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1. INTRODUCTION 

Consider statements in which reference is made to 
measured (quantified) properties of  empirical systems, for 
example: 
 the width of  this piece of  paper is approximately four 

prekik  (1) 
 the viscosity of  this fluidised bed is 600 cp (2) 
 the average pore size of  this brick is 10 m (3) 
 the poverty in the south of  this country has increased 

drastically (4) 
Assuming that we know what is referred to by ‘this’ in (1)–

(4), can we specify criteria on the basis of  which it can be 
decided whether such a statement is meaningful and what 
precisely its meaning is? The question of  meaningfulness has 
been discussed in some detail in literature on the foundations 
of  measurement (see references in [1], [2] and [3]). This 
discussion is related to and intertwined with discussions on the 
notions of  scale invariance and dimensional invariance. In this 
paper no contribution to this mathematical theory of  
meaningfulness will be made. Instead the problem area 
“measurement and meaningfulness” will be placed in a wider 
perspective by investigating what conceptual problems arise if  
we simply raise the question what the meaning is of  a statement 
involving measurements. 

2. DOES THE MEASUREMENT REPRESENT THE CONCEPT? 

A measurement always has a purpose; this purpose is part 
of the context in which the measurement is carried out [4]. 
Relative to this purpose the measurement has a validity and an 
accuracy (the terms ‘validity’ and ‘accuracy’ are used here in the 
sense that is common in the literature on psychometrics, e.g., 
the “validity of a test”). A measurement result is valid to the 
extent that it measures what it is meant to measure; it is 
accurate (and stable) to the extent that it measures what it 
measures accurately. 

If the sole purpose of a measurement is to predict 
something (for example, a test to predict the performance of 
students at a particular examination), its validity is easy to assess 
(the test is a good one, is valid, if it predicts well; whether it 
predicts well is easy to assess). As long as we can make good 
predictions, we may not bother about what we are measuring. 
However, usually we do bother. Either, because we are 
concerned about the predictive validity of the measurement in 
other contexts. Or, because we explicitly require the 
measurement to measure something. This something is a 
concept (width, viscosity, pore size, poverty). In most cases we 
will say that the concept denotes properties of things in the real 
world. The examples (1)–(4) are chosen to draw attention to a 
number of different ways in which we may have to analyse the 
validity of a measurement statement: 
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(a) The validity of (4) will depend on the normative, including 
political, motivations that are operative in specifying what 
we want the concept poverty to mean. For example: If we 
decide (should we?) to explain poverty in terms of income, 
do we mean income in money only or also other sorts of 
“income” (goods, services from other people)? Further, 
what do we require of the procedure by which the income 
data are processed into a measure of poverty? For example, 
it seems sensible to require that a transfer of income from a 
rich to a poor person (all other things remaining equal) 
should always reduce the measure of poverty – but until 
recently few poverty measures in actual use met that 
criterion [5]. 

(b) On first view it might seem that it is crystal clear what the 
concept of length is. However, what do we mean if we talk 
about the size of pores in a brick and we express this size 
on a length-scale. Numerous instruments and techniques are 
available which produce numbers which are said to 
represent the pore size (or the pore size distribution). But if 
we would investigate what information precisely is extracted 
from the brick by these instruments, it turns out that they 
all measure something different. If we would make 
photographs of cross sections through the brick, it is 
perfectly clear what we mean by referring to the distance 
between point A and point B (the length AB). It is also 
more or less clear what the different “porosimetric” 
instruments measure, but it is completely unclear what we 
mean by “pore size”. Hence, the question of the validity of 
the instruments can only be assessed relative to whatever 
the measurement results are to be used for. 

(c) The viscosity of a fluid bed is measured with the same type 
of instrument that is used to measure the viscosity of 
viscous liquids; data obtained are very reproducible. So 
there seems to be no problem here. But a fluidised bed is a 
mass of solid particles (for example sand) supported by a 
flowing fluid such that the particles do not form a fixed bed, 
but are in constant movement relative to one another. If we 
measure the so called viscosity of such s fluid-particles 
system, is this really the same sort of concept we are using 
when referring to the viscosity of liquids? 
I hope the above examples give some idea of the way the 

meaning of a measurement statement depends on the context 
in which it is produced. The meaning of a measurement 
statement is related to the meaning of the concept it intends to 
represent and all uncertainties and vagueness inherent in a 
concept are not eliminated by having a procedure that produces 
“accurate” numbers in a reproducible way. 

