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1. INTRODUCTION 

Special measuring systems are being developed for 
different areas of industry improving quality in many 
aspects. Today we often require an automated and fast 
measuring procedure alongside with high accuracy. 
Measuring of the electromagnetic interference (EMI) spectra 
has been obviously a time consuming procedure. 
Conventional analog EMI receivers are based on a 
superheterodyne principle. Here, only one narrow 
frequency band is transferred to the detector at a time via 
an intermediate frequency amplifier. Therefore time-
consuming sweeping through the whole measured 
frequency range is needed and several tens of minutes are 
often required to complete the whole EMI spectrum 
measurement. The advantage of such an arrangement is the 
high dynamic range of the spectrum measurement required 
by EMI standards. 

For the commercial production of electronic devices, 
EMI measurements are inevitable but time consuming. 
Automation helps to optimize a measurement process [1] 
and offers some reduction in the production time. 
However, it is still limited by the superheterodyne 
principle of traditional receivers. The introduction of new 
faster EMI measuring principles would bring significant 
benefits in time to market and costs and could probably 
support the idea of just in time production [2]. 

The time domain EMI (TDEMI) system [3] was 
introduced quite recently. It is based on a multiresolution 
analog-to-digital converter (MRADC) technology, which 
engages several parallel input channels to achieve the 

 
Figure 1. Block structure of a TDEMI system.  
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ABSTRACT 
Multiresolution  analog‐to‐digital  converters  (MRADC)  are  usually  used  in  Time  Domain  ElectroMagnetic  Interference  (TDEMI) 
measuring  systems  for very  fast  signal  sampling with a  sufficient dynamic  range. The properties of  the  spectrum measured by  the 
TDEMI system influenced by imperfections in the MRADC are analyzed in this paper. Errors are caused by imperfect matching of the 
offset and gain and phase of the circuits used in parallel input channels typical for the MRADC. For deep analyses of MRADC behavior, 
a precise mathematical model has been created using the concept of additive error pulses. Furthermore, a dedicated process of the 
identification  of  discrepancy  parameters  from  experimental  data  is  proposed.  Identified  parameters  enter  the  expressions  of  the 
model and enable side to side comparison of experimental and theoretical results.
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required quality of the system. The block structure of a 
TDEMI device is depicted in Figure 1. The power splitter 
distributes the analog signal to all paths and 3 channels are 
common at present. All ADCs are very fast sampling ones 
of the same type and range. Separate amplifiers/attenuators 
provide different signal ranges and voltage resolutions of 
individual channels. Channel 1 covers the entire range. The 
range of the next channel is part of the previous one and 
therefore the input signal will likely exceed the range of 
subsequent channels. Here, the limiter protects the ADC 
input from overvoltage. All channels are simultaneously 
sampled and converted by identical 8 or 10 bit very fast 
flash ADCs. The final discrete value is created by extracting 
the output from that ADC offering the best resolution but 
with the range still covering the actual input value. Short 
time Fast Fourier Transform (FFT) is finally applied to the 
sampled data [4] to obtain one representation of the whole 
frequency spectrum. 

TDEMI devices process the complete spectral content at 
a time and the parallel structure of the MRADC should still 
allow a high dynamic range of measurements [5]. Some 
influence of the quantization process on the measured 
spectra [6] remains also for the MRADC [7]. However 
practical experience shows that there are more serious error 
sources in real systems [8]. It is hardly possible to avoid the 

offset or phase shift between parallel input channels 
likewise the gain error differences. Similar problems occur 
in ADC systems with time interleaving or with 
reconfiguration structure [9] where offset or gain mismatch 
of parallel channels degrades the overall performance. So 
serious signal discontinuities could arise in points where the 
system switches between channels. Spurious spectrum 
components generated by those discontinuities significantly 
restrict the spurious free dynamic range (SFDR) of a real 
TDEMI device. 

The paper deals with identification of TDEMI device 
errors and with the design of a precise error model. 
Imperfections of a real TDEMI system will be explained in 
chapter 2. A pulse model of the dominant error of 
spectrum measurements will be discussed in chapter 3. In 
the next chapter the identification process of channel 
discrepancy will be presented which offers finding model 
parameters. Finally we will be able to compare the 
proposed error model with experimental results. 

