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ABSTRACT

The paper discusses theoretical aspects that arose during the determination of the theoretical positioning accuracy of parallel
kinematic structures (PKS) with special regard to the Tricept type PKS. Apart from the conventional serial structures that employ
translational or rotational movement (or a combination) of individual driving axes. Parallel structures comprise a set of telescopic
driving rods that are joined together via a solid platform. Due to this fact, the mathematical model describing the relationship between
the driving actions of the telescopic rods and the resulting coordinates of the desired effector’s endpoint is rather complex. To
determine the theoretically achievable positioning accuracy of the endpoint, authors investigated the theoretical influence of
geometrical imperfections of the machine design and employed the law of uncertainties propagation. The aim was to investigate
theoretically the achievable positioning accuracy of the machine, prior to the final design solutions, thus helping the designer to
optimize the machine’s design.
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1. INTRODUCTION

Parallel  kinematic  structures  (PKS)  represent a non-
conventional way for the arrangement of movement elements,
compared to the widely used serial kinematic structures. They
employ parallel arranged movement elements (telescopic rods,
arms) that have one end located at a base frame and the second
end connected to a movable platform. The Tricept belongs
among the most known PKS [1]-[4]. It is a fixed platform
connected to a movable platform via three driving telescopic
rods and a non-driven central rod (Figure 1). The central rod is
connected to a movable platform by a solid linkage, while it can
move axially against the fixed platform (rotation of the central
rod is prevented). The effector is usually connected to a
movable platform, carrying the tools or technological heads. A
servomotor located at the end of each telescopic rod enables
extension of the rod by a ball screw and nuts. The skeleton
together with a primary platform create a single kinematic
element [1]-[9]. Figure 1. Parallel kinematic structure of the Tricept type.
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2. REACHING THE DESIRED POSITION OF THE END
EFFECTOR

To control the position of the Tricept end effector, one
must necessatily know the relation between the extensions of
the individual telescopic rods and the position of the effector’s
endpoint. A mathematical model of this relation is described in
[7] and [8]. The positioning of the effector’s endpoint is carried
out by rotating the movable platform about the axes x and y
together with its shifting along the 7 axis. As the movement of
the end point generates an irregular workspace, possible
singularities and collision points must be investigated [10].

Let Q, be the reference point, tightly connected with the
movable platform (i.e. static against point P’), whose position
will be investigated. To reach the defined position of point Q in
the workspace, the movable platform has to turn around the x
and y axes and shift along the z axis.

We obtain the cartesian positions O =[Q,, O,, O] of point
0, (relative to the "static" coordinate system bound with the
static platform (relative to point P) by applying the next three
transformations in the following order (on [g,, ¢,, 4.]):

1. translation along the £ axis (so coordinates of point ),
relative to "static" coordinate system are changed to
(9 9 9= T ze3));

2. rotation about the x axis by the angle & (represented
by orthogonal matrix O, (a));

3. rotation about the y axis by the angle S (tepresented by
orthogonal matrix O,(f);

whete (in general) angles @, £ and shift 7 are non-zero. After
applying these three transformations we obtain the Cartesian
coordinates O = [0, O, Q] of point @, in the "static"
cootdinate system, relative to point P (where o, f and g ate
arbitrary), as a function of ¢, ¢, ¢,, @, fand 3.

The matrix notation of such a transformation is O = O,(f) -
O.(0) - (g + zes) that can be itemized as

0. cosff 0 sinf 1 0 0 q.
o, 1= © 1 0 [.|0 cosa sina|.| ¢, [-(I)
0. —sinff 0 cosf) \0 —sina cosa 7. +3

Movement of any reference point (g with constant
coordinates ¢lg,, ¢, ¢] to a new point O =[0,, O, O] is
represented by a change of the parameters «, £ and 3. The
required changes in the lengths of the individual telescopic
rods, necessary for the implementation of such movement, are
derived in [7].