I won’t discuss the relation of the concepts of accuracy and 
reproducibility to the meaning of measurement statements in 
any detail. For the moment, we can more or less circumvent 
these aspects by considering only the meaning of statements 
concerning one measurement, which is expressed on a scale 
chosen in such a way that there is no reasonable doubt about 
the exactness of the measurement. The following explanation 
of the meaning of (1) should illustrate this. As a unit of length I 
introduce the prekik. The distance between the two vertical 
bars in 

 

 (5) 
 

is equal to one prekik. Length measurements in prekiks are 
possible using the following instruction: 
 

In order to measure the distance between two points, 
these two points have to be connected by a straight line 
and then it has to be counted how many times the standard of 
one prekik fits on that line (6) 
 

Many foundational problems are hidden in (6). For the 
moment (6) should be complemented with the following 
elucidations: 
(i) It may be practical to make a number of copies of the 

standard or, using the standard, to construct a measuring 
rod on which there are little marks, the distance between 
subsequent marks being always one prekik. In this case we 
will say that we use different instruments, but all these 
instruments correspond to one measurement procedure, 
which is formulated in (6). 

(ii) We do not consider parts of one prekik. (They don’t exist so 
to say.) Then a distance in prekiks, for example (1), is exact 
if the distance is very large compared with the inaccuracies 
involved in the operational procedures referred to in (6) and 
(i) above. (There are some problems suppressed here, but 
we won’t bother.) 

(iii) We assume that the length of the standard does not change 
during transport. Whether this assumption is a convention 
of length measurements or whether this is a property of the 
empirical world is a subject of discussion in the foundations 
of relativity theory (see [6] and references given there). 

3. WHEN IS A MEASUREMENT POSSIBLE? 

In the previous section the basic assumption was made that 
we measure something. Before we start measuring we should 
have an idea what concept we intend to quantify through 
measuring. Such a quantification of a concept through 
measuring is only possible if the concept has certain properties. 
Let us assume that measurement is the representation of 
empirical structures on numerical structures (for the 
representational theory of measurement see for example [7] or 
[8]). Because the objects in the empirical structure are ordered 
in certain ways with respect to one of their properties, it is 
possible to represent this property in the numerical structure by 
assigning numbers to the objects in the empirical structure: the 
order in the empirical structure is mapped into the numerical 
structure. What does this mean? Consider the concept “mass” 
as an example: 

(a) There is a concept “mass”, the meaning of which is 
partly explained by telling what we mean if we say 

 
ba m  (7) 

 
read: object b is heavier than object a. An operational definition 
of m  refers for example to the use of a balance and tells us 
how to go about assessing whether in a particular case (7) is 
true or not. The explanation of what we mean by m  is part of 
the meaning of any measurement statement about the mass of 
an object. If we know what we mean by m  it is easy to define 

m , m , m , and m . Note that it is irrelevant what 
instrument we use (asking somebody whether (7) is true or not 
in any particular case also counts as an instrument), except that 
we would like m  to have certain properties. For example, it is 

advantageous if we can establish empirically that m  is 
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connected and transitive. If this is so m  generates a weak 
order in the set of objects, Am, which have the property mass. 

(b) The meaning of the concept of mass is further explained 
by referring to the fact that an operation of physical 
concatenation (= adding together), m , can be applied to 

elements of Am. Just as in the case of m  it is attractive if m  
has certain properties. For example it is advantageous if it has 
the properties of being associative and monotoneous. Whether 
this is so, is again a matter of empirical investigation. 

(c) If m  and m  exist and have the properties mentioned, 
then it is usually possible to construct a standard sequence. In 
particular this is possible if the following holds 

 for any e and a in Am and any integer k, there exists an 
integer n such that  

 
ne m  ka (8) 

 
in which the meaning of ne is explained by 
 

1e = e and (n + 1)e m  (ne m  e) (9) 
 
and similarly for ka. It is not obvious in what way we should 
consider (8) a condition which has to be fulfilled empirically. 
Also there are writers who object to using such “Archimedean 
axioms” in the first place (see [9] and [10], a review of [7]). 
However, I pass that over. If something like (8) holds and 

m  and m  have the properties as mentioned, we can 
construct a standard sequence for mass, which allows us to 
assess the relative mass of objects as follows. Let us choose for 
e the standard kilogram in Paris. First we make many copies of 
e, so that we are never at a loss to construct an ne. Assume 
further that we want to determine the mass of President 
Reagan. For simplicity we choose k = 1 and then we find the 
smallest value of a for which 
 

ne m  am m  (n – 1)e (10) 
 

where am represents Reagan with respect to his mass. Equation 
(10) fixes the mass of Reagan relative to that of the standard 
kilogram in Paris. Ideally, we would like to be able to find 
 

ne m  am (11) 
 

This could be so by accident, but usually it is not the case. 
However, we can approach an equivalence by choosing a large 
value of k (for which purpose we have to make k copies of 
Reagan, at least k copies of Reagan’s mass). Of course, this is 
not the way we actually determine the mass of an object. 
Nevertheless, this is part of what it means if we say that a 
property like mass can be measured. 

