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1. INTRODUCTION 

Sensors and measurement science play a key role in the 
development of industrial automation and robotics [1]. One 
well-known fundamental and crucial problem in robotics is 
path planning-and-tracking [2]. In order to address this issue, a 
robot first has to identify the wanted path by sensing the 
environment (e.g. by recognizing suitable landmarks and visual 
cues). Secondly, it should be able to estimate steadily its 
position with respect to the planned trajectory, so that the 
robot controller can efficiently follow the desired path [3], [4]. 
One of the simplest and most widely adopted solution to this 
purpose, especially for Automated Guided Vehicles (AGVs) in 
industrial environments is line tracking [5], [6]. Line tracking is 
also often used to evaluate the ability of new robot prototypes 
to follow a given trajectory [7]. 

Typical sensors for this kind of applications include 
reflective infra-red Light Emitting Diodes (LEDs) coupled with 

 

suitable photo-diodes, photo-transistors or light dependent 
resistors (LDRs) [8], [9], arrays of electric inductance sensors 
[10], and vision-based systems [11]-[13]. While optical or 
electric inductance sensors are very cheap, they have also a very 
limited reading range. Moreover, at least two of such sensors 
are generally needed for correct line detection and to estimate 
whether the vehicle’s position is left or right of the reference 
line. The vision-based line detection systems are instead 
advantageous because much information can be extracted from 
a sequence of collected pictures. Of course, in all cases sensor 
accuracy, range and speed are essential to ensure good 
performances and real-time behavior. 

Stemming from industrial robotic applications, the technical 
solutions developed in this area of research have been also 
gradually applied to service robots, including autonomous 
guidance systems [14], [15], intelligent vehicles [16], [17], and 
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road vehicles both for hazard detection [18], [19], and fully 
automatic guidance [20]. In this context, robotic vehicle 
competitions have considerably thrust the development of 
smart sensing systems. The main problem that still hinders the 
effectiveness of sensing solutions for position tracking in 
challenging scenarios (e.g. in robotic races) is the variability of 
the environment (especially in outdoor scenarios, where the 
speed of a robot can be quite higher than indoors) and the 
possible lack of known cues. In this respect, vision-based 
solutions have gained an undisputed leading role mainly due to 
their flexibility and ability to estimate multiple quantities with a 
single measurement system. Unfortunately, this increased 
flexibility comes at the price of an increased computational load 
as well. In this paper, we will focus on a novel vision-based 
measurement technique and on a system prototype that 
perfectly fits the industrial domain, as it is able to improve 
accuracy, robustness and speed in estimating both the direction 
and the position of a robotic vehicle with respect to a painted 
line, thus supporting efficient control, as preliminary reported 
in [21]. In general, the problem of line detection is closely 
related to the classic problem of line recognition in images [22], 
[23], although it is made more difficult by time-varying light 
conditions and by the robot’s dynamics. In general, the 
performances of vision-based line detection systems are limited 
by robustness and speed issues, which in turn depend on 
camera frame rate, camera resolution and algorithm complexity. 
In this respect, one of the most famous and effective 
algorithms for line recognition is the so-called Hough transform 
[24]. However, this algorithm needs line clustering in the image 
space and it is quite heavy from the computational point of 
view, although several optimizations have been proposed in the 
last years, e.g. through randomization [25], or hierarchical image 
partitioning [26].  

As a result of the availability of increasingly powerful 
embedded platforms, several other image processing algorithms 
have been proposed over the last few years, e.g. based on a 
customized image segmentation [27], fuzzy logic [28], or the 
Viterbi algorithm [29]. All of them rely on standard cameras 
and are characterized by a significant computational burden. 
Some of the solutions proposed in literature for path detection 
and tracking combine specifically conceived image features [30], 
[31], known path models [32], statistical methods [33] or a 
combination of particle filtering and artificial intelligence [34]. 
Another important field of research, which is somehow related 
to the problem at hand, but is more focused on lane and 
obstacle detection rather than on path tracking, is described, for 
instance, in [35].  

The technique described in this paper is instead based on a 
simple algorithm, which works well also on binary low-
resolution images, such as those collected by a special high-
frame-rate light contrast sensor. This sensor ensures a 
straightforward detection of the line edges (provided that the 
colors of the line and of the background are different enough) 
with minimum bandwidth and latency requirements. It is worth 
emphasizing that the light contrast sensor is supposed to look 
at the road surface (i.e. with the camera image plane 
approximately parallel to the ground), in order to recognize the 
painted line only. In this way, the probability of recording 
unwanted objects that may perturb line detection is much 
smaller than using a front camera.  