Let Ay be the change in length of rod AA’, the change in
length of rod BB’ be 4 and the change in length of rod CC’ be
A-1 (see Figure 2):

: 1 301 1 2
A, = \/K“ +r7 47 72R[2r.cosﬁ+ cosa{xr75{4sinﬂJ7§sina{{ +Er.sinﬁ)] ( )

A, =\/R2 +7r2 +22 —2R(r.cos B+ z.sin f.cos ) 3)
, 4
A, :\/R“ +r7+7 —2R[%r,cosﬂ+cosa{%r—%z.sinﬂ)+§sina{z+%r.sinﬂj} ( )

where free patameters @, f and 3 must meet the following
conditions:

g=g, + SO O+ O 4 4 ;

Figure 2. Schematic representation of telescopic rods, joints and platforms.

-4 0. +KJO + 0 -q..0,
2 2 !
0. +0,

0-Q + Ky +Q —a; Q, .

sinff =

cosp =
Q+Q;
o Q5@+ Q- —Ka,/Q1+ Q]
Qi +Qy +Q7 g
o KSYQI Q] Q7 0} a7 Q! +Q7 0} +Q,9, .

Q+Q}+Q7-q?

constants K and § are equal to 1 in this case.

3. INFLUENCES THAT AFFECT THE REACHING OF THE
DESIRED POSITION

The positioning accuracy of any manufacturing device
represents the closeness between the actual reached position of
the end effector and a programmed position, specified by the
control system. For PKS; the effector’s endpoint is the point at
the end of the central rod, respectively it is the precisely defined
point on the tool or technology head [5], [6]. In our case, the
point P'is considered.

Based on a theoretical analysis, one can summarize three
types of errors affecting the reaching of the desired position by
the PKS effector. The geomsetrical errors atise due to inaccuracies
in manufacturing, inaccurate relative position of individual
elements or due to wear of the joints. The s#ffness errors originate
from elasticity of joints between individual elements as well as
from flexures caused by the own weights of individual elements
or by an external load. Their magnitudes depend on the actual
position of the effector. The #hermal errors arise from thermal
stress and dilatation of elements due to heat generated by
internal or external sources, e.g. motors, bearings, etc. [11]-[18].

To document the complexity of the uncertainty calculation
of reaching the desired position of the point O, let us
summarize the list of geometrical parameters that contribute to
the overall uncertainty of reaching the desired position:
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a) distance of joints from the centre of the fixed
platform, i.e. the distances AP, BP, CP (position of
joints approximated by a circle with radius K);

b) relative positions of joints at the fixed platform, i.e. the
distance of points CA, CB, BA;

c) distance of joints against the centre of the movable
platform, i.e. the distances A’P’, B’'P’, C’P’ (position of
joints approximated by a circle with radius 7);

d) distance of joints at the movable platform, ie. the
distances CA’, C'B’, B’A’;

e) distance of the fixed platform and the movable one at
the central rod, i.e. the distance PP’;

f) if the effector is mounted, the distance between the
effector’s endpoint and the point of effector fixation at
the movable platform P’ (it is actually a determination
of the vector ¢(g,, g,, 4.));

@) lengths of individual telescopic rods, i.e. the distances
AA’, BB, CC.

4. METHODOLOGY FOR DETERMINATION OF THE DESIRED
POSITION

If the device designer knows the theoretically achievable
positioning accuracy, he has an important opportunity to
influence critical pieces of equipment in the process of the
construction work. An uncertainty balance will help to identify
the most significant influences on the theoretically achievable
positioning accuracy of the effector, which opens up the
possibility of corrective interventions into the structure. Only
geometrical influences on the overall uncertainty are considered
in the first phase, as shown in the further text. For the sake of
simplicity we do not consider the covariances among the
individual parameters.

