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1. INTRODUCTION 

Testing and characterization of analog-to-digital converters 
is an important field of measurement technology. A commonly 
used method for ADC testing is using a sine wave excitation 
signal, e. g. sine wave-based histogram test. In this latter 
procedure the device under test is excited with a possibly clean 
sinusoidal input, then a histogram is created which is used after 
correction for the probability density function of the sine wave 
to determine the transition levels of the converter. 

The standard method to estimate the parameters of the 
excitation signal is the least squares fitting algorithm. If the 
signal frequency is assumed to be known, the so-called three-
parameter fit can be done which estimates the sine and cosine 
amplitudes and the DC offset level of the signal. In the case of 
unknown frequency, the four-parameter fit solves the problem. 

Dynamic errors of the ADC are often investigated using the 
FFT test which reveals the spurious components and harmonic 
distortion introduced by the device.  

The test methods mentioned above are described in detail in 
the IEEE standard [1]. Furthermore, this document defines 
rather strict conditions for the signal parameters which have to 

 
 
be fulfilled to ensure accurate results. However, users have to 
face some difficulties during the application of the standard 
procedures:  

 there is no method proposed to check the fulfilment of 
the conditions for the signal parameters (e.g. coherence, 
relative prime condition), 

 while the proposed methods are sensitive to the signal 
parameters, they are unable to recognize bad parameter 
settings which might lead to incorrect characterization 
of the converter, 

 correct signal parameters by themselves still do not 
ensure precise estimation of the sine parameters since 
the least squares method is sensitive to the 
nonlinearities of the ADC. 

The main goal of this paper is to present some advanced 
methods which are able to handle the above problems and 
provide unbiased information with minimum variance about 
the signal and ADC parameters, using only the measured 
record. MATLAB and LabVIEW implementation of the 
methods are freely available on the internet [2], these software 
tools are also presented here. 

ABSTRACT 
Analog‐to‐digital  converters  and  the  need  to  test  these  devices  appeared  simultaneously.  Thus,  ADC  circuit  realizations  and  test 
methods evolved also simultaneously. In the last decades several techniques have been elaborated and spread worldwide. These are 
available  in  IEEE  standards  and  in  the  literature  as well. However,  standard methods do not  support  the  recognition of  incorrect 
measurement settings. Accurate test results require careful choice of settings and calculated quality parameters of the ADC under test 
are very sensitive to imperfections of the measurement setup. In addition, the requirements are different for each test technique and 
the restrictions can even be contradicting  (e.g. overdrive  is recommended  for histogram test and contraindicated  for FFT test). This 
paper presents solutions to perform the commonly used methods reliably and some advanced methods to increase the performance 
of ADC quality parameter estimation. Implementations of the proposed algorithms are presented as well, with URL for download.
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Section 2 explains in details the standard methods and their 
disadvantages. The advanced methods are presented in Section 
3. The software tools are illustrated in Section 4. Finally, in 
Section 5 some experimental results are shown which confirm 
the advantages of the proposed methods. 
This work is based on and extends [5]. 

 

2. STANDARD METHODS IN ADC TESTING 

2.1. The sine wave histogram test 

The histogram test is an effective way to estimate the code 
transition levels of an A/D converter. The ADC is tested with a 
pure sine wave which slightly exceeds the input range (see [3]). 
A histogram is created which shows the number of hits in each 
code bin. Let ܪሺ݅ሻ be the number of hits in code bin ݅ (݅ ൌ
0…2௕ െ 1 for an ADC of ܾ bits). Then the cumulative 
histogram ܪ௖ሺ݆ሻ can be defined as: 

௖ሺ݆ሻܪ ൌ ∑ ሺ݅ሻ௝ܪ
௜ୀ଴ . (1) 

Let the model of the excitation signal be 

ሻݐሺݔ ൌ ܥ ൅ ܴ cosሺ2ߨ ௫݂ݐ ൅ ߮ሻ (2) 

where ܥ, ܴ, 	 ௫݂ and ߮ are the offset, amplitude, signal 
frequency and initial phase, respectively. Using the parameters 
,ܥ ܴ, the number of samples ܰ and the cumulative histogram 
 ௖ሺ݆ሻ, the ݇th transition level can be estimated with theܪ
following formula: 

෠ܶ௞ ൌ ܥ െ ܴ cos ቀ
గு೎ሺ௞ሻ

ே
ቁ. (3) 

The signal parameters ܥ and ܴ can be estimated in units of 
the ADC quantum step, directly from the cumulative histogram 
(e.g. from the position of the 10 % and 90 % points), or making 
a least squares fit of the histogram. This is usually enough to 
execute the test in ADC units (absolute values can be obtained 
by using estimates of two arbitrary (but not too close) transition 
levels, matching to the measurement). Using such estimators 
will not introduce any errors in the INL and DNL 
characteristics of the converter [1]. However, determination of 
parameters like SINAD, ENOB, etc. requires estimation of all 
parameters of the input signal (that is, also the phase and 
frequency).  

