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1. INTRODUCTION 

Although surface coordinate metrology is a key inspection 
tool in many different engineering and scientific applications, 
unfortunately it is still influenced by several concerning sources 
of uncertainties which reduces the reliability of this commonly 
assumed precise metrology process. The traditional coordinate 
metrology is completed by sequential performing of three 
computational tasks of Point Measurement Planning (PMP), 
Substitute Geometry Estimation (SGE), and Deviation Zone 
Evaluation (DZE). There are several sources of uncertainties 
experienced and studied by researchers in conducting each one 
of the above tasks. In such systems, the inspection accuracy is 
subject to sorts of “plug-in uncertainty”, i.e. the uncertainty due 
to estimating some aspects of a probability distribution on the 
basis of sampling. Sprauel et al showed that uncertainties in 
CMM measurements follow a normal distribution. They 
governed  the  parameters  of  the surfaces  under  inspection to  

 

 
characterize the intrinsic error parameters of CMMs [1]. Such 
sources of uncertainties can adversely affect the accuracy and 
reliability of the inspection. Recently, an integrated inspection 
system has been studied as an efficient solution to combat the 
inherent plug-in uncertainty in coordinate metrology. Choi and 
Kurfess developed a numerical algorithm based on tolerance 
zone to interpret the data extracted from CMMs. They showed 
that a zone fitting  algorithm provides more conformance to 
the tolerance zone if  tolerances  are  characterized  by such 
span [2], [3]. 

The number of measured points in any coordinate 
metrology process is limited in increasing the number of 
measurements, increases the inspection time and it is costly. 
The typical hard-probing methods usually are very slow in 
capturing the points. The number of measurement points using 
these devices in practice is usually even less than one hundred. 
It is much less expensive to measure more points using optical 

ABSTRACT 
In order to comprehend an entire surface’s deviation zone,  infinite measured points are required. Using the common measurement 
techniques through coordinate metrology, a  limited number of surface actual points can be acquired. However, the obtained points 
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sensors, but unfortunately measurement accuracy in these 
sensors is still dramatically low. Having this limitation, it can be 
beneficial to design coordinate metrology processes to utilize 
estimation techniques that helps to model details of the 
deviation zone for the locations that are not physically 
measured. The focus of this paper is on evaluation of  a detailed 
deviation zone when a detailed level of information for the 
distribution of geometric deviations is required. This level of 
information is important particularly for an upstream process 
that needs to be performed on the measured surface. A good 
example of an upstream is a compensating manufacturing phase 
that removes or compensates the existing geometric deviations 
of the measured surface to finish a new surface with the desired 
and acceptable range of characteristics. A successful inspection 
process evaluates the minimum geometric deviations of the 
points and their corresponding points on the best substitute 
geometry. However, this information is only available for the 
measured points. Estimation of geometric deviations at the 
regions that are not measured by coordinate measurements is 
necessary for a compensation process in the closed-loop of 
inspection-machining [3]-[7]. The presented method estimates 
the distribution of geometric deviations based on the pattern of 
the available data. 

This method is developed based on the assumption that the 
detailed deviation zone has a mean-value property similar to a 
harmonic function. Assigning the surface points to a grid and 
using the Finite Difference Method derived from the Laplace 
equation, deviation of the rest of the surface points is 
approximated. The results show an improvement of 
approximation by adding more points till a convergence 
threshold is satisfied. 

The structure of the paper is as follows: after a brief review 
of the background information, the developed methodology is 
presented, and then the implementation of the methodology is 
explained, followed by a validation case study of an industrial 
part. 

2. BACKGROUND 

Three major concepts utilized in developing the presented 
methodology are: definition of the Laplace equation, Mean-
value property, and maximum and minimum principals. A brief 
review of these concepts is presented. 

2.1. Laplace Equation 

A second order partial differential equation, which is often 
in two dimensions, is written as:  

2 2

2 2
0,

f f

x y

 
 

 
 (1) 

is called Laplace equation. If the Laplace equation is solved 
over a boundary condition, function F which satisfies both the 
Laplace equation and its boundary conditions, is called a 
harmonic function. Harmonic functions possess unique 
properties which are of interest to the developed methodology 
[8]. 