2. IMPERFECTIONS OF REAL TDEMI SYSTEM 

The concept of an MRADC lies in the use of several 
parallel ADCs each with uniform but different quantization 
steps. The minimum quantization step for the 
multiresolution quantization corresponds to the step of the 
channel with the lowest range. Actually, the system range is 
divided into subranges with different quantization steps. 
Even if perfectly realized such system generates disturbance 
in the quantized spectrum, as was shown in [7] for a 
harmonic signal. In the experimental waveform obtained 
from the TDEMI device output and plotted in Figure 2a we 
can observe that in distant parts from the zero axis there is 
a significant quantization error. However, in a real system 
there are more serious error sources. The main task of the 
analog input circuits is to split the input signal into 
multiple paths with precisely set gains. This is a non-trivial 
task because ideally a uniform amplification level should be 
achieved for the frequency range up to several GHz 
without introducing a different phase shift between 
channels. Channel mismatch compensation techniques have 
been developed especially for time interleaved ADCs [10]. 
On the other hand, publications describing properties of 
TDEMI measurement systems are dealing mostly with a 
perfectly matched power splitter and a digital processing 
module. In a real system amplitude and phase frequency 
characteristics in each channel are not perfectly matched 
over the whole frequency range. Moreover it is hardly 
possible to avoid the offset and slope difference between 
channels as the gain must be different in each channel. In 
the example of the time representation of the signal 
(Figure 2a, frequency 175 kHz and amplitude 0.128 V) such 
discontinuities are especially evident in the negative portion 
of the waveform around the threshold of ca. 60 mV 
between the upper two channels of a three-channel 
MRADC. Error components resulting from those 
discontinuities significantly restrict the SFDR of the 
spectrum measurement. We will demonstrate that channel 
discrepancy is the main contribution to spurious 

 

 
Figure 2. Experimental harmonic signal measured by a  real TDEMI system: 
a) time representation inside the TDEMI unit; b) measured spectrum. 
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components visible in the measured spectrum depicted in 
Figure 2b obtained for the same harmonic input signal. 

Experiments suggest that the main spurious components 
of TDEMI measurement results are caused by 
discontinuities in the time domain signal representation. An 
harmonic input signal may be considered as suitable for 
modeling the measured interference of devices operating on 
the switched mode power supply principle, where the 
disturbance is like a mixture of sinusoids. We will assume a 
two-channel MRADC as the major influence seems to be 
the mismatch between the upper two channels. Differences 
between channels result in disturbances similar to time-
domain error pulses (and not only for the harmonic input) 
like sketched in Figure 3. Discontinuities present in the 
waveform reconstructed from the sequence of samples 
obtained by the MRADC could be modeled as an additive 
impulse error signal. Then, the spectrum of the impulse 
disturbance could be used to precisely model the resulting 
spurious spectral components. This is the fundamental 
assumption used in our analysis. Two rectangular pulses 
represent the offset between channels while two cosine 
shaped pulses describe the gain and phase discrepancy. 

3. ANALYTICAL EXPRESSION OF ERROR MODELS 

The proposed idea of pulse representation of errors can 
be utilized in the simulation model or for the evaluation of 
the analytical model. Two error pulses of the model per 
period of the input signal enable precise estimation of the 
real error if proper shapes of pulse-forming waveforms are 
used. For an harmonic input signal the harmonic waveform 
(yellow “cosine original” in Figure 3) with the right offset, 
gain and phase composes pulses for such accurate 
simulation model. Compared to a real system the model 
neglects quantization errors, however, it is precise for the 
estimation of the distortion caused by the discrepancy 
between channels and can be used as a reference for other 
approximative models. 

In a TDEMI system the measured spectrum is digitally 
evaluated from samples. Digital systems calculate the 
spectrum by Discrete Fourier Transform (DFT) usually 
using an FFT algorithm. DFT output approximates 
coefficients of Fourier series, which decomposes the given 
periodic function u(t) with frequency f0 into the sum of 
harmonic functions. Therefore, speaking about spectrum, 
we are trying to find coefficients Un = an-jbn (n=0,1,2; 
b0=0) of the Fourier series. 