Let a little change of the endpoint position be given as the
product of the Jacobian of the tangential displacement in the
direction of motion and a dimensionless vector of rotations and
displacement. This is described by the following equation:

00, 00. 00.

oa 9B o
| oo, @, oo, ||
© 7 o B oz | i
Q) 1o, o0, oo, |\R

oa 9B o

®)
The matrix in (5) is denoted as My3. We obtain its elements
later by partial derivation of (1).
A marginal change of the vector of rotations and translation
from (4) depends on a limit change of lengths of the telescopic
rods and radii »and R, as given by the following equation:

oa Oa oa 6_a 6_a dA,
o) | 04, oA, a4, o R || 44
apl=| L OB OB OB B ©
j 04, o4, o4, or oR||
Vol & & &k x|
o4, o4, o4, or orR)\R

The matrix in (6) is designated as Msys. The telescopic rod
lengths from (2) to (4) will be used for the calculation of its
elements. Their shapes are rather complicated for partial
derivation, so that they will be adapted. Since the lengths of the

rods cannot be negative, we can square them and find their
appropriate linear combinations to get the simplest relations
equivalent to (2) to (4). Three equations can be obtained in this
way

- Ay - A - A
-0 "1 -4 3 ! L 4+7*+R*+3° —r.R.cosa —r.R.cos B =0 (7)
A% - A}
—%+2R.g. sina + r.R.sina.sin =0, 8)
3
24— A - A?
% +2R.z.cos@.sin f+r.R.cos f—r.R.cosa =0- (9)

Let us denote the left sides of (7) to (9) as functions L1, L,
L5 that depend on parameters Ao, A1, A4, &, B, 3, r, R. We will
consider the movement of point Q in time 7 that will be
marginally close to 0 and patameters Ao, A1, A4, @, B, 3, 7, R will
depend on time #as well.

If partial derivation of the left sides of (7) to (9) is carried
out, similar to obtaining derivatives of the implicit function
(parametets o, B, 7 are detived from parameters Ao, A1, A4, 7,
R), the following equation is found:

Wi MW, +W,- W, =0 (10)
where
o o a
oa OB 0%
oL, oL, OL,
‘V;x} = A
da OB 0Oz
oL, oL, oL,
oa OB 0%
rRsina Rsin 2z
=| Rcosa(2z +rsin ) Rsina.cos f 2Rsina

Rsina(r—2zsinff) R(2zcosacos f—rsinf) 2Rcosasinf

a4, o4 o4, or R
w0 o oL an o
184, o4, a4, or R
o oL o e a
a4, o4 o4, or OR
— 23A” 723A‘ — Zjl" 2r —R(cosa + cos ) 2R —r(cosa + cos f3)
= 0 2\/A§' % Rsinasin S sina (23 +r.sin f)
% % 72?” R(—cosax+cosf)  rcosf+cosa(—r+2zsinff)
A, (0)
A,(0)
W, =|A,0)].
7(0)
R(0)
The relation (10) can be transformed to
(W Mo + W)} W =0 (1
Matrix Ms,s is calculated from (11):
M, = _"Vz;; Wi 12

Let us return to the expression of matrix Mhi,3 from (5).
When multiplying (1) from left by matrix 0] (), we get:
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0, (8)Q=0;, (8)0, (B)O,(a).(4 +z&;) (13)
and subsequently
-0y (8)Q+0,(a).(q+26,)=0 (14)
After multiplying of (3) we get
g, +Q,cos5-Q,sinf=0 (15)
-Q, +9,.cosa +(q, +z)sina=0 16)
-(q, +2).cosa +Q,.cos f+q,.sina+Q,.sin f=0- 17

If we denote the left sides of (15) to (17) as Hi, H, H3 and
we carry out their partial derivatives, we get the following
matrices:

OH, O0H, O0H,
2"QX Z’Q’ S’Q%‘ cosf 0 —sinf

F, = H, OH, OH,|_ 0 -1 0 (18)
0. 0w, w || .
oH, oH, oH,| \‘nF cos f
0. 0, o0,

and
OH, OH, O0OH,
oa 0B 0%

G - OH, O0H, OH,

Yol oa B 0%
OH, OH, O0H, (19)
da Of 0%
0 —Q. sinff—- 0 cosfp 0
=|(q, +3)cosa—¢q sina 0 sina
q,cosa+ (g, +3)sina O cosf-Q sinff —cosa

