteristics change with the viscosity of the liquid 
in which the wire is immersed and also on its temperature. 
From the measured frequency response of the sensor, it is 
possible to obtain its resonance characteristics and in turn 
obtain the viscosity of the liquid. Further details on the working 
principle of this sensor can be found in [14]. 

The viscosity sensor wire was immersed in diisodecyl 
phthalate (DIDP) liquid at 15ºC. Its impedance was then 
measured for P = 21 frequency values in the range 500 Hz to 
1.5 kHz. From the application of the GEP and the hybrid 
genetic algorithms resulted the equivalent circuit and respective 
component values presented in Figure 17. 

The impedance frequency response of the equivalent circuit 
in Figure 17 is plotted in Figure 18 along with the 21 measured 
points. Both magnitude and phase are in close agreement with 
the measurements showing that, also in this case, the algorithm 
was successful in finding an equivalent circuit. The error of the 
fit is 0.00008%  , while the threshold was set at 0.0001%. 

5. CONCLUSIONS 

In this paper, an improved version of impedance 
spectroscopy using evolutionary algorithms was presented, 
where GEP is used to evolve the target circuit topology and a 
hybrid genetic algorithm estimates the circuit component 
values. A detailed description of the GEP algorithm and 
operators is presented as well as a summary of the hybrid 
genetic algorithm. 

 
Figure 13. Humidity sensor equivalent circuit. The component values change 
with relative humidity [19]. 

 
 

Gene // + // 1 3 + 3 + // 3 2 2 1 3 3 1 2 2 1 1 3

Figure  14.  Example  of  encoding  gene  (in  bold)  and  corresponding  binary 
tree  obtained  by  GEP  and  hybrid  genetic  algorithm  for  the  measured 
spectral response of the sensor equivalent circuit with RH = 54%. 

Table  1.  Component  values  for  the  humidity  sensor  equivalent  circuit  at 
RH = 54%. 

Component  Value 

Rs  1.18  

Rw  624.5  

Rb  30 M 

Rp  120.97 k 

Cb  0.68 F 

Cp  2.32 F 

Cpw  5.87 nF 

0.4183 F 0.1130 H

620.0 

10.76 H

5.711 nF

1.746 M0.1275 F

 
Figure  15.  Circuit  topology  and  component  values  corresponding  to  the 
binary tree shown in Figure 14. 
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Figure 16. Estimated  impedance magnitude and phase (lines) of the circuit 
in  Figure  15  versus  the  measured  impedance  magnitude  (squares)  and 
phase (circles) of the circuit in Figure 13. 
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To improve the convergence properties of the algorithm, a 
different fitness function, which works well with impedance 
sweeps that include resonances, has been proposed. Numerical 
results show that even with measurement uncertainties and few 
frequency impedance measured values, the presented algorithm 
is capable of finding an equivalent circuit. The residual errors in 
the magnitude and phase of the estimated impedances were 
used to analyse the performance of the algorithm. 

The algorithm was also applied to measurements of a circuit 
that models a humidity sensor at a specific relative humidity and 
to a viscosity sensor. In both cases it was found that different 
runs of the algorithm yield different equivalent circuits that 
nonetheless closely match the measured spectral responses. A 
method for further automatic simplification of the obtained 
circuits is currently under development. 
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Figure 17. Viscosity sensor equivalent circuit. 
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Figure 18. Estimated  impedance magnitude and phase (lines) of the circuit
in  Figure  17  versus  the  measured  impedance  magnitude  (squares)  and
phase (circles) of the viscosity sensor. 