The histogram test is very sensitive to the appropriate ratio 
of the signal frequency ௫݂ and of the sampling frequency ௦݂. 

This ratio defines the relation between the number of samples 
(ܰ) and the number of periods (ܬ) in the record: 
௙ೣ

௙ೞ
ൌ

௃

ே
. (4) 

Standard [1] requires the sampling be coherent (thus ܬ has to 
be an integer number), and ܬ and ܰ be relative primes. These 
conditions are very important because they guarantee the 
unbiased, minimum variance estimation of the transition levels 
(with respect to the given number of samples, see [4] and [5]). 
Unfortunately, there is no proposed method in the standard 
about inspecting the fulfilment of the above conditions.  

The requirements defined in the standard are important 
because this test technique compares the histogram of the 
quantized signal to the probability density function (PDF) of 
the sine wave. If a sine is quantized with an ideal ADC, its 
histogram will be very similar to the pdf, especially if the 
number of bits is high. Figure 1 shows such a histogram. The 
imperfections of the converter cause distortions in the 
histogram, since the number of hits in the code bin differs from 
the ideal case as the code is wider or narrower than the 
quantization step (see Figure 2).  

However, if the coherence condition is not fulfilled, then the 
number of periods in the signal is not integer. The samples of 
the fractional period might also cause distortions in the 
histogram, so transition levels among these codes will be 
estimated with systematic errors (see Figure 3). 

 
Figure 1. The histogram of a coherently sampled sine wave quantized by an
ideal quantizer. 

 
Figure 2. Histogram of a coherently sampled sine wave, quantized by a non‐
ideal quantizer.  

 
Figure  3.  Distortion  in  the  histogram  of  the  sine  wave  caused  by  non‐
coherent sampling.
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The conclusion is that only coherent sampling ensures 
unbiased results in the estimation. However, the relative prime 
condition still has to be fulfilled, otherwise the quality of the 
results might be harmed. The distribution of the phases of the 
samples is uniform in the interval ሾെߨ,  ሿ only if the greatestߨ
common divisor of ܬ and ܰ is 1. In that case every sample 
excites the ADC at a different voltage level, thus the transition 
levels can be estimated with maximum precision. Figure 4 
illustrates the case when both coherence and relative prime 
conditions are fulfilled. The samples are distributed uniformly, 
the distance between two adjacent samples is everywhere the 
same. The transition levels can be estimated with the best 
precision because the uncertainty of their location depends on 
the distance between the samples close to each other in phase. 
Figure 5 shows the case when the signal is sampled coherently, 
but the relative prime condition is not fulfilled. The value of the 
greatest common divisor is 5 instead of 1, thus the samples are 
arranged into nodes. The distance between two nodes is much 
higher than its ideal value, thus the uncertainty of the locations 
of the transition levels is high which significantly increases the 
variance of the estimation. 

Finally, Figure 6 shows the case when the sampling is non-
coherent. The distance between the phases varies, which leads 
to distortions in the histogram of the sine wave (see also Figure 
3). 

2.2. The least squares method 

Precise estimation of the signal parameters is quite 
important in ADC testing. For example, the RMS value of 
residuals strongly depend on the estimated parameters. 
Equation (3) also shows that the amplitude and DC offset 
parameters have to be known as exactly as possible to 
determine the ADC characteristics precisely. The least squares 
method uses the following model of the sine wave: 

ሻݐሺݔ ൌ ܣ cosሺ2ߨ ௫݂ݐሻ ൅ ܤ sinሺ2ߨ ௫݂ݐሻ ൅  (5) ܥ

where ܣ ൌ ܴ cosሺ߮ሻ and ܤ ൌ െܴ sinሺ߮ሻ. The advantage of 
this modified model is that it is linear in A, B, C, and nonlinear 
only in the signal frequency. The method minimizes the 
following quadratic cost function: 

∑ ሺݔሺݐ௜ሻ െ ܣ cosሺ2ߨ ௫݂ݐሻ െ ܤ sinሺ2ߨ ௫݂ݐሻ െ ሻଶேܥ
௜ୀଵ . (6) 

Let ࡰ denote the matrix of the derivatives of the residuals 
with respect to the parameters of the sine wave. The solution of 
the least-squares equation can be expressed in the following 
form: 

௅ௌݏ̂ ൌ ሺࡰ்ࡰሻିଵ(7) .்࢞ࡰ 

Solving the above equation iteratively (e.g. 5-6 times 
Newton-Gauss steps) will give the least squares estimator of the 
sine parameters. 

Despite of the efficiency of the method, it has several 
disadvantages: 

  the statistical properties of the estimation depends 
strongly on the saturation of the ADC, e.g. a 10 % 
overdrive leads to significant errors in the estimation 
of the sine parameters; 

 the presence of harmonic components also influence 
the precision of the estimator negatively; 

 the least-squares method assumes implicitly an ideal 
quantizer (so the stochastic model of noise is 
appropriate). However, this model is not valid for true 
ADCs with nonlinear characteristics which results 
biased estimation; 

Figure  4. Distribution  of  the  phases  in  [0,  2π] when  both  coherency  and 
relative prime conditions are fulfilled.  