Analogically to Mys, we can calculate the matrix M, [8] as
-1

F;)XS and GSX%

the matrix of sensitivity coefficients as the product of matrices

Mx} and Mx:'y:

A?)xa - 7>x3 ( G3x3> W3:c13

the product of matrices — . Subsequently we get

(_‘sts) M3>¢3 M (20)

3x5°

Matrix A, . in (20) is used for the calculation of estimates of

uncertainties of indirectly measured parameters. The covariance
matrix of those estimates is

U=AU-A", 21)
where matrix U, in the form

2

X1, N1>X X1>X3 X1>Xy X1>X5

2
XX X ,Xp %X’),X3 ﬂXZ,X4 ”XZ’X5
_ 2
Ux - ”x3 X X3,Xo X'3,X3 X3,Xy X3,X5 (22)
2
Xy X X4,X2 Xy X3 Xy 5Xy X4,X5
2
X5 ,X ”x 5,X) ”XS X3 %9\”5 WXy X5,X5

is a known covariance matrix of the random vector x = (x1, x2,
x3, xa, xs5) = (Ao, A1, Aa, 1, R), where #_is the standard

uncertainty of the estimate x; of quantity X, 7=1,2, ... 5,

#,, is the covariance between estimates x;and x;, i = 1, 2, .., 5,
3/

X
Jj=12,.,5.

The position uncertainty of any point () in the workspace
can be calculated, if the matrix U, is known.

Let us briefly introduce the principle how to estimate the
matrix U, The matrix Ass(Q,, O, Q) represents a functional
relatlonsh1p of position of the reference point O, ie. the
position of the Tricept. As we know the numerical values of O,
0, O, we can quantify the matrix of the partial derivatives of
As,s.

Let U, be a known constant symmetric matrix of 5x5 type,
and U, be an unknown symmetric matrix of 3x3 type that we
want to determine and is given by (21). It is clear that the
matrix U, is correlated with the position of the point Q[0,, O,
0] We Want to find the intervals for values of the matrix U,
when considering that 0., 0, O, may take any value, dependlng
on how the reference point O moves in some regular subspace
(et it be a cube for purposes of this estimate, see Figure 5) of
the overall workspace.

To analyze the impact of individual components of the
known matrix U, on elements of the matrix U, we employ the
linearity of this dependence (for fixed ). We will just consider
only the base symmetrical matrices U, such that there is always
only one element equal to 1 (for diagonal elements; outside the
diagonal we consider also symmetrically associated elements).
This element or these elements are multiplied by the respective
weighting coefficient for the particular matrix U,. If we fix the
angles o and f, a virtual beam atises in the cube, along which
the reference point will move.

When the reference point () moves along the beam, we want
numerically determine the intervals for the values of elements
of the matrix U, Each element value of the matrix U, (since it
is a symmetncal matrix, 6 different elements ate cons1dered)
can be precisely expressed using a formula that is represented
by the sum of 6 square roots of polynomials of the variable g
divided by other polynomials also dependent on g (their shape
is too extensive for the length of this paper). The derivative of
this formula to z can be algebraically adjusted (it shall be
multiplied by analogous expressions, where we change only
marks of generated roots, thus, removing roots and a multiplied
derivative, obtained in this way, simplifies the polynomial). It is
true that any stationary point of the original expression is also
the root of this polynomial at the same time. It is sufficient to
evaluate the expression for a particular beam only in the roots
of this polynomial (if they overlap the workspace) and also in
the endpoints of the beam, defined by the workspace borders.
Among them we find the minimum and maximum, which will
form the search interval for the selected element of matrix U,
for fixed angles a and fand a base matrix U,

