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ABSTRACT

This paper presents the procedure to improve the estimation of the basic sinusoidal signal parameters (frequency, amplitude, and
phase, respectively) in the case of signal sampling by averaging in the aperture time. Prior to estimation in the frequency domain by
the interpolated DFT algorithms the sampled signal is padded with the signal average values in the aperture times and zeroes in the
rest of the sampling interval. We can increase padding points and a number of the signal cycles in the whole measurement interval
and with this nearing the errors to the level as with estimation of the signal without average sampling even the sampling Nyquist
condition is not fulfill.
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1. INTRODUCTION function s(t) «——> S(f) (Figure 3), and the window function

In the last decade, considerable research has been carried out  of the measurement interval W(t) «—— W (f) (Figure 4)
on the analysis of efficient methods capable of accurately

estimating parameters of the frequency components of interest

[1], [2]. In many cases the problem of evaluating the spectral

performance of a given periodic signal reduces to the

estimation of parameters of each spectral component

(frequency, amplitude, and phase). Parameter’s estimations of gt

periodic signals mostly base on sampling and acquiring digital F

values of samples by analog-to-digital converters. In this «—>

procedure values of sampling points are results of averaging in

the aperture time — measurement time. This averaging (or t _f

integration) gives reduction of noise but causes systematic

errors in estimations of the signal parameters [3]—[5]. In this Figure 1. Measured signal.

papet, algorithms for estimation of parameters by signal and

zero padding first and then interpolation in the frequency ht) {H(f)

domain are presented. RESCRN —
A sampling process can be modelled with four signals and

their frequency spectra in the time and the frequency domain: g

where F stands for the Fourier transformation from time
domain to frequency domain and vice versa.

measured signal g(t) «<—— G(f) (Figure 1), impulse response 0 t f

of the sampling channel h(t) «f>H ( f ) (Figure 2), sampling Figure 2. Impulse response of the sampling channel.
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Figure 3. Sampling function in the time and the frequency domain.
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Figure 4. Window function of the measurement interval.

The measured signal g(t) is always filtered by the impulse
response of the input front circuit of the measurement channel
represented by h; (t) in Figure 5 and after that sampled by the
h(t)

convolved on the sampling function S(t) (Figute 3: typically

real finit duration sampling pulses represented by

time uniformly distributed) and finally only a finite number of
samples is taken into consideration represented by the window

funcdon W(t) (Figure 4) to get a filtered, sampled and
windowed signal g’;’w(t) (Figure 5).

Considering that the equivalent of multiplication in the time
domain is convolution in the domain

XE91(t)xgz(t)<L>®EI:GI(V)GZ(f—V)dV and vice

frequency

versa ®Ejigl(f)g2(t—r)dr s x=G,(f)xG,(f) [6]

the sampling procedure can be modelled as follows (Figure 5):

@@g—f(ﬁ
| ]

Figure 5. Procedure of sampling in the time and the frequency domain.

It is evident that the spectrum of the sampled signal starts to
change with modification of the sampling pulses

h(t) <t H(f) (Figures 6 and 7).

2. PADDING AND ESTIMATION OF PARAMETERS

Sampling by the frequency fg =1/ty of the periodic band

limited signal g(t) composed of M components can be

expressed as W(nts)-z:;;Amsin(br f, Ntg + gom) with f | A
and @, as frequency, amplitude, and phase of a particular
component, respectively. In the estimation procedure one has
to take into account that values of samples (Figure 8: line d) are
tepresentatives in the aperture time f, or typically average
values of the signal in the aperture integration interval (Figure 8:
line c). For a demonstration of sampling, in Figure 8 three
periods of the one component sine signal are presented with a
duty cycle of sampling D=t /tS =0.4 and with sampling
ratio of r=fy/f =T, /t; =1.6.

With sampling representatives — average values — we lose

some information of the signal and especially in the cases where
the aperture time is so long that the signal changes significantly

=2t —tg 0ty 26t

Figure 6. Signals in the sampling process.
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Figure 7. Spectra of signals in the sampling process.
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Figure 8. Signals of sampling by averaging in the aperture time: a — original
signal, b — truncated signal in the aperture intervals, ¢ — average signal
values in the aperture integration interval, d - average value
representatives of the sampled signal in the aperture integration interval.

in this interval and where the sampling Nyquist condition is not
fulfilled (r = fg/f, <2). One possibility to overcome these

problems is to add zeroes (known as zero-padding technique

[7]) and average values in the aperture times with the duty ratio

D =t _ /t; (Figure 8: line c). The aperture time is positioned
ap/ "S g p p

symmetrically around the known sampling instants.