The proposed approach is explicitly conceived to support 
automated vehicle control over optimal paths [36], although the 
control problem is out of the scope of this paper. Line 

detection is performed through a RANdom Sample And 
Consensus (RANSAC) algorithm combined with a Kalman 
filter. RANSAC is a general guess–and–test method that 
randomly chooses a hypothesis in the measurement space and 
then scores its trustworthiness a posteriori [37]. RANSAC has 
been used in many contexts, including trajectory estimation [38] 
and, more recently, even in road applications [39], [40]. 
However, the solution described in this paper is faster and it is 
expected to be more accurate and more robust than the basic 
RANSAC algorithm preliminarily described and analyzed 
through simulations in [40]. In fact, the additional Kalman filter 
prevents sudden and unnatural jumps in the estimated vehicle 
direction. The algorithm has been implemented and tested on a 
simple embedded platform. Low cost is indeed a further 
important feature of the system developed. 

The rest of the paper is structured as follows. At first in 
Section 2 the model underlying the theoretical problem is 
described. Then, Section 3 deals with the description of the 
estimation algorithm. Finally, in Section 4 the implementation 
details as well as several experimental results in different 
conditions are reported.  

2. MODEL DESCRIPTION 

2.1. Vision system model 

As shortly explained in Section 1, the vision system is 
supposed to observe the road or floor surface just to detect a 
painted line. If wP = [wx, wy, wz]T is a point in the reference frame 
W  defined by axes Xw, Yw and Zw (with plane πw=Xw x Yw 

lying on the ground as shown in Figure 1(a)), the equations of 
two parallel lines in space (namely the line edges) are given by: 
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where R , wPa and wPb are two given points belonging to the 
left edge and wo = [wxo, 

wyo, 
wzo]

T is the offset vector between the 
two lines. Let I  be an additional reference frame defined by 

axes Xi, Yi and Zi so that πi=Xi xYi includes the image plane 
and the origin of I  coincides with the principal point of the 

camera, as shown in Figure 1(b). In such a frame, every point 
lying on the image plane has the Zi coordinate equal to zero. If 
axes Xi and Yi are parallel to Xw and Yw, respectively, then the 
image coordinates ip of a generic point wP in the field of view of 
the camera are given by (see Appendix A for reference): 
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where fx and fy are the focal lengths along axes Xi and Yi, 
respectively, and tw =[tx, ty, tz]

T is the translation vector expressing 
the coordinates of the camera pin-hole in the frame W . 

Therefore, if the line equations (1) are plugged into (2), the 
coordinates of the points belonging to the line edges projected 
onto the image plane are: 
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where ipa = [ixa, 
iya]

T and ipb = [ixb, 
iyb]

T are two points of the left 
edge mapped onto the image plane and io = [ixo, 

iyo]
T is the image 

offset vector between the left and the right edge. Since io can be 
chosen arbitrarily, in the following we assume that ixo = d ≠0 
and iyo = 0. As a consequence, d is the distance between the line 
edges along axis Xi, as depicted in Figure 1(b). Notice that if the 
image plane and ground are approximately parallel, three-
dimensional parallel lines are mapped into two-dimensional 
parallel lines. The same considerations hold also for the 
orientation angles of each line assuming that fx = fy, as it often 
occurs in practice. Albeit these two assumptions are not 
perfectly true in a real scenario [41], a slight change of 
perspective can be easily addressed through inverse perspective 
mapping (IPM) [42]. Moreover, possible time-varying 
fluctuations of the image plane (e.g. due to vehicle vibrations or 
jolts), are generally negligible compared with the intrinsic fast 
variability of the collected images. 

2.2. Problem formulation and estimation model 

After detecting the line, the goal of the measurement system 
is to estimate the position and the orientation of the robotic 
vehicle with respect to the line itself in real-time. In particular, 
the quantities to be measured are: 
 h, which is the horizontal coordinate of the intersection 

point between the line centroid and axis Xi, i.e.  
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 and   ,0 , namely the angle between the parallel line 
edges and axis Yi, i.e. 
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The meaning of these parameters is shown in Figure 1(b). 
Notice that h →∞ for lines that are parallel to Xi, axis, whereas 
(h,α) = (0,0) when the line is perfectly vertical and exactly in the 
center of the image. As explained in Section 3, the values of 
(h,α) associated with a given image are used as a prior for 
parallel line detection in a newly acquired image. In this way, 
the computation time is reduced by constraining the RANSAC-
based line search in a specific subset of the pixels of every 
collected image. To this purpose, (4) and (5) must be inverted 
to recover (3). Unfortunately, the pair (h,α) alone is not 
sufficient to this end. Indeed, for any given pair, a very large 
(ideally infinite) number of parallel lines exist. In stricter 
theoretical terms, the position of the parallel line edges is 
unobservable using just h and α. In fact, observability is 
guaranteed only if d is available in (4). Therefore, also parameter 
d needs to be estimated by the algorithm. To this purpose, we 
can rely on a simple dynamic model, whose state is the vector 
q=[h, α, d]T. In general, the dynamic of q is a function of both 
the line to be tracked and the motion of the camera. However, 
if the field of view of the camera is much shorter than the 
radius of curvature of the wanted path, the effect of the line 
curvature in the image plane is negligible, thus greatly 
simplifying both the line recognition problem and the model. 
As a consequence, the system dynamic due only to the motion 
of the camera can be simply modelled as follows: 
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where v = [vh, vα, vd]
T, namely the input of the system, is the 