The error model is composed of two rectangular and 
two cosine pulses and at first we need to find the spectral 
components of all the pulses. Rectangular pulses describe 
the offset between channels, i.e. the offset of the erroneous 
cosine original (the offset of the yellow waveform in Figure 
3). The zero coefficient of one rectangular pulse is 
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where 0 is the angular frequency of pulses, A is the 
amplitude of the rectangular pulse, tr and tf is the time of 
rising and falling edge. Cosine pulses of the model involve 
the gain and phase discrepancy. Spectral components of one 
cosine pulse are 
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and for n>1 
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In this case, besides the frequency, times of edges and the 
amplitude of the cosine original A also its phase  enters 
the argument of expressions. For n>1 the formulas are 
more complicated. Therefore we have defined auxiliary 

 
Figure 3. Basic idea of the pulse error model. 

Table 1. Auxiliary functions. 
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functions (see Table 1) which have allowed those simplified 
notations (7)(8). 

To write the final expression of spectral error 
components we follow the idea of two actual error pulses 
mathematically represented by two pairs of pulses. The 
time of the rising and falling edge is tr,1, tf,1 for the first error 
pulse and tr,2, tf,2 for the second. Both error pulses are 
described by the sum of the rectangular pulse and the cosine 
pulse to cover offset, gain and phase error. Considering that 
an is the real part and -jbn the imaginary part of the spectral 
coefficient Un (use index RP and CP for rectangular and 
cosine pulse) the error model states 
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The amplitude AO of rectangular pulses is just the offset of 
channel 2 towards channel 1. The amplitude and phase of 
cosine pulses are taken from the erroneous cosine original 
and could be calculated using phasor rules. If the reference 
channel 1 has ideal parameters (zero phase and gain of one) 
the ideal output waveform is A1cos(0t) or A10 in the 
phasor notation. The amplitude A1 is the amplitude of the 
input signal or rather the amplitude of the signal obtained 
solely from channel 1. Then the phasor of the erroneous 
cosine original is 

2211COCO 0   GAAA  (10) 
where G2 is the gain of channel 2 and 2 is its phase shift.  

We can make some further simplifications in the 
proposed model (9). As we assume ideal parameters of 
channel 1 and if the switching between channels would 
ideally work according to channel 1, the rectangular pulses 
in equation (9) will be the same. Then they could be 
replaced by one rectangular pulse signal with double 
frequency for even n and totally omitted for odd n [8]. In 
other words, we could expect that the offset discrepancy 
will impact only even error harmonics. On the other hand 
if the offset is the dominant mismatch parameter a 
simplified model can be used with only rectangular pulses 
(REC model in [8]). Then, the amplitude AO should be 
calculated as mean of the samples within the real error pulse 
and separately for each rectangular pulse if the real error 
pulses are not perfectly square. 

4. ERROR IDENTIFICATION 

To be able to apply the proposed model to experimental 
data we need to extract main error parameters from the 
measured waveform (Figure 2a). The parameters requested 
by the model are the precise signal frequency f0, the real 
signal amplitude A1, the offset between channels Ao, the 
gain error described by gain G2 of the second channel and 
the phase shift between channels 2. Also times of rising 
and falling edges of both error pulses tr,1, tf,1, tr,2, tf,2 should 
be estimated from the experimental data. To obtain precise 
results and a repeatable formal process of the estimation we 

proposed a special procedure of the error identification. It 
can be summarized into three main steps: 1. Identification 
of edges; 2. Curve fitting; 3. Determination of parameters 
of the error model. 

4.1. Identification of edges 

Moments of error pulse edges are points where the 
system switches from one channel to another. From 
Figure 2 it is obvious that noise present in the sampled 
waveform is a good indication of the channel. 
Unfortunately, we are able to obtain only a screenshot 
from the commercial TDEMI unit. Therefore we needed at 
first to identify data from the original bitmap. Our method 
based on colour shades provided data drawn black in 
Figure 4a. The noise was slightly suppressed here by the 
data extraction algorithm. However, the difference between 
channels is still apparent. So, the identification of edges is 
based on signal noise and is done in the following steps. 
1. Noise identification 

To extract noise from the measured signal we smoothed 
the waveform using moving average (dark gray line in 
Figure 4a). Subsequently we separated the noise by 
subtracting the smoothed waveform from its original. The 
noise itself is depicted light gray in Figure 4a or in 
Figure 4b at a better scale. 
2. Noise thresholding 

Parts of the noise data of low and high variance relate to 
the currently used input channel. To identify moments of 
channel change we need to find points of the variance 
change. The amount of noise in the actual time point was 
estimated in Figure 4a from the moving root mean squared 
value (MRMSN, turquoise solid curve). Finally by 
thresholding (with 0.5 mV) we identified edges depicted by 
turquoise dashed verticals. 
3. Edge times adjustment 