Figure  5.  Distribution  of  the  phases  in  [0,  2π] when  only  the  coherency
condition is fulfilled.  

Figure  6.  Distribution  of  the  phases  in  [0,  2π]  in  case  of  non‐coherent 
sampling.  
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 the computational demands increase rapidly with the 
record length, however testing high resolution 
converters requires long measurements. 

2.3. The FFT test 

The purpose of the FFT test is to characterize the dynamic 
behaviour of the ADC by identifying spurious and harmonic 
components introduced by the device. The spurious free 
dynamic range (SFDR) shows the relation between the carrier 
and the largest spurious component in the signal. Overdrive of 
the ADC or non-coherent sampling significantly decrease the 
precision of the test results due to spectral leakage and 
harmonic components caused by clipping the peaks of the sine 
wave [6].  

3. ADVANCED METHODS 

3.1. Main goals 

The main goal of this paper is to present some advanced 
algorithms which are able to handle the problems introduced in 
Section 2. This way the user can perform accurate and reliable 
ADC testing. The methods perform the following tasks: 

 quality analysis of the measured data is provided by 
checking saturation and the fulfilment of the conditions 
required by the histogram test method. This step 
requires precise estimation of the sine parameters; 

 if the original record fails to fulfil the conditions, the 
coherent parts of the record are identified. If the 
coherent parts are too short compared to the original 
measurement, a new signal frequency is proposed and 
the measurement can be repeated following this 
suggestion. Above steps improve significantly the 
results of the histogram test and the FFT test since both 
methods provide the best results in the case of coherent 
sampling; 

 the signal parameters are determined using the 
maximum likelihood (ML) algorithm. The ML estimator 
is not influenced negatively by the (possibly) nonlinear 
characteristics of the ADC, thus the signal parameters, 
the fitting residuals and values such SINAD, ENOB 
can be determined with the best achievable precision. 

The algorithms are presented in details in the next 
subsections. It is important to notice that no a priori 
information is used or required, the source of the information 
(transition levels, signal parameters, etc.) is the measured data 
only. 

3.2. Overdrive detection 

Overdrive detection is quite important because distortions in 
the signal caused by clipping the peaks largely influence the 
results of sine wave fitting and the FFT test. The method 
identifies the samples in the measured signal which seems to be 
out of the full-scale range of the ADC. For this purpose, first 
the number of periods (ܬ) in the signal is determined using 
IpFFT with maximum sidelobe decay window ([7], [8] and [9]). 
In the next step, the three-parameters sine fit [1] is done to 
determine the ܣ,  ሺ݇ሻ be the outputݕ parameters. Let ܥ and ܤ
of the ADC, and ܥ௠௜௡,  ௠௔௫ be the smallest and the largestܥ
output code of the converter. Based on [10], only those samples 
are used during the three-parameters fit algorithm for which the 
following condition holds true: 

௠௜௡ܥ ൏ ሺ݇ሻݕ ൏  ௠௔௫. (8)ܥ

Then the ݔ௙ሺ݇ሻ fit can be expressed as: 

௙ሺ݇ሻݔ ൌ መܣ cos ቀ
ଶగ௃መ௞

ே
ቁ ൅ ෠sinܤ ቀ

ଶగ௃መ௞

ே
ቁ ൅ መܥ . (9) 

The ݇th sample of the signal is assumed to be overdriven if 
௙ሺ݇ሻݔ ൏ ௠௜௡ܥ െ 1/2 or ݔ௙ሺ݇ሻ ൐ ௠௔௫ܥ ൅ 1/2 (these are two 
virtual transition levels at the start and end of the full scale 
range). The overdriven samples are replaced (as in [6]) with the 
corresponding samples of ݔ௙ሺ݇ሻ: 

ᇱሺ݇ሻݕ ൌ ቐ
,௙ሺ݇ሻݔ ௙ሺ݇ሻݔ ൏ ௠௜௡ܥ െ 1/2
,௙ሺ݇ሻݔ ௙ሺ݇ሻݔ ൐ ௠௔௫ܥ ൅ 1/2
,ሺ݇ሻݕ otherwise																			

. (10) 

Using ݕ′ሺ݇ሻ instead of ݕሺ݇ሻ during the FFT test and the sine 
fitting algorithm improves the results significantly.  