speed vector. Note that vh depends mostly on the speed 
components of the camera along the plane of motion, vα is 
related to the angular speed of the image plane of the camera, 
and vd depends on the occasional motion of the camera along 
the axis orthogonal to the ground surface because of potholes, 
humps, or sporadic changes of the line width. In any case, the 
time evolution of the state variables of (6) is affected by the 
uncertainty associated with the measurement of v = [vh, vα, vd]

T. 
This in turn may require a dedicated inertial platform when 
involved scenarios are considered. 

3. ALGORITHM DESCRIPTION 

As stated in Section 1, the algorithm for line detection and 
state variable estimation relies on the combination of a tailored 
RANSAC algorithm and a Kalman filter. The rationale behind 
the combination of such techniques is related to the different 
nature of the uncertainty sources affecting the model 
parameters. On one hand, the unknown probability density 
function related to the estimation of q can be considered as 
multimodal for the presence of both outliers and noise in every 
grabbed image. For instance, if no accurate speed values are 
available, the components of v in (6) can be described just 
stochastically (e.g. using the variance of available data). This 
assumption justifies the choice of a randomized, multi-
hypothesis algorithm like RANSAC. On the other hand, as a 
camera cannot move instantaneously in multiple different 
directions, the distribution of the fluctuations due to its motion 
must be definitely unimodal. Therefore, the multi-modal 

 
(a) 

 

(b) 

Figure 1. Vision  system model and  reference  frames:  (a) perspective view
and (b) top view.  
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RANSAC approach takes advantage of the Kalman filter 
principal mode defined by (6), since the Kalman filter is able to 
reduce such fluctuations. When the system starts, the Kalman 
filter is initialized as soon as the line is clearly detected in the 
image plane using RANSAC without any prior. In this 
preliminary phase, a longer execution time is tolerated in order 
to have an accurate first guess. Then, the estimation algorithm 
performs iteratively the following three steps: Kalman-based 
prediction, RANSAC-based road line recognition and Kalman-based 
update. The flow chart of the proposed algorithm is shown in 
Figure 2. Note that RANSAC operates between the prediction 
and the update steps of the Kalman filter. Since the RANSAC 
algorithm estimates the parallel lines in the image space, on one 
hand it benefits from Kalman prediction results as a prior; on 
the other it is used to generate the measurement data for the 
following update step. In the next subsections, the three steps 
mentioned above as well as the initialization criteria of the 
Kalman filter are described in detail. 

3.1. Kalman filter initialization 

When the algorithm starts, two quantities are initialized in 
the Kalman filter, i.e. 
 the initial system state q(0), which is set equal to the values 

returned by the first iteration of the RANSAC algorithm 
on a full image; 

 the initial value of the state covariance matrix P(0), which 
is set equal to 1/10 of the input covariance matrix Q. 

The covariance matrix Q is a constant diagonal matrix, 
whose elements are the estimated variances of vh, vα and vd. 
Observe that, unlike how it is commonly done in most Kalman 
filters, in this case the initial state covariance matrix is one order 

of magnitude smaller than Q. This is due to the fact that the 
initial guess q(0) has usually a high accuracy since it results from 
the application of the RANSAC algorithm to a full image. 

3.2. Kalman filter prediction step 

The Kalman filter is executed anytime a new image is 
available. Hence, the model reported in (6) is discretized with a 
sampling period Δt equal to the inverse of the frame rate. The 
discretized system model is then simply given by 
      ttvtqttq  , where  ttq   is the predicted state 

of system (6) at time t + Δt. Since no knowledge about the 
motion of the camera is assumed, the state prediction equation 
is    tqttq  . Similarly, the predicted covariance matrix is 

given by     QtPttP  , where P(t) is the covariance 
matrix of the state variables in (6) and Q is the model input 
covariance matrix defined in Section 3.1. 