(d) Note that until now, we have done nothing more than 
counting the number of identical copies, manipulating objects 
and assessing whether m  or m  applies. Because all this is 

possible, we can measure mass on a scale Φ , which is, in this 
case, an additive function from Am to the real numbers, and, by 
convention, Φ (e) = 1. 

Many questions can be raised in connection with this 
account; I mention only two clusters of questions: 

(i) Operational definitions of m  and m  have been given 
referring to a balance. However, we cannot put the earth or an 
electron on a balance. How is the mass of these objects related 
to the standard kilogram in Paris? Similarly, on a strictly 
operationalistic point of view, the ten or so different methods 
to measure stellar distances, would all measure different 
properties or concepts. But this is not what we want, because 
most of us would believe that there is just one distance between 
two stars. 

(ii) I said, if m  and m  have certain properties and (8) 

holds, then mass can be measured on an additive scale Φ . But 
what do we do if we find an exception, for example, in a 
particular case we observe that m  is not transitive or m  is 
not associative. Why are we so sure this must be due to 
inaccuracies in our instruments or our observations? (in fact, in 
modern physics mass is not “additive” and [11] has proposed to 
drop mass as a basic unit and to replace it by the “quantum of 
action”) 

I have used mass as an example, because this is by far the 
simplest case: for length there are alternative interpretations for 

l  and we have to account for the three dimensionality of 
space (or four dimensionality of space-time); for time the 
definition of t  and the choice of a unit is more problematic; 
for force we have to take into account the direction; velocity 
has an upper and a lower bound (at least that is what we think, 
do we?), which presents special problems; and so on (for 
references to literature on some of these questions see [4]). But 
always, it is part of the meaning of a measurement statement, 
what the interpretation is of   and   for the particular 
concept (or why there is no  , if there is no such operation). 

4. MEANINGFULNESS OF STATEMENTS INVOLVING A 
COMPARISON OF MEASUREMENTS 

On an abstract level we can say: Meaningful numerical 
statements are those that remain invariant under permissible 
changes in the representation. What does this mean? Consider 
the following measurement statements: 

the average radius of the earth is 6371 km (12) 
the average radius of the earth is 3960 mi (13) 
A quantity such as mass or length can be measured on 

different scales. Because of the arbitrary choice of the standard 
e, any scale Φ  is invariant with respect to transformations of 
the sort 

 
Φ=Φ '  (14) 

 
where   is a real number. We encounter such an   if we 
transform (12) into (13) or if we transform prekiks into meters. 
In that sense the change of (12) to (13) (or vice versa) is 
meaningful. But there is another question: statement (12) is 
concerned with the average radius. The number 6371 is the 
result of manipulations with other numbers. What is the 
meaning of such an average? In the first place there is the 
question of validity discussed in section 2: Which distances 
have to be averaged? Answer (say): Connect every point on the 
surface of the earth with its centre. Questions: Where is the 
centre? What sort of concept does this average represent? 
Secondly, if we have agreed on the measurement data that have 
to be averaged, are we allowed to do that? This question can be 
given an exact answer in the representational theory of 



 

ACTA IMEKO | www.imeko.org May 2014 | Volume 3 | Number 1 | 35 

measurement as follows (for this technical concept of 
meaningfulness see [1], [12], [13], and references given there; 
the concept was introduced in a systematic way for the first 
time by [14]). A statement in which something is said about the 
relation between two averages (or any other manipulation of 
measurement data) is meaningful, if the truth-value of this 
statement does not change if we choose another scale to 
express the original data. For example, with Φ  a scale for 
length, consider: 

 

   i

m

1i

i

n

1i

b
m

1
a

n

1 
==

Φ>Φ  (15) 

 
If we substitute first 'Φ  and then (14) in (15) we obtain: 
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m
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m
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n

1 Φ>Φ
==
   (16) 

 
This is equivalent to (15); hence (15) is meaningful. Another 

example of a meaningful statement for length is: 
 
   bna Φ=Φ  (17) 

 
with n an integer. Although this may seem trivial, please note 
that for temperature measured on an interval scale (such as °C 
or °F), (16) is meaningful, but not (17). For wind force 
measured on the scale of Beaufort or hardness measured on 
Mohs scale, neither (16) nor (17) is meaningful. 