3.3. Least‐squares fit in the frequency domain 

Disadvantages of the standard, time domain least squares 
method (presented in Section 2) show that it is not the best 
method for the determination of the sine parameters. Most of 
the disadvantages can be handled if the fit is performed in the 
frequency domain. For this purpose, first ݕ′ሺ݇ሻ is windowed 
with the three-terms Blackman-Harris windows (see [11]), then 
the FFT of the windowed signal is computed. The Blackman-
Harris window concentrates the information about the sine 
wave around its frequency very effectively, thus only a few 
points are used during the iterative estimation method. The 
method is explained in details in [12] and [13]. The main 
advantages are the following: 

 the Blackman-Harris window compresses the 
information around the sine and DC frequencies, thus 
the computational costs are reduced significantly; 

 the statistical properties of the estimator are the same 
compared to the original method. On low frequencies 
the frequency domain method outperforms the 
original algorithm; 

 due to the windowing the frequency domain method 
is much less sensitive to harmonic distortions in the 
signal. 

It is important to notice that nonlinearities in the ADC 
characteristics cannot be handled with least squares estimators 
regardless of the domain of the used samples. However, the 
influence of the characteristics is much more significant 
regarding parameters ܣ,  the ,ܬ in comparison with ܥ and ܤ
number of periods in the signal. So ܬመ௅ௌ is approximately 
unbiased and it was also shown in [13] that its statistical 
properties allow the estimator be used to check the fulfilment 
of the coherency and relative prime conditions.  

3.4. Coherence analysis 

The main purpose of the algorithm is to decide the 
suitability of the measured sine wave for histogram testing. This 
depends on the exact number of periods in the signal, denoted 
by ܬ. This can be written as ܬ ൌ 〈ܬ〉 ൅  is the 〈ܬ〉 where ܬ∆
rounded value of ܬ and ∆ܬ is the residual, thus |∆ܬ| ൏ 0.5. The 
goal is to identify the coherent record parts in the 
measurement. For this purpose, the condition of Carbone and 
Chiorboli is used. It was shown in [14] that if 〈ܬ〉 and ܰ are 
relative primes and 

|ܬ∆| ൑
ଵ

ଶே
 (11) 

hold true then the variance of the histogram test method does 
not increase noticeably in comparison with the ∆ܬ ൌ 0 case, 
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thus the sampling can be assumed coherent from the histogram 
test’s point of view.  

Since the estimators are probability variables, a probabilistic 
approach of coherency analysis is recommended and presented. 
Let ߪ௃ be the variance of the ܬመ estimator. As it was shown in 
 መ is asymptotically Gaussian, unbiased and its variance canܬ ,[13]
be determined in close form using the Jennrich-theorem (see 
[15]). Using the information above, the following probability 
can be determined: 

ܲሺݔ, ሻݕ ൌ ܲሺܬ െ ௃ߪݕ ൑ መܬ ൑ ܬ ൅  ௃ሻ. (12)ߪݔ

The following probability is the same: 

ܲሺݔ, ሻݕ ൌ ܲሺܬመ െ ௃ߪݕ ൑ ܬ ൑ መܬ ൅  ௃ሻ. (13)ߪݔ

Using the latter form, the probability of coherency can be 
answered for different record lengths by selecting the values of 
 መ, thusܬ ଴ be the rounded value ofܬ properly. Let ݕ and ݔ
଴ܬ ൌ -To determine the probability of fulfilling the Carbone .〈መܬ〉
Chiorboli condition, the following values of ݔ and ݕ are 
required: 

ݔ ൌ
ଵ

ఙ಻
ቀܬ଴ ൅

ଵ

ଶே
െ መቁܬ

ݕ ൌ
ଵ

ఙ಻
ቀܬመ െ ଴ܬ ൅

ଵ

ଶே
ቁ
	. (14) 

If this probability is higher than a previously defined threshold 
(e.g. 95 %), the sampling can be assumed coherent. In addition, 
if the relative prime condition is also fulfilled, then the data is 
optimal for histogram testing. Otherwise, additional steps are 
required to identify the coherent parts of the signal. If the 
original record of ܰ samples fails to fulfil the requirements, 
then a new ଶܰ ൏ ܰ has to be determined. Let ݀ be the number 
of periods represented by one sample of the signal (݀ ൏ 0.5, 
this comes from the Nyquist-Shannon sampling theorem). The 
exact value of ݀ is unknown, but it can be estimated: 

݀ ൎ መ݀ ൌ
௃መ

ே
. (15) 

Let ܬଶ be the number of periods for which the condition of 
Carbone and Chiorboli holds true, and the greatest common 
divisor of ܬଶ and ଶܰ is 1. Then ܬଶ can be estimated as: 

መଶܬ ൌ ଶܰ
መ݀ ൌ

ேమ
ே
 መ. (16)ܬ

The variance of ܬመଶ is also known: 

௃,ଶߪ
ଶ ൌ ቀ

ேమ
ே
ቁ
ଶ
௃ߪ
ଶ. (17) 