3.3. RANSAC‐based line recognition 

In general, the purpose of RANSAC is to find a subset S* of 
a set S containing N data, such that its elements fit an instance 
M* of a model M (depending on n≤N parameters) within a 
user-defined tolerance threshold st. In the case considered, M 
refers to the parallel line equations defined in (3), and S is the 
set of camera pixels where the probability of finding the road 
line edges is maximum. In the worst case, S coincides with the 
whole pixel matrix and N coincides with the number of pixels. 
However, even if S changes anytime a new frame is collected, it 
can be properly reduced to the region of interest by using the 
prior information obtained from the Kalman filter prediction 

 

Figure 2. Flow‐chart of the algorithm. The RANSAC algorithm runs  in two different modes,  i.e. either using the prior  information returned by the Kalman 
filter or by processing the whole image for initialization. 
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step. Of course, such a reduction does not take place during the 
initialization of the Kalman filter (see Figure 2 for reference). 

The RANSAC-based line detection relies on (3), which 
depends on n=3 independent parameters, i.e. ipa, 

ipb and             
io = [d, 0]T. On the basis of these assumptions, the main steps of 
the RANSAC algorithm conceived for the intended application 
are briefly summarized in the following. 

 Starting from k=1, n=3 pixels are randomly extracted 
from S to create a subset Sk composed by ipak, 

ipbk and ipak 
+iok. If some prior information is available (i.e. the output 
 ttq   of the prediction step) the choice of the subset 

Sk is constrained in the region determined by  ttq  . 
The selected points are then used to create a model 
instance Mk, namely two parallel lines based on (3). 

 Afterwards, Mk is used to determine the subset of pixels 
Sk

* S that are likely to belong to the line edges within a 
tolerance interval ±st. Sk

* is usually referred to as the 
consensus set or the set of inliers. In practice, this set consists 
of two disjoint subsets Skl

* and Skr
* corresponding to the 

left and right line edges, respectively. If the prior 
information provided in the prediction step of the 
Kalman filter is available, threshold st can be modified 
according to the diagonal elements of the predicted 
covariance matrix  ttP  ; 

 Finally, this procedure starts over and a new set Sk+1 of n 
random points is chosen from S. 

In a typical RANSAC algorithm, the iterative approach ends 
as soon as the number of elements in Sk

* exceeds a given 
threshold. However, due to the time-varying uncertainty 
contributions affecting the problem at hand, no a priori outlier 
stochastic description is available. As a consequence, in this 
case the iterative process stops as soon as a maximum number 
of iterations K is reached. The value of K in presence of outliers 
is given by [37] 
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where p is the wanted probability to select the correct model if 
the set S is sampled K times and w is the probability that one of 
the chosen points is actually an inlier. In the presented solution 
the value of K is computed and updated in real-time. 

Let Sl
* and Sr

* be the sets with the largest number of inliers 
for the left and right edges, respectively, after K iterations, with 
Sl

*Sr
* =Ø and Sl

*Sr
* = S*. If L* = (ipa

*,ipb
*,io* ) is the 

corresponding set of parameters to be replaced into (3), the 
optimal set of values finally results from 
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where  oppL i
b

i
a

i ~,~,~~  . Given that h~  and ~  are computed 

from L~  using (4) and (5), respectively, and recalling that 

 Ti do 0,~~  , the output of the RANSAC-based line recognition 

algorithm is  Tdhq
~,~,~~  . 

3.4. Kalman filter update step 

The elements of q~  represent the measurement values to be 
injected into the Kalman filter during the update step.  

In particular, the Kalman gain Kg is given by 

     1 RttPttPK g                                       (9) 

where R is the covariance matrix of q~  and results from the 
residuals of (8). Since the motion of the camera is not included 
in the model, the Kalman filter strongly relies on the available 
measurement data. In particular, the updated values of both the 
state and the system covariance matrix result from 
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where the Joseph form has been used to express the updated 
covariance matrix P(t + Δt), thus preventing numerical 
instability. Note that the low computational burden of the 
Kalman filter update step is very suitable for an embedded 
implementation.  

It may happen that, if an image is heavily corrupted by 
structured or unstructured outliers (e.g. illumination problems, 
shadows, small potholes, faded paint), the RANSAC algorithm 
fails in finding a good estimate of the parallel line edges. Such 
situations are tolerated to a certain extent thanks to the 
information retained by the Kalman filter. In such cases, the 
Kalman filter update step simply becomes 

   
   ttPttP

ttqttq
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Clearly, expression (11) provides the open-loop dynamic of 
the Kalman estimator. If, for some reason, RANSAC does not 
work properly, the covariance matrix P(t + Δt) tends to grow 
indefinitely. For this reason, the trace of P(t + Δt) is checked at 
the end of each update step. If the value of the trace exceeds a 
user-defined threshold tp (e.g. when the total uncertainty is 
larger than the image size), the state estimated by the Kalman 
filter is discarded at all and the Kalman filter is reinitialized, as 
soon as the next image is grabbed. It is worth noticing that the 
case of incomplete measures (e.g. when just one of the line 
edges is in the field view of the camera) can be handled by the 
algorithm. Indeed, the prior information given by the Kalman 
filter during the prediction step allows RANSAC to detect 
correctly even a single line edge, while waiting for the other one 
reappearing in the image. In this case, just the uncertainty 
associated with d tends to increase monotonically in the state 
covariance matrix. 