2.2. Mean‐Value Property 

If D is a domain of finite measure in the Euclidian space Rn 
(where n ≥ 2); and, if there exists a point P0 in D for which 
every H harmonic function in D and integrable over D, the 
volume mean of H over D is equal to H(P0). Then D is an open 
ball (or disc for n = 2) with the centre of P0. In other words, if 

H: U → R is a harmonic function on an open set, it has the 
mean value property if it satisfies the following relationship [9]:  

( )

( ) ( ) , ( ) .
D z

h z u w dw D z U    (2) 

2.3. Maximum‐Minimum Principal 

If H:U → R is a harmonic function on a connected open set 
U and if there is a point P0 U with the property that  

0( ) sup ( )Q Uu P H Q , then u is constant on U. On a corollary 

of this property the Minimum Principle is derived in the same 
way for 0( ) inf ( )Q Uu P H Q [9]. In detail, “sup” and “inf” 

refer to the superior and inferior of the harmonic function. 

3. METHODOLOGY 

A perfect flat surface can be expressed in two dimensions 
defined by mutually perpendicular u and v axes. Any out of 
flatness deviation of this system in surface can be represented 
in the e direction which is perpendicular to the u-v 2-D plane. 
Therefore, the flatness coordinate metrology data can be 
represented in this u-v-e coordinate system, Deviation Space, 
expressing the detailed deviations of measured points. 

As illustrated in Figure 1, the deviation of measured point Pi 
in the u-v-e coordinate system is ei and the point Pi* with 
coordinate of ui and vi the corresponding point for Pi in the u-v 
plane. All points Pi belong to the actual measured surface while 
points Pi* belong to the best substitute geometry that can 
represent the actual surface. Typically the up-stream design of 
manufacturing processes uses the best substitute geometry for 
the required analysis, and considering the overall deviation 
zones by a deviation boundary over information of the detailed 
deviation zone can be highly beneficial for processes precision 
manufacturing and closed-loops of inspection-manufacture. 

4. DEVIATION SPACE AND GRID CONSTRUCTION 

The substitute geometry is estimated using fitting criteria. 
The common fitting criteria utilized by industries are the least 
square fitting and min-max fitting [3]. Other fitting criteria can 
also be utilized upon the mission of inspection and the up-
stream processes. A good example of other fitting criteria is 
maximum conformance to design tolerances for closed-loop of 
inspection and machining [6], [7]. 

Figure 1. u‐v‐e Deviation space, Detailed Deviation Zone representation. 
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Upon estimation of substitute geometry for a group of 
measured points, it is possible to transfer inspection 
information to the u-v-e coordinate system described above. 
After the point measurement process and construction of the 
deviation space, a grid is devised based on the desired 
resolution of estimation. This resolution can be decided based 
on the type and nature of utilized coordinate metrology. In the 
next step, the deviation space corresponding points, Pi*’s, are 
bijectively assigned to the corresponding grid nodes for further 
processes. These locations in the deviation space are referred as 
sites in the rest of this work. Values from the e-axis are 
considered as potential values for local deviation of the surface. 
These values are the Euclidian distance from the measured 
points to the substitute geometry. 

4.1. Estimation of Deviations 

Estimation of the geometric deviation for an unmeasured 
point of the actual surface is required when the geometric 
deviation values for the measured points are available as the 
attributes of the sites in the deviation space. It is shown in [3], 
[5] that the distribution of geometric deviations caused by 
quasi-static manufacturing errors is continuous because it is a 
direct function of existence continuity in the nominal geometry. 
Therefore, the geometric deviations can be considered as a 
continuous variable with known values at sites in the deviation 
space. With using a proper point measurement process a 
sufficient number of points from the appropriate locations are 
measured. Therefore, it is assumed that the sites are available to 
represent the continuity of geometric deviation function. 
Geometric deviation of an arbitrary unmeasured location can be 
estimated by studying its proximity to the known geometric 
deviations of the measured sites.  