Edges found by MRMSN thresholding are visibly shifted 
away from the exact points of noise variance changes. This 
follows from the nature of squaring which favors higher 
values. Therefore we continued in searching of precise edge 
times in the vicinity of previously found approximate 
edges. This time we will use the moving average from the 
absolute noise values (MAAN, blue solid curve in Figure 4a 
and Figure 4b). MAAN does not offer as good distances for 
thresholding as MRMSN. However, in points of exact 
edges local extremes are located. Indeed there is a good 
chance that exactly in the point of channel change a 
significant noise value occurs due to the jump in the final 
waveform caused by the channel discrepancy. To increase 
the impact of the actual noise value we used a weighted 
averaging for the MAAN evaluation. Sometimes a special 
process of final edge discrimination could be needed if some 
fake edges were also found. In both Figure 4a and Figure 4b 
the precise adjusted edges are plotted as blue dashed 
verticals. 

4.2. Curve fitting 

After identification of edges we are able to separate parts 
of the waveform samples corresponding to the first or 
second channel. (At this point we also set the time of the 
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first sample to zero.) The basic function for fitting is cosine 
and we want to identify four parameters. The frequency 
should be the same for both channels while the amplitude, 
offset and phase are independent. 
1. Channel data separation 

Points of separation are the previously adjusted edge 
moments. In some cases there are fluctuations near the 
switching point. Therefore it is possible and often suitable 
to omit a few samples from each side of the given edge. We 
also need to set the channel order: channel 1 data are green 
and channel 2 data are blue. 
2. Setting initial conditions 

Nonlinear curve fitting methods require initial data for 
starting the numeric algorithm. The main input parameter 
here is a starting frequency which might be the set 
frequency of the test signal. Knowing the frequency the 
other starting parameters (amplitude, offset, phase) could be 
calculated by linear fitting applied on the whole data set. 
3. Nonlinear fitting 

To identify the frequency of the cosine original we need 
to use a nonlinear curve fitting algorithm. Data from 
channel 2 contain less noise, therefore we considered the 
channel 2 output as more suitable for determination of 
the frequency. We recommend a least squares method for 
the fitting and we used unweighted non-robust least squares 
implemented within Matlab statistic library functions 

(Gauss-Newton algorithm, [11]). From the procedure also 
the amplitude, offset and phase of the signal from channel 2 
are obtained. The cosine fitted to the channel 2 data is 
depicted as turquoise solid waveform in Figure 5. 
4. Linear fitting 

If we already know the frequency of the cosine signal 
being identified a simple linear curve fitting algorithm can 
be used. The amplitude, offset and phase of the cosine signal 
approximating channel 1 data could be found from the 
solution of a pertinent linear system of equations using 
matrices and Matlab. In Figure 5 this fitted function is 
depicted as a light green solid waveform. 

4.3. Determination of parameters of the error model 

Identified parameters should be further accommodated 
for the error model. Note that we want to use the channel 1 
signal as the reference and therefore e.g. the time values 
have to be adjusted in the way that we force the zero offset 
and phase of this channel. Discrepancy parameters of 
channel 2 will be related to channel 1. 

1. Parameters of input reference signal 

The frequency identified during the curve fitting process 
is simply the frequency f0 of the input signal which enters 
the error model. In our case we calculated 
f0 = 174.832 kHz. As channel 1 is the reference one, 
amplitude A1 = 0.1079 V identified from this channel will 
be assigned also to the input or ideal output signal. 

2. Parameters of channel discrepancy 

By comparison of both channels we can calculate for 
channel 2: the offset AO = -6.9920 mV, its gain G2 = 1.2078 
and the phase 2 = 3.0647. 

3. Uniform set of edge times 

From previously identified edge moments we need to 
solve relative times toward the start of a given period of the 
reference signal. The same edge could be identified several 
times if more input periods are contained in a test interval. 
Four edge times per period are expected for the cosine 
input signal and from Figure 4b one can notice that the first 

 

 
Figure 4.  Detection  of  times  of  edges.  a)  original  and  smoothed MRADC
output  signal  with  detected  switching  points;  b)  noise  data  used  for
thresholding and adjusting of edges. 