By increasing the number of samples and acquired signal
cycles it is possible to detect signals below the Nyquist
condition (Figure 9: the whole acquired signal contains around
50 cycles of the sinusoid 6, = f,/Af =f_ -Nt; =50 on

N = 20000 points). An undersampled sine wave still appears as

a sampled sine wave but at a lower frequency f'= |kfS — fm|

(k=12,..) or expressed by the relative frequency

o' =|kt95 —9m| where 6, is the relative sampling frequency.
With padding points we apparently increase the sampling
frequency in relation to the signal frequency.

To estimate parameters of the time-dependent signals
containing any periodicity, it is preferable to use a
transformation of the signal in the frequency domain. The
discrete Fourier transformation (DFT) of the windowed signal
W(k)- g(k) on N sampled points at the spectral line i is given
by:

———d
| 6lo) e =
d
102
107 i
i
10 S S i
On & Rl WA= N
6,56, 50 6,100 / 150 26, 200 36, 6

0.+6,

Figure 9. Spectra of signals from Figure 8: a — original signal, b — truncated
signal in the aperture intervals, ¢ — signal with average values in the
aperture integration interval, d — signal with average values in the aperture
integration interval with sinc correction.

ol)=-23 A fWli-o, ) Wiso o).

where 0, =f /Af =i, +38, is the frequency component
related to the base frequency resolution Af =1/T, =1/Ntg
and consists of an integer part and the non-coherent sampling
displacement term —0.5< 6, <0.5.

A finite measurement time is a source of dynamic errors,
which are shown as leakage parts of the measurement window
spectrum convolved on the spectrum of the measured-sampled
signal (Figure 9). The long-range leakage contributions can be
reduced in more ways: by increasing the measurement time
Afl = I/TmeasT >
side lobes (like the Rife-Vincent windows class 1 - RV1, etc.
[8]), or by using the multi-point interpolated DFT algorithms.
Dedicated algorithms are needed to obtain the correct
parameters of the sinusoidal components in the signal.
Parameters of the measurement component can be estimated

by using windows with a faster reduction of the

by means of interpolation [9]. From a comparative study [10] it
can be concluded that the key for estimating the three basic
parameters is in determining the position of the measurement
component &, =0, —i, between the DFT coefficients G(i,,)

and G(i, +1) surrounding the componentm. In estimations,

the well-known expressions for the three-point estimations for
frequency (2), amplitude (3), and phase (4) were used. The
three-point DFT interpolation gives optimal results owing to:
symmetry around the local peak amplitude DFT coefficient;
equal suppression of leakage coming from both sides; equal
minimal error curves as with one-, five- and multi-point
interpolations. Only the order P of the windows has to be
changed using RV1 windows [9].

IG(i,, + 1) ~[G(i,, —1)

30 =(P+1)- GG, —1)+2[G(i, | +[G(i, +1) )
: 22P Tcé‘m . P+l (1o ).
sA =2 |(2P N 2)! ‘ Sin(né'm) 1_L:1 (l T N

(6 (i, - 1)+ 260, ) + |6, +1))
The single phase can be estimated with the arguments of the
three largest local DFT coefficients ¢; = arg[G(im)] [9], [11]:

_ (1 — O, )(Dim—l +4p, + (1 + 0, )¢’im+1 _2a9, T

. 4
3Pnm 6 3 T3 )

3. EVALUATION OF THE ESTIMATIONS

3.1. Systematic behaviour

We can estimate three basic parameters of a particular
component (true or apparent on Figure 9) by the three-point
interpolations since we need only the local largest DFT
coefficients. The estimation errors were compared for the
frequency (2), amplitude (3), and phase (4) estimations using the
Hann window (P =1). The absolute errors of the frequency

Hcst. - 9truc|

estimation  [E(6)] =

|E(¢)| = wcst, - wtruc
amplitude estimation |e(A)| = |Acst. /A —1| are first checked

for one sine component in the signal with a double scan,
varying specific sampling parameters and the phase of the signal

and the phase estimation

, and the absolute relative errors of the
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at particular relative frequencies because the long-range
leakages are frequency- and phase-dependent (Figures 10 to 23:

A,=1,and -n/2<@<n/2, Ap=mn/18).