This way the probability of coherence can be determined for 
any ଶܰ ൏ ܰ record length. Using the above procedure, the 
following steps are proposed to determine the optimal number 
of samples used for histogram testing: 

 estimation of the number of periods in the original 
record using the frequency domain estimator. As a 
result, we have ܬመ and ߪ௃; 

 determination of the possible number of integer 
periods in the record. This is stored in the ࢏࢐ vector, 
its elements increase from 1 to ܬ଴ ൌ  The value of .〈መܬ〉
መ݀ is also determined; 

 determination of the number of samples for each 
element of ࢏࢐. Since these have to be integers, these 
are the rounded values of the ratio of the possible 
integer number of periods and መ݀ . The results are 
stored in the ࢔ vector; 

 for the elements of ࢔ the exact number of periods is 
calculated and stored in the ࢐ vector. Each element is a 
probability variable, the standard deviations are stored 
in ࢙ ൌ  ;ܰ/௃ߪ࢔

 the next step is the calculation of the values of the 
Carbone-Chiorboli bound for each element of ࢔. 
Once this is done, the probabilities of coherency can 
be determined for every value of ࢐. These probabilities 
are stored in the ࢖ vector, and the greatest common 
divisors of the corresponding elements of ࢐ and ࢔ in 
the ࢍ vector; 

 using the above vectors, the optimal number of 
samples can be determined. The proposed formula is 
the following: 

௜ݑ ൌ
௜ܰ ௜ܲ

௜ܩ
 

where ௜ܰ, ௜ܲ and ܩ௜ are the ݅th element of the ࢔, ,࢖  ࢍ
vectors, respectively. The histogram test should be 
performed with that ௜ܰ length for which ݑ௜ is 
maximal; 

 if the value of ௜ܰ is too small compared to the original 
record length, the needed adjustment of the signal 
frequency can be determined if the sampling 
frequency is known. From (4) one can derive that 

∆ ௫݂ ൌ ܬ∆ ௦݂

ܰ
 

where ∆ ௫݂ is the required correction in the sampling 
frequency. Note that the frequency resolution of the 
signal generators is not enough high to adjust the 
frequency exactly by the proposed value. 

3.5. The Maximum likelihood method 

3.5.1. Motivation 

The main weakness of the standard LS estimators for the 
sine wave parameters is the possible bias of them. Least-squares 
estimation can be biased in multiple cases, examples from the 
field of system identification are itemized in [16]. In ADC 
testing, this problem appears due to the nonideality of the real 
quantizers: the code transition levels are not distributed 
uniformly, thus code bins have different widths. However, the 
LS estimator finds the best fitting sine wave to the output codes 
of the device under test (occasionally to the nominal voltage 
values corresponding to the output codes), while the aim is to 
estimate the parameters of the input sine wave. The 
nonlinearity of the converter is not modelled in this standard 
method. The goal of maximum likelihood (ML) estimation of 
sine wave and ADC parameters [17], [21] is to provide 
minimum-variance unbiased (MVU) estimators for the analog 
excitation signal considering the non-ideal properties of the 
quantizer. The theoretical and practical aspects of ML 
estimation for ADC testing are to be itemized in the following 
subsections. 

3.5.2. Modelling the measurement setup 

For sine wave-based qualification of converter circuits, the 
measurement setup is simple. The analog side of the ADC 
under test is connected to a sine wave generator, while the 
digital record of the sine wave is post-processed to achieve the 
quantities that qualify the converter. However, the quality 
requirements for the sine wave generator are high. This device 
shall provide excellent frequency stability even for minutes and 
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harmonic distortion must be very low. These strict 
requirements have the following reasons: alteration of 
frequency, phase noise and multi-harmonic signals can be 
treated mathematically, nevertheless these options give too 
many degrees of freedom to the model. E.g. harmonic 
components in the record provided by the nonlinearity of the 
converter and provided by the analog generator cannot be 
distinguished. Similarly, a measured sine wave can be described 
as using additive noise and harmonic components as using 
frequency alteration and phase noise. The noise of the analog 
signal, the disturbances of the analog environment and the 
electronic noise of the ADC circuit are handled in a simple, but 
very lifelike noise model [18]. To examine the statistical and 
spectral properties of the measurement noise it is expedient to 
perform long measurements with short circuited analog input 
or zero excitation on the sine wave generator (the latter one is 
better to record the electromagnetic disturbances of the 
environment). Evaluating several measurements with different 
ADC circuits, the white noise model is apparently very realistic. 
This is important from the aspect of the mathematical form of 
the likelihood function as well, because the samples of the noise 
are assumed to be independent (see subsection 3.5.3.). 
Regarding the probability distribution of the noise, the results 
are less straightforward. We tried to confirm or deny the null 
hypothesis that these samples are from a well-known 
distribution using the Kolmogorov-Smirnov test. As the 
records contained up to 2 million samples, these hypothesis test 
results are reliable at high confidence level (p = 95-99 %). The 
distribution of the recorded populations were close to the 
Gaussian normal distribution, but showed significantly higher 
kurtosis: contained more outliers than it is expected in case of 
Gaussian noise. According to our experience, the best practice 
is to use a combination of Gaussian and Laplacian distribution 
to handle the outliers, but to keep the shape of distribution as 
well [19]. The model of the measurement and the parameters 
corresponding to the elements of the setup appear in Figure 7. 