4. EXPERIMENTAL RESULTS 

4.1. Experimental setup description 

The proposed algorithm has been implemented in a 
BeagleBoard XM embedded platform. This platform is 
equipped with a 1-GHz ARM DM3730 by Texas Instruments, 
512 MB of RAM, a 4 GB micro Secure Digital (SD) memory 
and a Linux Angstrom distribution. The BeagleBoard XM 
provides expansion headers to connect other peripherals to the 
platform. The adopted vision system relies on a custom light 
contrast imager driven by an XC2C512 Xilinx CoolRunner-II 
Complex Programmable Logic Device (CPLD). Both board 
and camera are shown in Figure 3. Since the pins of the 
Beagleboard expansion headers are rated at 1.8 V while the 
camera requires 3.3 V, a piggy-back voltage level translator has 
been used to interface the embedded platform with the camera. 
The light contrast sensor is a 35-μm CMOS imager with a 
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resolution of 128 × 64 pixels made at the “Fondazione Bruno 
Kessler” (FBK), Trento, Italy [43]. Note that the low resolution 
of the camera is helpful for the application considered, as it 
greatly reduces the number of iterations of the RANSAC 
algorithm at no cost in terms of accuracy, as it will be shown in 
Section 4.2. An important feature of the adopted vision system 
is that it requires a single bit for each pixel. Each pixel generates 
a voltage value that is proportional to the maximum relative 
variation of the average light intensity over triples of adjacent 
pixels during a given integration interval. All output voltage 
values are quantized by a 1-bit comparator. The resulting bits 
can be stored into a local on-chip memory or they can be 
immediately read out and buffered into the CPLD. This feature 
(along with the low resolution of the imager) makes frame 
acquisition faster than in regular cameras. As a consequence, 
the camera frame rate can be larger than 100 frame/s, but with 
low bandwidth requirements for data transfer. In practice, the 
frame rate is limited by the light integration time of each pixel. 
This can be as low as 1 ms, but it should be at least 10 ms not 
to affect the sensitivity of the imager [44].  

The on-board CPLD is provided with a Serial Peripheral 
Interface (SPI) to read the image frames captured by the 
camera. The embedded platform communicates with the logic 
circuitry of the vision system through General Purpose Input-
Output (GPIO) and SPI pins. The GPIO pins are used to set 
the camera operating parameters (e.g. operation modes and 
integration time) and to exchange interrupts and control signals 
with the vision system. The SPI pins are instead used to transfer 
the image frames. The transmission rate is controlled by the SPI 
clock. In the current implementation the SPI clock frequency is 
48 MHz. The CPLD is designed to hold only one image row at 
a time. Therefore, one SPI read per row is needed to read a full 
image frame. In order to collect such data as quickly as possible, 
a highly optimized software driver was developed for Linux. 

4.2. Performance evaluation 

In order to evaluate the performances of the overall system, 
several image records of several minutes each have been 
collected at about 100 frame/s with a pixel integration time of 
10 ms. The camera was fastened to the right external rear view 
mirror of a real vehicle, about 1.2 m above the ground to detect 
one of the side lines of the road. Such lines are typically white 
and about 15 cm wide. The results of all experiments reported 
in the following were conducted on urban roads, in a peripheral 
district of the city of Trento. The speed of the vehicle was kept 

between about 30 km/h and 70 km/h (i.e. 50 km/h on average) 
depending on the road and traffic conditions. It is worth 
emphasizing that such testing conditions are more challenging 
than those adopted in robotic vehicle competitions. In fact, 
during the experiments, line recognition was hindered and 
occasionally perturbed by shadows, faded or interrupted lines, 
gravel and road imperfections (e.g. asphalt patches). Usually, 
the light contrast between the road surface and the lines painted 
on the street is large enough to enable an easy detection of the 
line edges. In particular, such edges are depicted as linear 
clusters of active pixels on a grey background (in the following 
referred to as data points). Some significant examples of collected 
images are shown in Figures 4(a)-(i). Figure 4(a) refers to ideal 
conditions, i.e. a freshly painted white line on a uniform dark 
grey road background. In this case, the line edges are easily 
recognizable to the naked eye. In Figure 4(b) the right side of 
the line is partially faded. In Figure 4(c) the whole line is faded. 
In Figure 4(d) and 4(e) the line edges are sharp, but some 
shadows due to nearby objects create some additional contrast 
points (additional dark pixels). In Figure 4(f) one of the line 
edges is out of the field of view of the camera because the 
vehicle has slightly departed from the wanted trajectory. In 
Figure 4(g) the road line is covered by some gravel. In Figure 
4(h) the road is both dusty and in shadow. Finally, in Figure 4(i) 
line recognition is perturbed by a manhole cover. In the 
examples above, the thin, white straight lines plotted in each 
picture are reconstructed using the values of q = [h,α,d]T 
estimated in real-time. In all experiments, the threshold value st 
for the RANSAC algorithm is a function of the state covariance 
matrix P, and it is never smaller than 2 pixels.  