In order to estimate the detailed deviation zone the 
conformal mapping method using a harmonic function with 
Drichlet boundary problem is used. In the current approach, 
instead of assuming a single shape centre with the potential 
value of zero, we consider the sites as a group of shape centres 
and their deviation attributes as the potential function to run 
the Finite Different Iteration. This way the deviation attributes 
for the empty nodes between the sites are computed. In order 
to implement this concept the Laplace equation over the grid is 
solved. The numerical solution for the Laplace equation can be 
obtained using Taylor’s series neglecting higher order terms 
[10]:  
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where h and k are the grid step sizes along u and v coordinates 
respectively, and Ф is the detailed deviation zone function. 
Considering equal step sizes in u and v directions, the Laplace 
equation can be rewritten as:  
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From the subsequent equation a Finite Different Method 
formula is extracted, if f is considered a harmonic function:  
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To initiate the iteration another equation is defined where j 
is the iteration index: 
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In the developed methodology two termination criteria are 
utilized for the iterations. Considering the typical coordinate 
metrology accuracy between 10-3 mm and 10-6 mm, a threshold 
is selected. The ultimate goal of the developed method is to 
find a smooth distribution of attributes all over the grid. 
Therefore, the derivative of attribute for every single grid node 
is calculated and stored in the attribute derivate matrix. The 
difference in the attribute derivative matrix is calculated in each 
iteration with its previous stage. The standard deviation of 
differences in derivative of attributes for all grid nodes is 
calculated. If the calculated standard deviation reaches to a level 
below the decided threshold then the iteration process is 
terminated. The iteration is costly and takes time; therefore, if 
the iteration has been running more than a specified amount 
before converging, the iteration process will be terminated. 

5. IMPLEMENTATION 

The finite difference method can be utilized in the 
developed methodology only if function Ф is a harmonic 
function; therefore, it is crucial to prove that there exists a 
function in the domain of the Laplace equation answer. Since 
the mean value property is a unique feature of the harmonic 
functions, if the finite difference method is valid in a domain, 
then it can be concluded that the governing function in the 
domain is harmonic and the use of finite difference method is 
legitimate. This legitimacy is validated for this work by applying 
the methodology in an actual case study. The Implementation 
process is as follows: 

A. Point Measurement Process: an industrial flat surface is 
measured with either an optical sensor or through hard 
probing to produce a point cloud; 

B. Best Plane Fit: the best substitute geometry is 
constructed using the desired fitting criteria, and their 
Euclidian distance from the best fitted plane is calculated 
and assigned to points; 

C. Mapping to Deviation Space: measured points are 
mapped to the deviation space. Their corresponding 
points and their Euclidian distances to the best substitute 
geometry are considered as their coordinates in the 
constructed deviation space; 

D. Gridding: a grid is created based on the desired resolution 
of the estimation process. Sites are specified in the grid. 
As a constraint for grid resolution, it is considered that 
each grid node should not cover more than one site; 

E. Initialization: the deviation attributes of nodes that 
contain a site are assigned to them and deviation 
attributes of all other nodes are equal to zero; 

F. Percentile Calculation: a series of percentages of points 
are selected randomly and assigned to the grid node with 
their potential value. The finite difference method is then 
applied to the grid; 
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G. Estimation: the finite difference method is applied to find 
the deviation attribute of all the empty grid nodes 
through the iterations. It is worthy to mention that the 
deviation attribute of the sites remain fixed during the 
iterations; 

H. Termination: to compare the results between various 
percentages used in the model, the method was iterated 
for 1000 runs in each case. 

6. VALIDATOIN AND CASE STUDIES 

To validate the process two case studies were studied. The 
cases consist of one actual manufactured surface and one 
mathematical surface. The manufactured piece was examined 
through hard probing to acquire sample points from the 
surface. In the mathematical case, a sinusoidal function was 
used to define a 3-D surface; therefore, the deviation error is a 
function of the position of the points. Using the steps defined 
in the previous section, the methodology is applied on the 
surfaces to validate the accuracy and efficiency of the DGD 
model. 

6.1. Case I: Industrial flat surface 

As the first case study, an industrial flat surface with over-all 
dimensions of 30 mm × 30 mm was inspected. The 
measurement process was conducted using an optical probe on 
a Faro Coordinate metrology arm. The point measurement 
planning was based on stratified grid inspection with a step size 
of 0.5 mm. Through this process 7287 points were captured to 
generate the point cloud shown in Figure 2. 

As the fitting process a total least square fitting criteria is 
utilized. The substitute geometry and corresponding deviations 
of the measured points are mapped to the deviation space 
which is illustrated in Figure 3. 