All physical quantities which are embedded in general 
theories are measured on ratio scales and usually we are 
completely familiar with what are meaningful statements and 
what not. We know we can compare averages and we see at 
once that 

 

      2cba Φ=Φ+Φ  (18) 
 
is not meaningful. However, in the social sciences, in 

psychology, and in the technical sciences there are many 
isolated quantities, which often are not measured on ratio scales 
or where there are other hidden traps. Consider for example a 
price index defined as: 

 
 

1
i

0
i

0
i

0
i Pq/PqP =  (19) 

 
Here 0

iq  is a chosen consumption pattern (say 10 kg 

potatoes, 2 eggs, 0.01 television set, and so on) and 0
iP  and 1

iP  
are the prices at times t0 and t1 respectively. In its generality P is 
not meaningful, because whether P decreases or increases 
depends on the choice of 0

iq  (more detailed examples in [15]). 

5. DERIVED MEASUREMENT AND DIMENSIONAL 
INVARIANCE 

Why do we see at once that (18) is not meaningful? This is 
because (18) is not dimensionally homogeneous. Various 
explanations or theories have been proposed to explain why 
numerical laws should be dimensionally homogeneous (see [7], 
pp. 504–512, [16] and [17]). The explanation that has been 
worked out in most detail is the explanation according to which 

the requirement of dimensional invariance follows directly from 
the concept of meaningfulness defined in the previous section 
and the properties of the qualitative representations of the 
numerical laws ([2]; see also references in [1] and [3]). (Here 
“qualitative” means: representing the laws without using scales.) 
There is no room to discuss the subject of dimensional 
invariance in detail here. However, one aspect I would like to 
draw attention to. It has been argued in the literature on this 
subject that because of these criteria of invariance or 
meaningfulness, the possible forms of a law are extremely 
limited (for the first time by [3]; most recently by [18]; 
invariance requirements have also been invoked to solve 
paradoxes in the a priori estimation of equal probabilities, like 
the Bertrand paradox: see [19] and references given there). For 
example, we do not only know that 

 
cmE 2=  (20) 

 
is not a law of nature (because it is E = mc2). We know more, it 
is argued. We know for certain that (20) cannot be a law of 
nature. This fact has been of use for a long time in the practice 
of dimensional analysis. However, this “setting limitations on 
the possible forms of the law” should not be exaggerated, 
because the criterion only holds if we are certain that we know 
all the variables that enter into the law. But if we still have to 
discover the law, how can we be so certain that we know all the 
variables that enter into the law? Moreover, if one of the 
variables is dimensionless, or two or more (but not all) of the 
variables can be combined into a dimensionless group, then the 
dimensionless part can occur in the law as the argument of any 
mathematical function. 

In the applied sciences, laws often have “empirical” forms. 
An example is 

 

nCL
dL

dU =  (21) 

 
in which C and n are constants, and dU is the energy required 
to effect a small change dL in the size of a unit of material in a 
size reduction process (as in a mill). The value of n is different 
for different materials. In practice values of 1.5 or 2 are often 
used for n. It is obvious that in this case the requirement of 
dimensional invariance sets very few limitations on the form of 
the law, because C is only defined by its occurrence in this law 
and absorbs whatever dimension is generated by the value of n. 
The fact that the experimentally determined value of n is not a 
whole number is no problem, because experimentally we can at 
best determine the value of rational numbers (as distinct from 
real numbers) and if n is a fraction, we can always eliminate the 
denominator. Moreover, because C is not further 
interpreted,we can make all terms dimensionless by dividing U 
and L by a reference value which has the same dimensions. In a 
way this is what happens in kinetic laws such as the law of 
radioactive decay: 

 
 texpN/N 0 λ=   (22) 

 
The decay constant is the inverse of a reference value for t. 