Estimation accuracy and robustness to visual artefacts have 
been evaluated offline. To this purpose, the images collected in 
about 15 tests of several minutes each have been grouped into 
three data sets depending on the amount of disturbances. In the 
following, data set 1 refers to the experiments in which the 
percentage of images affected by disturbances, such as those 
shown in Figure 4, is moderate (i.e. between about 15 % and 25 
%). Data set 2 includes the best experiments, namely those 
where no more than about 15 % of the collected images is 
perturbed. Finally, data set 3 comprises the worst experiments, 
i.e. those where the line was faded, partially interrupted or 
perturbed in up to 40 % of images.  

In all cases, the actual values of the state variables (namely 
the ground truth parameters denoted as hgt(t), αgt(t) and dgt(t)) were 
obtained with the following off-line procedure: 

1. at first, the so-called projection pursuit algorithm is used to 
select the coarse-grained histograms with the highest peaks 
[45]. Each set of features generating the histograms’ peaks 
(one peak for each line) represents a hypothesis; 

2. among all possible hypotheses, the one with the highest 
number of features is chosen; 

3. the projection pursuit algorithm is executed again, but with 
a fine-grained resolution, on the remaining features to 
detect possible clusters. The cluster with the highest ratio 
between the number of features and its standard deviation 
is chosen as the winning hypothesis; 

4. the features belonging to such a hypothesis are determined 
using a voting scheme similar to RANSAC; 

5. finally, a Least Squares Quadratic (LSQ) optimization 
algorithm is used to compute the values of hgt(t), αgt(t) and 
dgt(t). 

The results of this ground truth reconstruction procedure 
were carefully checked a posteriori by visual inspection record 

 
Figure  3.  Vision  system  for  light  contrast  detection  (on  the  left)  and
BeagleBoard xM embedded platform (on the right).  
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by record to remove or to correct possible outliers. A few 
images whose ground truth parameters could not be clearly 
estimated and that could not be corrected manually were simply 
removed from the data sets. 

Figure 5(a)-(c) shows the 0.95-level confidence intervals 
associated with εh=h-hgt (a), εα =α-αgt (b) and εd =d-dgt (c), for the 
three data sets described above. In each case the results of two 
different estimation techniques are shown and compared, i.e. 
the one described in this paper (which relies on both RANSAC 
and Kalman filtering) and the solution based on RANSAC only 
presented in [40]. 

We decided to evaluate measurement uncertainty in terms of 
confidence intervals rather than reporting the standard 
uncertainty computed with a Type-A evaluation approach [46], 
because the probability density functions of εh, εα and εd are 
strongly unimodal, but the normal probability plots of the 
collected data show that they are not normally distributed. An 
example of such distributions in the case of variable εα for data 
set 3 is shown in Figure 6. The histograms of the other variables 
are quite similar and are not particularly significant; so they are 
not reported for the sake of brevity. 

The use of confidence intervals in Figure 5(a)-(c) emphasizes 
more clearly the benefits of using the Kalman filter to improve 
accuracy, precision and robustness in line detection. This is 
especially true as far as the α parameter is concerned, which is 
also the most important for vehicle control purposes. Observe 
that εα ranges approximately between [-1,+1] degree with 95 % 
probability in all cases. Of course, the results related to data set 2 
are the best ones. However, even in the presence of more 
frequent disturbances, the proposed estimation technique is 
quite robust. This improvement is due to two reasons. First of 
all, the Kalman filter decreases the probability that RANSAC 
detects wrong line edges in consecutive images, thus greatly 
reducing the probability of unnatural “jumps” in the estimation 

process. Secondly, the Kalman filter makes the algorithm track 
angle α even when one of the two line edges is occasionally lost 
(e.g. because the line is too faded or because it is out of the field 
of view of the camera, as it is shown in Figure 4(f)).  

The analysis of εd and εh is a bit more complex. First of all, 
the distribution of such estimation errors in the RANSAC-only 
case is asymmetric. This asymmetry is due to the fact that when 
one of the two line edges is out of view, the “orphan” one is 
not always detected on the correct side of the line. Therefore, 
the right edge could be recognized as the left one and vice 
versa. However, the probability of these events is not the same. 
Thus, the estimation errors exhibit an asymmetric distribution, 
which, in the RANSAC-only case, can sometimes exceed 15 
pixels. Given that in the current setup 1 pixel (namely with the 
vision system about 1.2 m above the ground) corresponds to 
about 3 cm, the position error can be larger than 45 cm.  