A grid with size of 320×240 was created and the 7287 sites 
were attached to it. The iteration process with the maximum 
number of iterations equal to 1000 was run. Figure 4 to Figure 
8 illustrate the developed deviation detailed zone after 50 runs, 
100 runs, 500 runs and 736 runs, respectively. 

As it can be seen in Figure 4 to Figure 8, by increasing the 
iteration runs the grid is evolving to estimate the deviation 
attribute of the empty nodes, and it converges to the desired 
threshold. This convergence is a validation to applicability of 
the developed methodology for the current problem. Since the 
finite difference method uses the circular neighbourhood to 
estimate the centre of the circle, it provides a smooth 
estimation for the empty nodes through progress of the 
iteration process. Based on the number of the runs of the finite 
difference method the grid converges to find the rest of the 
potential values.  

As it can be seen in Figure 5 to Figure 8, by increasing the 
iteration runs which in fact means using more and more the 
finite difference method, the grid is evolving to find the rest of 
the nodes based on the centre points. It worthy of mention to 
note that the potential of the centre points remains fixed during 
the iteration process. Since the Finite difference method uses 
the circular neighbour points to estimate the centre of the 
circle, it provides a smooth estimation of the nodes based on 
the former points. 

Figure 9 also demonstrates the convergence process of the 
estimation. Based on the termination criterion defined, the 
estimation process is terminated after 735 iterations. 

 

 

Figure 2. Measured points based on point measurement planning. 

 
Figure 3. Mapping of the measured points to the deviation space. 

 
Figure 4. Deviation zone distribution before iteration runs. 

 
Figure 5. Deviation zone distribution after 50 runs. 
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6.2. Case II: Sinusoidal Surface 

 To test the capability of the proposed methodology in 
theoretical situations, this case study was considered. The 
following two directional sinusoidal function was used to 
generate a hypothetical 3-D surface based upon the assumption 
that the error deviation is a function of the positions of points 
as e = f(u,v) [3].  

0.1 sin(2 ) 0.2 sin(2 )e u v       . (8) 

The surface is constructed on u and v values between -0.5 
and 0.5 and then transferred to a grid with the size of 250×250 
to build the error model as shown in Figure 10. The error 
values i.e. sites, vary between -0.2 and 0.2. To initialize the finite 
difference method 10 % of the original is kept in the grid and 
the rest were erased. Assuming a metric unit for the coordinate 
model as millimeter, the iteration process is initiated based on 
the stages described in Implementation (Section 5) to find the 
90 % of the sites that were erased.  

Similar to the industrial part, the grid starts to converge to 
the actual surface. This process is illustrated from Figure 11 to 
Figure 15. The convergence process is terminated at iteration 
number 202, which is demonstrated in Figure 16. The 
convergence is ended at an earlier stage regarding to the 
industrial surface. This basically shows a good efficiency of the 
algorithm over mathematical functions. 

7. CONCLUSIONS 

Estimation of the detailed deviation zone is a key task in 
integrated computational platforms for coordinate metrology 
systems.  The   methodology  evaluated   in   this  paper   is   an 

 
Figure 6. Deviation zone distribution after 100 runs. 

 
Figure 7. Deviation zone distribution after 500 Runs. 

 
Figure 8. Deviation zone distribution after 735 runs. 

Figure 9. Convergence of the estimation process for the industrial part. 

 
Figure 10. Two directions sinusoidal surface constructed based on (8). 

 
Figure 11. Deviation zone distribution before iteration runs. 
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approach to assess the distribution of geometric deviations on 
the manufactured surfaces. The convergence of the developed 
methodology is validated by studying various cases in this 
paper. The implementation of the detailed deviation zone 
estimation can be used for upstream manufacturing processes 
or manufacturing error compensation in closed-loop of 
inspection-manufacturing. The estimated deviation zone can 
lead to generate valuable information about the measured 
surface. This information can be utilized in various design and 
manufacturing applications. 
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Figure 16. Convergence of the estimation process for the sinusoidal surface. 

Figure 12. Deviation zone distribution after 50 runs. 

 
Figure 13. Deviation zone distribution after 100 runs. 

 
Figure 14. Deviation zone distribution after 150 runs. 

 
Figure 15. Deviation zone distribution after 202 run. 