Equation (22) makes sense, because we have a particular 
interpretation for λ . But if we would not have that 
interpretation, any functional relationship between N/N0 and 
λ t would be allowed. 
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Another example of a “pseudo-law” is: 
 

β= tS   (23) 
 

where S is the tension (at constant strain), t is time and   and 
β  are constants for a particular material. The so called 
anomalous character of (23) has generated a whole discussion 
in the literature (this discussion has been generated by a peculiar 
presentation to the Royal Society in London [20]; see also [17], 
pp. 45–46, and [7], p.464), in which doubts have been raised 
concerning the Newtonian definition for equality of time 
intervals and the parameter   has been ascribed the 
dimensions “antilog (log L log T)”. However just as in (22) the 
constant of proportionality has no meaning independent of the 
equation in which it occurs. Hence, we might as well write 
instead of (23): 

re pS /t += τ  (24) 
which solves all problems of awkward dimensions (If the fit of 
(24) is not as good as that of (23) we add one more exponential 
term.) 

It may be of interest to note that (23) is of some historical 
interest, if it is read as an equation describing the falling 
distance of an object as a function of time (in the seventeenth 
century various laws were proposed to describe “Galilei’s law”. 
In that context Chr. Huygens was probably the first to argue 
that certain laws could be excluded a priori). 

6. STANDARDS OF MEASUREMENT 

Consider the following statements: 
 

 1 m = 1000 mm (25) 
 1 m = 19.2 prekik (26) 
 1 m = the length of  the standard meter in Paris (27) 
 
If  we would analyse the meaning of  each of  (25) – (27) we 
would see that they are three quite different kinds of  
statements. I won’t go into the “philosophical” details of  this 
here, except for drawing attention to one particular peculiarity 
of  standards of  measurement in the contribution they make to 
the meaning of  a measurement statement. I have said that the 
meaning of  an object having a mass of  10 kg can be partly 
explained by saying that the mass of  this object is equivalent 
( m , not =) to the physical concatenation of  10 standard 
kilograms each of  which is equivalent in mass to the standard 
kilogram kept in Sèvres near Paris. The meaning of  the 
measurement statement is so to say explained by pointing to a 
certain relation the object of  the measurement statement bears 
to the standard. Now assume that the building in Sèvres, 
including the standard kilogram which is kept there, is 
completely destroyed in a fire. Does this mean that, when this 
happens, instantaneously all statements giving measurement 
results in kg become meaningless? Presumably not, but what 
then is the meaning of  these statements? 

7. CONCLUDING REMARKS 

In the previous sections I have only touched upon some 
aspects that have to be considered when we pose the question 
what the meaning is of a measurement statement. I have 
emphasised what I think are important aspects and I have used 
up a lot of space giving examples from the practice of 
measurement. In a further systematic development of the 

points raised here, it will be necessary, I think, to do this within 
the terminological framework of philosophical theories of 
meaning. This would include (i) analysis of the meaning of 
measurement statements using the Fregean concepts of sense 
and reference (which in the context of measurement might be 
called “operational” and “factual” meaning), (ii) taking into 
account recent philosophical discussions concerning the 
question whether there are statements which are a priori and 
contingent or statements which are a posteriori and necessary 
(as this may shed light on the distinction between what is fact 
and what is convention in measurement) and (iii) an analysis of 
the different sorts of identity or equivalence that are 
presupposed in measurement statements. (These three aspects 
are all interrelated in a theory of meaning). On the applied side, 
a further development of the points raised in this paper would 
also require analysis of a number of “cases”, to make clear 
which quantities are measured on what scales. For example, 
most scientists would probably say that density is measured on 
a ratio scale, this is not self-evident and we may well have to 
conclude that density is measured on an interval scale [16]. And 
to give a last example, in the design of grinding mills for coal 
the Hardgrove Grindability Index is used to predict the energy 
consumption of the mill for a given specification of the size 
reduction to be achieved. This index can be interpreted to be 
some sort of measure of the material constant C in equation 
(21). But if we analyse a large set of data for this index, it is 
dubious whether we can even say that the grindability is 
measured on an ordinal scale: Different samples from the same 
coal-seam have different grindabilities. There is no correlation 
between the grindability of a coal and its rank, or its 
composition. Also, there is no correlation between the 
grindability as determined in the standard mill used to 
determine the hardgrove index and the grindability as 
determined in another standard mill (for example Bond’s index, 
in which case n in eq. (21) is 1.5 instead of 2). Furthermore 
there is no relation between the grindability and the modulus of 
elasticity of coal or the hardness of coal determined by some 
standard test (for example the Brinell test). So what do we 
mean if we say that the grindability has been determined to be, 
say, 60? 

No doubt some of the considerations involved in a study 
concerning the meaning of measurement statements as 
suggested above, will be rather abstract or philosophical, but I 
belief such a study could make an important contribution to a 
better understanding of what measurement is by giving a 
conceptual analysis of the meaning of measurement statements. 
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