By using the proposed algorithm, symmetry is usually re-
established because the Kalman filter keeps memory of the 
previous positions of the line edges. In this way, the estimation 
errors are considerably reduced. Indeed, they are generally 
within ±5 pixels (i.e. about 15 cm), with the only exception of εd 
in data set 3. This is due to the fact that, when the line is heavily 
faded, its width can be hardly estimated with good accuracy. 
Nonetheless, the accuracy in estimating vehicle direction is still 
preserved. It is important to remind that the memory effect of 
the Kalman filter is lost in the case of filter re-initialization, 
which occurs when the trace of matrix P exceeds the threshold 
tp defined in Section 3.4.  

A further important aspect that has to be carefully evaluated 
to appreciate the performances of the system prototype is 
related to computation time. Figure 7 shows the cumulative 
distribution curves of the execution times of the estimation 
algorithm running on the chosen low-cost embedded platform. 
The dashed line refers to the algorithm based on RANSAC 

      

    (a)             (b)          (c)     

      

    (d)          (e)          (f)     

     

    (g)          (h)          (i)     

Figure 4. Examples of images collected from the light contrast sensor: (a) ideal situation; (b) partially faded line; (c) considerably faded line; (d)‐(e) effect of 
shadows; (f) right edge out of the field of view of the camera; (g) road partially covered by gravel; (h) dusty shady line; (i) line painted over a manhole cover 
(i). In each image, the direction of the vehicle estimated by the algorithm with respect to the road line is represented by a white line. 
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only, whereas the solid line corresponds to the proposed 
solution based on both RANSAC and Kalman filtering. 
Observe that the execution time of the RANSAC-with-
Kalman-filter approach is faster than the solution based on 
RANSAC only. This is due to the fact that generally a smaller 
number of iterations is needed to detect the line edges due to 

the prior retained by the Kalman filter. In particular, in this case 
the median execution time of the proposed algorithm is just 4 
ms and it is lower than 10 ms with 97 % probability. This 
means that with a camera frame rate equal to 100 frame/s (so 
that a new image can be processed every 10 ms), even if the 
vehicle travels at 100 km/h, the measurement system is able to 
estimate direction changes with a space resolution of about 30 
cm, which is compatible with automated high-speed vehicle 
control.  

5. CONCLUSIONS 

Increasingly sophisticated, high-speed automated guided 
vehicles (AGVs) require fast sensors able to ensure accurate 
and reliable real-time path-following techniques. In this context, 
this paper presents a simple vision-based technique and a low-
cost system able to estimate the direction and the relative 
position of a vehicle with respect to a line painted on the 
ground. Line-tracking techniques are indeed commonly used in 
robots for industrial applications. The proposed solution relies 
on a special camera and on a tailored RANSAC algorithm 
enhanced by a Kalman filter. Even if the system does not 
address other crucial safety problems, such as collision 
avoidance for instance, it is robust to manifold uncertainty 
sources and it is cheaper and faster than other vision-based 
solutions. This is due not only to the proposed algorithm per 
se, but also to the low resolution of the adopted light contrast 
imager, which greatly reduces image processing burden and data 
transfer latency. In future, the current prototype could be 
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Figure 5. 0.95‐level confidence intervals associated to εh (a) and εα (b) and εd
(c)  for  three  different  data  sets.  Pairs  of  adjacent  intervals  refer  to  the
estimation errors  resulting  from the proposed RANSAC algorithm with and
without Kalman filtering, respectively. 
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further improved by using a more sensitive imager and an 
inertial platform measuring vehicle speed. 

APPENDIX ‐ DERIVATION OF EXPRESSION (2) 

Let W  be a reference frame, with axes Xc, Yc and Zc 

defined in such a way that:  
 Xc is directed as the x-axis of the image plane; 
 Yc is oriented as the y-axis of the image plane (according 

to a right-handed reference frame); 
 Zc is oriented towards the observed scene till 

intersecting the image plane in the principal point, as 
shown in Figure 1. 

The origin of C  coincides with the camera pin-hole. 