 
Figure 5. Curve fitting performed separately for the data from the first and 
second channel. 
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three are identified two times. In that case we can calculate 
the final time of a given edge as a simple mean of all 
corresponding relative edge times. Our final uniform set of 
four edges is: tr,1 = 1.1795 s, tf,1 = 1.8320 s, 
tr,2 = 3.7667 s, tf,2 = 4.5713 s. 

5. RESULTS AND DISCUSSION 

Parameters of the input signal, the channel discrepancy 
and switching times were used in the simulation as well as 
in the analytical model. In the time domain we used the 
simulation model. Error pulses obtained from the model 
for two periods of the input signal are depicted in red in 
Figure 6. The MRADC output signal disturbed by those 
pulses is in dark gray. The light gray dots in the 
background are original experimental data only slightly 
shifted to impose ideality of channel 1. The model 
waveform visibly fits the experimental data in the time 
range where they are available. Blue dashed verticals 
represent all 7 edges identified from experiments and 
adjusted for the used point of zero time. In the simulation 
model we used one set of four edges for both periods. 
Therefore e.g. the time of the second edge of red error 
pulses (tf,1 = 1.8320 s) is the mean from time shifts of the 
second and sixth blue vertical from the start of the given 
period. 

After the identification of parameters entering the pulse 
model and after the verification in the time domain we are 
ready to confront model results with the experimental 
spectrum. Error spectral components evaluated from the 
analytical pulse model (9) are depicted in Figure 7a as red 
circles. Only the gray “x” represents the measured 
component i.e. the amplitude of the input harmonic signal. 
The simulation error spectrum (gray lines with dot 
markers) is almost identical with results of analytical 
expressions. Black circles are original experimental error 
spectral components (from Figure 2b). Apparently there is 
a visible similarity between the model and experimental 
results. We can observe a little shift of experimental points 
from the theoretical ones, however the overall trend or the 

shape of fluctuations is satisfactory estimated by theoretical 
expressions. The correlation coefficient is as high as 0.9130 
in the compared range of approximately one frequency 
decade. Note that if we used only rectangular pulses in the 
analytical model the correlation was 0.6928. If we compare 
experimental results to the own line fit (black solid line), 
the correlation coefficient is 0.8188. So the overall decay of 
the error spectrum is not the whole similarity and the 
number 0.9138 embraces also the similarity in fluctuations. 

To compare only the shape of fluctuations we decided to 
subtract the overall decay from spectral components. In 
Figure 7a the lines fitted trough the points are drawn as 
black or red solid lines for experimental or model results. 
Subsequently in Figure 7b only differences from this overall 
decay are depicted. Experimental data are in black here 
while the model results are red again. The similarity is more 
visible now and the calculated correlation coefficient of 
0.7614 is not influenced by the decay of spectral 
components with rising frequency. 

6. CONCLUSIONS 

The precise pulse error model for the estimation of error 
spectral components disturbing measurements performed 
by a time domain electromagnetic interference (TDEMI) 
measuring system was presented in the paper. The 
analytical model was expressed for a two channel system 
and the harmonic input signal. Furthermore a consistent 
process of the error parameters identification from 
experimental data has been proposed based on the signal 

 

 
Figure 6. Time representation of simulated error pulse signal and distorted
MRADC output waveform. 

 

 
Figure 7.  Comparison  of  experimental  error  spectrum  and  error 
components  obtained  from  the  pulse model:  a)  experimental,  simulation 
and theoretical spectra; b) differences from the line fit. 
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noise. The comparison of model and experimental results 
has shown that the channel discrepancy represented by the 
analytical model has a dominant impact on error 
components occurring in the measured spectrum. Shape 
changes in the experimental spurious components were 
adequately reproduced by the model while the overall 
decay was similar too. Differences and little shift between 
compared values could be explained by simplifications used 
in the model, a limited interval of experimental time-
domain data processed during the identification phase, 
windowing and asynchronous sampling in a real TDEMI 
unit, etc. 

The designed model could be useful for the further 
development and improvements of the technology behind 
TDEMI. It could help to find right switching points for 
expected type of the input signal or indicate critical 
conditions for the measurement method of TDEMI. The 
proposed process of the error parameter identification helps 
to find realistic values and intervals of parameters 
describing the discrepancy. The estimation of the error 
behaviour is a necessary step towards future searching for 
methods of error correction. 
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