3.5.3. The likelihood function 

The measurement record contains M samples of the digitally 
recorded sine wave. The observations are these samples of the 
quantized noisy signal. The likelihood function depends on the 
following parameters denoted by ࢖: 

்࢖ ൌ ሾܣ, ,ܤ ,ܥ ݂, ,ߪ ܶሾ1ሿ,⋯ , ܶሾ2௕ െ 1ሿሿ (18) 

where ܾ is the number of bits, ܣ denotes the cosine coefficient 
of the sine wave, ܤ is the sine coefficient of the sine wave, ܥ 
denotes the DC offset of the excitation signal. The frequency of 
the sine wave is denoted by ݂ (the sampling frequency is 
known), ߪ denotes the standard deviation of the additive noise 
on the analog signal, and the code transitions levels of the 

quantizer (from the lowest to the highest) are denoted by 
ܶሾ1ሿ, . . . , ܶሾ2௕ െ 1ሿ, respectively. The likelihood of the 
measurement can be expressed using the following equation: 

ሻ࢖ሺܮ ൌ ∏ ܲሾݕ௞ ൌ ܻሺ࢖ሻሿெ
௞ୀଵ  (19) 

where ݕ௞ denotes the ݇th recorded sample of the sine wave and 
ܻሺ࢖ሻ is a discrete random variable corresponding to the 
݇th.sample of the record. To calculate the distribution of ܻሺ࢖ሻ, 
it is necessary to calculate the ݇th sample of a pure sine wave 
with given parameters ܣ, ,ܤ  :݂ and ܥ

௞ݔ ൌ ܣ cosሺ2ݐ݂ߨሻ ൅ ܤ sinሺ2ݐ݂ߨሻ ൅  (20) .ܥ

The threshold levels of the quantizer (code transition levels) 
and the noise model appear in the following formula, which 
gives the discrete distribution of random variable ܻሺ࢖ሻ: 

ܲሾܻሺ࢖ሻ ൌ ݉ሿ ൌ Nሺݔ௞, ,ߪ ܶሾ݉ ൅ 1ሿሻ െ Nሺݔ௞, ,ߪ ܶሾ݉ሿሻ (21) 

where Nሺߤ,  ሻ denotes the cumulative distribution function ofߪ
the noise with expected value ߤ and standard deviation ߪ. 
Using the cumulative distribution function (CDF) of Gaussian 
distribution as NCDF is usually a very good approximation (see 
subsection 3.5.2). 

In this likelihood function the following a priori information 
is used: 

 the noise is white (samples of the noise are 
independent); 

 the analog excitation is a sine wave with additive, 
almost Gaussian noise; 

 the quantizer is described with its sampling frequency 
( ௦݂, constant in a measurement) and code transition 
levels (ܶሾ݇ሿ is the voltage value which results digital 
code ݇ െ 1 with 50 % probability and ݇ with 50 % 
probability as well).  

The maximum likelihood estimators can be achieved 
optimizing this likelihood function with respect to the 
parameters stored in ࢖: 

ෝெ௅࢖ ൌ argmax  ሻ. (22)࢖ሺܮ

3.5.4. Challenges of optimization 

The most important problem is the computational demand 
of the optimization which strongly depends on the number of 
parameters. Using a b-bit quantizer the number of parameters is 
2௕ 	൅ 	4, the number of restrictions is 2௕ 	൅ 	1, thus the 
parameter space increases exponentially with respect to the 
number of bits. The entire computational demand grows even 
faster: let n denote the number of parameters, thus depending 
on the optimization algorithm, the operations have the 
following computational complexity: 

 calculating the first-order partial derivatives (the 
gradient vector): ~ܱሺ݊ሻ; 

 calculating the second order partial derivatives (the 
Hessian matrix): ~ܱሺ݊ଶሻ; 

 inverting the Hessian matrix: ~ܱሺ݊ଷሻ. 
This way performing the optimization process on the entire 
parameter space requires unacceptable efforts for a regular 12-
bit, 16-bit or higher resolution ADC. To handle this problem 
one of the following approximations shall be used: 

 the code transition levels are estimated from the 
sinusoidal record using histogram test [2]. These 
values are considered to be fixed and will not be 
adjusted later. This method reduces the parameter 
space to 5 dimensions, however brings along all the Figure 7. Measurement setup for ADC testing.  
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problems that can appear in sinusoidal histogram 
testing [4];  

 the nonlinearity of the quantizer is parameterized: the 
code transition levels are not estimated one by one, 
but the entire static transfer characteristics is described 
using fewer (from 5 up to 15) parameters. This way 
the number of parameters of the likelihood function 
remains between 10 and 20, so the optimization can 
be performed without excessive efforts. For 
parameterization, Chebyshev [20] and Taylor 
polynomials or Fourier-coefficients can be used. The 
information regarding the nonlinearity is described 
using fewer quantities in this case, however the 
estimation of these polynomial coefficients brings 
along less variance than the estimation of the single 
code transition levels. 