Therefore, C  is simply translated with respect to I  without 

any rotation. On the contrary, the orientation of C  with 

respect to W  can be arbitrary. Therefore, if cRw is the rotation 

matrix of C and tw =[tx, ty, tz]
T is the same translation vector, as 

defined in Section 2.1, the coordinates of a generic point wP in 
the camera frame are given by [41]: 

  TTw
ww PtRP 1cc ,                                   (A.1) 

where cP = [cx, cy, cz]T and [cRw|tw] is a 3 x 4 matrix which 
defines the rigid transformation between C  and W . In 

particular, if the axes of C  are completely rotated with 

respect to W  as shown in Figure 1, (A.1) can be rewritten as  
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From the basic theory of vision systems, it is known that the 
projection of any point in the field of view of the camera onto 
the image plane results from [41]: 
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is the so-called camera calibration matrix, fx and fy represent the 
focal lengths along axes Xi and Yi, respectively, s models the 
radial distortion of the image, and the coordinates cx and cy of 
the principal point of the camera are both equal to 0 in the 
frame I . In practice, the terms of the calibration matrix can 

be estimated using widely known numerical tools [47]. Thus, if 
the radial distortion coefficient is negligible (as it commonly 
occurs in practice), by replacing (A.2) into (A.3), after a few 
mathematical steps, (2) finally results. 
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[31]  A. López, J. Serrat, C. Canero, F. Lumbreras, “Robust lane lines 
detection and quantitative assessment,” in Pattern Recognition 
and Image Analysis. Springer-Verlag, New York, NY, 2007, 
ISBN: 978-3-540-72846-7, pp. 274–281.  

[32] B.-F. Wu, C.-T. Lin, and Y.-L. Chen, “Dynamic calibration and 
occlusion handling algorithms for lane tracking,” IEEE 
Transactions on Industrial Electronics 56 (2009), pp. 1757–1773.  

[33] Y. Wang, N. Dahnoun, A. Achim, “A novel system for robust 
lane detection and tracking,” Signal Processing (2012), pp. 319-
334.  

[34] Z. Kim, “Robust lane detection and tracking in challenging 
scenarios,” IEEE Transactions on Intelligent Transportation 
Systems 9 (2008), pp. 16-26.  

[35] M. Bertozzi, A. Broggi, “Gold: A parallel real-time stereo vision 
system for generic obstacle and lane detection,” IEEE 
Transactions on Image Processing 7 (1998), pp. 62–81. 

[36] T. Rizano, D. Fontanelli, L. Palopoli, L. Pallottino, P. Salaris, 
“Global path planning for competitive robotic cars,” Proc. 
IEEE 52nd Annual Conference on Decision and Control 
(CDC), Dec. 10-13, 2013, Florence, Italy, pp. 4510-4516. 

[37] M. Fischler, R. Bolles, “RANdom SAmpling Consensus: a 
paradigm for model fitting with application to image analysis and 
automated cartography,” Communications of the ACM 24 
(1981) pp. 381–395. 

[38] D. Fontanelli, L. Ricciato, S. Soatto, “A fast RANSAC–based 
registration algorithm for accurate localization in unknown 
environments using LIDAR measurements,” Proc. IEEE 
International Conference on Automation Science and 
Engineering, Sep. 22-25, 2007, Scottsdale, AZ, USA, pp. 597–
602. 

[39] G. Mastorakis, E. Davies, “Improved line detection algorithm 
for locating road lane markings,” Electronics Letters 47 (2011), 
pp. 183–184. 

[40] D. Fontanelli, M. Cappelletti, D. Macii, “A RANSAC-based fast 
road line detection system for high-speed wheeled vehicles,” 
Proc. of IEEE Int. Instrumentation and Measurement 
Technology Conference (I2MTC), May 10-12, 2011, Hang 
Zhou, China, pp. 186–191.  

[41] R. Hartley, A. Zisserman, Multiple View Geometry in Computer 
Vision, Cambridge University Press, 2003, ISBN: 0-52-154-051-
8. 

[42] H. Mallot, H. Blthoff, J. Little, and S. Bohrer, “Inverse 
perspective mapping simplifies optical flow computation and 
obstacle detection,” Biological Cybernetics 64 (1991), pp. 177–
185. 

[43] M. Gottardi, N. Massari, S. Jawed, “A 100-μW 128×64 pixels 
contrastbased asynchronous binary vision sensor for sensor 
networks applications,” IEEE Journal of Solid-State Circuits 44 
(2009), pp. 1765–1770. 

[44] L. Gasparini, D. Macii, M. Gottardi, D. Fontanelli, “A low-
power data acquisition system for image contrast detection,” in 
Proc. IMEKO TC-4 International Workshop on ADC 
Modelling and Testing (IWADC), Jun. 30- Jul. 1, 2011, Orvieto, 
Italy, pp. 1-6. 

[45] P. Huber, “Projection pursuit,” The annals of Statistics 13 (1985) 
435–475.  

[46] BIPM, and IEC, and IFC, and ISO, and IUPAC, OIML, Guide 
to the Expression of Uncertainty in Measurement, Geneva, 
Switzerland, 2008. 

[47] Z. Zhang, “A flexible new technique for camera calibration,” 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence 22 (2002), pp. 1330–1334. 

 
 

 