Resulting intervals that represent the impact of elements of
the matrix U, in the overall workspace can be obtained by
uniting intervals for all permissible values of & and B. To do so,
a sufficiently fine division of the workspace, with a properly
chosen step only in a two-dimensional area that is created by
projection of the workspace on z (along rays) into the variables
o and B, must be considered. The impact of each element of
the matrix U, can be displayed using a three-dimensional
function (see Figures 3 to 10). A search estimate of the matrix
U, is obtained as a matrix of ordered pairs (minimum and
maximum impacts of components of the matrix U)).
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Figure 3. Influence of element U,[1,2] on minimum value of the Figure 4. Influence of element U,[1,4] on maximum value of the matrix U, [1,1].
matrix U, [1,1].
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Figure 5. Influence of element U,[4,4] on maximum value of Figure 6. Influence of element U,[4,5] on minimum value of the matrix U, [1,1].
the matrix U, [1,1].
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Figure 7. Influence of element U, [5,5] on maximum value of
the matrix U,[1,1].
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Figure 9. Influence of element U, [4,4] on minimum value of Figure 10. Influence of element U, [5,5] on minimum value of the matrix U, [3,3].
the matrix U, [2,2].
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They represent the range of values of elements of the matrix
U;,. Estimates of 15 base matrices U, can be linearly combined
and can thus provide an estimate for any general (non-base)
symmetric matrix UL

Using the software system MATHEMATICA, we created a
program to search the entire workspace (or its subset thereof)
and to estimate the matrix U, To do so, the matrix U, must be
specified and the required division of the workspace must be
selected.

For example for

(0.005/3f 0 0 0 0
0 (0.005/3f 0 0 0
U=l o 0 (0.005/v3f o 0
0 0 0 (ouvsf o
0 0 0 0o (oowvaf
23)

as well as for the reference point @, identical to point P” (when
q = 19+ 9, ¢] = [0,0,0]), we found the estimate of U, valid for
all possible positions of the point O over the regular space (a
cube) that fully fits into the workspace:

-7.3262%10°
-7.3394x10°
0.0000038

-7.0896x10°°
0.0000185
-7.3394%x10°

0.0000185
-7.0896x10°

-7.3262%x10°°
(24)
7.2188%10°

7.3394%x10°
0.0000138

7.0896x10°
0.0000370
7.3394%10°°

0.0000368
<U,<[7.0896x10°
7.2188x10°

The diagonal of the covatiance matrix U contains estimates
of uncertainties squares ﬂ_ZQ ,ﬂ_ZQ; ﬂ_ZQ , valid over the whole

considered cube (see Figure 11 and Table 1).

5. CONCLUSION

This paper analyzed various issues related to the control of

a5

B
>

160 mm

ol
-

P 594.9111[11

-
% »

Figure 11. Scheme of the cube that represents the biggest regular object in
the workspace.

Table 1. Considered parameters and their uncertainties.

Para- | Value /mm Permissible Probability Uncertainty /
meter deviation / mm distribution mm
Ao 568 to 858 0.005 Rectangular 0.0029
Al 568 to 858 0.005 Rectangular 0.0029
Ay 568 to 858 0.005 Rectangular 0.0029
R 330 0.010 Rectangular 0.0058
r 140 0.010 Rectangular 0.0058

structures with parallel kinematics, especially that relating to the
positioning accuracy. The function describing the lengthening
and shortening of the individual telescopic drives and the
desired setpoint is non-linear. Because of this, the equations
cannot be partially derived, making the uncertainty analysis
unfeasible. In order to overcome this difficulty, the
employment of an approach using infinite geometrical changes
in the parameters is suggested. The marginal values for
uncertainties were calculated here, suggesting that the
achievable positioning accuracy is not constant for all setpoints
within the workspace of the Tricept device.

Further research will be focused on finishing the Tricept
prototype, in which the presented analysis will provide
orientation for the designers to assess end effector accuracy.
The investigation of the contributing sources of uncertainties
and a practical verification of the results of this article remains a
further challenge.
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