3.5.5. Numerical recipes to optimize the likelihood function 

The likelihood function in the reduced parameter space can 
be optimized multiple ways to achieve approximate maximum 
likelihood estimators: 

 derivative-based methods: the simple gradient 
descent which only requires the first order partial 
derivatives, the Gauss-method that implies the 
calculation of the Hessian matrix and the generalized 
Levenberg-Marquardt method where the Hessian is 
used as well (instead of ࡶ்ࡶ formula from the Jacobian 
matrix). Calculation of the Hessian in each iteration 
cycle can be bypassed using Quasi-Newton methods 
(e.g. DFP, BFGS or Broyden); 

 simplex downhill (Nelder-Mead) method: does not 
require to calculate derivatives (the objective function 
must not even be differentiable), however the number 
of iterations and cost function evaluations can be high 
(depending on the shape of the minimum/maximum 
and the termination criteria); 

 differential Evolution: a genetic algorithm used to find 
the global optimum of the objective function. This 
method does not require derivatives and is able to 
escape from local extrema. On the other hand it 
requires large number of cost function evaluations and 
the convergence is partially based on heuristics; 

In our software implementation available on the web [8] a 
gradient-based method is used, nevertheless other algorithms 
can be efficient and their efficient usage is also subject of 
investigation. 

4. SOFTWARE TOOLS FOR ADC TESTING 

Previous sections demonstrated the importance of the 
quality analysis on the measured data before the test methods 
are performed. The algorithms have to be executed in a fixed 
order to ensure best results. Every method on a later stage uses 
the information provided by previous methods. The main tasks 
are the FFT test, histogram test and estimation of the sine 
parameters, these are supported by the other algorithms. The 
data processing chain can be seen on Figure 8.  

First the overdrive detection method is performed which 
identifies the samples clipped by the ADC. These are replaced 
by their estimated value. This step is done automatically in the 
LabVIEW tool, while in MATLAB the user is warned (see 
Figure 9). As a result, the results of the FFT and the least 
squares fit in the frequency domain are improved. Once the 

latter is done, the coherency analysis can be performed and the 
optimal records length can be determined (Figure 10).  

At this point the processed record can be assumed coherent, 
thus the histogram and FFT tests will provide valid results. 
Once the transition levels are known, the maximum likelihood 
estimation method can be executed. This will estimate the 
parameters of the sine and noise unbiasedly and with a variance 
which is very close to the theoretical limit (see Figure 11). This 
serves the accurate determination of some ADC quality 
parameters such as ENOB, SINAD, etc.  

 
Figure 8. The sequence of methods in the ADC testing software.  

 
Figure 9. Classification of the measurement in the MATLAB tool.  

Figure 10. Results of  the  coherency analysis. The user  can  choose among 
the best 3 options.  

Figure 11. Results of  the maximum  likelihood method. Towards  the  signal 
and noise parameters, SINAD and ENOB are also determined.  
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5. EXPERIMENTAL RESULTS 

5.1. Simulation results 

This subsection presents the test results of the coherence 
analysis algorithm. During the test a 12 bit quantizer was used, 
the characteristics can be seen in Figure 12. 

In the test sine waves were generated and the initial phase 
and the number of periods were random variables. The initial 
phase was uniformly distributed in the interval	ሾ0,  ሿ. Theߨ2
number of periods, ܬ, was also distributed uniformly in 
ሾ8.95, 9.05ሿ. The aim of this selection was to model that users 
try to fulfil the coherence condition, but due to the errors in the 
signal and sampling frequencies he fails to do so. The value of 
the overdrive and ܰ was set to 10 % and 215. The model of the 
sine wave was the following (according to (2)): 

௦ሺ݇ሻݔ ൌ ܵܨ1.1 cos ቀ
ଶగ௃௞

ே
൅ ߮௦ቁ. (23) 

To simulate real-like circumstances and to model the 
imperfections of the signal generator, independent Gaussian 
noise (݊ሺ݇ሻ) was added to the samples of the signal with 0 
mean and LSB standard deviation: 

Eሼ݊ሺ݇ሻሽ ൌ 0, varሼ݊ሺ݇ሻሽ ൌ  (24) .ܤܵܮ	1

A harmonic component (ݔ௛ሺ݇ሻ) was also added with 1 LSB 
amplitude and double frequency of the carrier: 

௛ሺ݇ሻݔ ൌ ܤܵܮ cos ቀ
ସగ௃௞

ே
൅ ߮௛ቁ. (25) 

The test signal was the sum of the carrier, the noise and the 
harmonic component: 

ሺ݇ሻݔ ൌ ௦ሺ݇ሻݔ ൅ ௛ሺ݇ሻݔ ൅ ݊ሺ݇ሻ. (26) 

100 tests were run where first the histogram test was 
performed using the whole record, then using the optimal 
record length after coherence analysis. Figure 13 shows the 

standard deviation of the error of the histogram test for the 
case when the whole record was used. Figure 14 shows the 
standard deviation when the record was truncated to the 
optimal length.  

The comparison of the figures shows that the coherence 
analysis method successfully reduced the errors in the 
estimation.  

Simulation results for the maximum likelihood method and 
comparison with the LS estimator can be found in [22]. In [13] 
a comprehensive study is presented about the frequency 
domain LS estimator.  

5.2. Experimental results 

The presented algorithms were tested with real measurement 
data. A National Instruments ADC of 16 bits and ௦݂=200 kHz 
sampling frequency was used for data quantization. The 
excitation signal was provided by a Brüel&Kjaer Type 1051 sine 
wave generator. Since a slight overdrive of the ADC is 
recommended for histogram testing the signal amplitude was 
set to 120 % of the full scale range of the converter. The 
frequency was set to ௫݂=97 Hz and ܰ=220 samples were 
collected. The nominal values of the frequencies and the record 
length fulfil both the coherency and relative prime conditions. 
In the first test, the original least-squares method [1] was 
compared to the frequency domain method with overdrive 
detection. The algorithms estimated the four parameters of the 
sine wave, than SINAD and ENOB were determined using the 
fitting residuals (ݎሺ݇ሻ): 

ܦܣܰ ൌ ∑ ଶሺ݇ሻேݎ
௞ୀଵ  (27) 

ܦܣܰܫܵ ൌ
ோ෠

√ଶே஺஽
 (28) 

ܤܱܰܧ ൌ
ௌூே஺஽ିଵ.଻଺ିଶ଴୪୥൬

మೃ෡

ಷೄೃ൰

଺.଴ଶ
. (29) 

In (29) the value of ෠ܴ was substituted for ܵܨ for values higher 
than the full scale of the ADC. The results of the comparison 
can be seen in Table 1. 

Figure 12. ADC INL and DNL characteristics.  

 
Figure 13. Standard deviation of the estimation error of the histogram test
when the whole record was used.  

Figure 14. Standard deviation of the estimation error of the histogram test
after the coherence analysis.  

Table 1. Comparison of the standard and the proposed least‐squares fitting 
method. 

Parameter Original method Proposed method 
A [LSB] -30834.5 -30886.4 
B [LSB] 12140.2 12160.1 
C [LSB] 32789.8 32793.3 

J 211.01 211.05 
SINAD [dB] 48.240 79.114 

ENOB 7.721 12.849 
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The results show that harmonic components introduced by 
the saturation of the ADC cause huge errors in the amplitude 
and DC offset parameters of the sine. However, detection and 
substitution of samples around the peaks improved the results 
significantly. 

In the next step the effect of the coherency analysis 
algorithm was studied. Two histogram tests were performed, 
one for the whole record and one for the coherent part of the 
signal. Coherency analysis showed that the optimal record 
length for histogram testing is ௢ܰ௣௧=288227 samples which is 
only the 27 % of the original length despite the nominal values 
of the sampling and sine frequency fulfilled every requirement. 
Figure 15 shows the results of the INL estimations and the 
difference between the results. In the first case the histogram 
test was performed using a non-coherent record, thus the 
results are distorted. The error curve showed that 57 transition 
levels were estimated with an error higher than 3 LSB, 4113 of 
them were estimated with an error higher than 2 LSB. The 
value of the average estimation error is 0.957 LSB. It is very 
important to notice that 288227 samples are not enough to test 
accurately a 16 bit ADC, the presented software would 
recommend an adjustment in the signal frequency (see Section 
4). The new record length shows the amount of independent 
information in the whole record, thus ~70 % of the samples do 
not provide new information about the transition levels. In 
addition, it is still better to perform the histogram test with the 
truncated record since the whole record introduces bias in the 
estimation, but the variance of the estimation is the same for 
both records due to the same amount of information.   

Finally, the results of the least-squares method and the 
maximum likelihood method were compared. The INL curve 
of the ADC shows that the characteristics are nonlinear, thus 
the least-squares method is not able to provide unbiased results. 
The ML method uses the transition levels of the converter 
during the parameter estimation process so the results are 
precise for nonlinear converters also. Table 2 shows the results. 

The ENOB and SINAD parameters were found to be 
smaller using the ML method. The explanation if that LS fit 
minimizes the error, thus the values of above parameters are 
maximized. However, the true values are provided by the ML 
estimator which maximizes the probability with respect to the 
parameters. 

6. CONCLUSIONS 

In ADC testing, users have to face some difficulties during 
the application of the standard methods. This paper presented 
some advanced methods which are able to handle the problems 
of the original procedures. The implementation of the proposed 
algorithms was also presented and experimental results showed 
that the new methods provide accurate and reliable information 
about the ADC and sine wave parameters.  
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