First, the sampling ratio r= fs/f was changed to find
intervals where the interpolation algorithm can be used (Figures
10 to 19). The absolute maximum error values (from 19
iterations changing phase) at a given sampling ratio are
compared using the duty ratio of D =t /’[S =0.4 . In Figure

10, we can see that it is possible to estimate the frequency of
one component even better than if we have a complete signal
also when the sampling ratio r=fy/f  is in a interval
between 1 and 2 (the sampling condition is not fulfilled). The
vicinities around the integer values 1 and 2 where we cannot
estimate parameters as in the case of the original signal depend
on the number of signal cycles in the whole measurement
interval T,,;. The largest value 6 gives a better frequency
resolution and borders come closer to integer values 1 and 2
(Figures 10, 11, and 12). The width of the error estimation
main-lobe around integer values depends on the position of the
investigated component and interspacing between neighbouring
components if we have enough sampling points in one petiod
(400 points are used in simulations from analysis in Figures 22
and 23). If we have 8 =50 cycles in the measurement interval
(Figure 10) we get a basic bin resolution 1/50 and this

resolution gives error main-lobe borders 0.85<r <1.15 and
1.7 <r < 2.3 around integers where the frequency estimation
errors increase due to leakage influence on the investigated
component 8, from its replicas k6; —6,, k=1,2 (Figures 9

A

E. €)

10 +
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1 1.5 225 3 f/f,

Figure 10. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a — original signal, b — signal with average

values; N =20k, f,=5Hz+160Hz, 8, =50.
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Figure 11. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a — original signal, b — signal with average

values; N =8k, f,=2Hz+64Hz, 6, =20.

and 12).
It can be also noticed that there are error peaks which

number increases below I =2/3 due to replicas ||(19S - 9m|with
higher values of k =3, 4,.. (Figure 12).

Decreasing the bin resolution to 1/20 increases unusable
intervals to 0.8 <r <1.2 and 1.5 <r < 2.5 (Figure 11). Going
in opposite direction by increasing the bin resolution to 1/100
(Figure 12) reduces unusable intervals to 0.9 <r <1.1 and
1.85 <r <2.15, and the frequency can be accurately estimated
also in the interval of sampling ratio 1.1< fg/f, <1.85 what s
below the sampling condition.

In the case of the amplitude estimation (Figures 13 and 15)
we need to correct the estimated amplitude or the complete
amplitude DFT spectrum (Figure 9, line d) by the well-known
sine correction K. . = (n /T )/Sil‘l(TE ‘1, /Tm) [3]. We see
the same behaviour of the errors in the cases of amplitude and
phase estimations as with the frequency estimation (Figures 13
to 16). A bin resolution of 1/50 reduces unusable intervals
0.85<r<1.15 and 1.8 <r <2.2 for the phase estimation as

for frequency estimation (Figure 14) and even better for the
amplitude  estimation  (Figure 13: wunusable intervals

09<r<1.1 and 1.7<r<23). A resolution of 1/100

further reduces unusable intervals to 0.92<r <1.08 and
1.85 <r <2.15 (Figures 15 and 16).

115 225 3 f/f,

Figure 12. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a — original signal, b — signal with average
values; N =40k, f,=10Hz+320Hz, 6, =100.

o/,

Figure 13. Absolute maximum values of relative errors of the amplitude
estimation in relation to the sampling ratio: a — original signal, b — signal

with average values; N =20k, fi=5Hz+160Hz, 6, =50.
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Figure 14. Absolute maximum values of errors of the phase estimation in
relation to the sampling ratio: a — original signal, b — signal with average
values; N =20k, fy=5Hz+160Hz, 6, =50.
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Figure 17. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a — original signal, b — signal with average
values; N =20k, fg=5Hz+160Hz, 6, =50.
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Figure 15. Absolute maximum values of relative errors of the amplitude
estimation in relation to the sampling ratio: a — original signal, b — signal

with average values; N =40k, f,=10Hz+320Hz, €, =100 .
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Figure 18. Absolute maximum values of relative errors of the amplitude
estimation in relation to the sampling ratio: a — original signal, b — signal

with average values; N =20k, f,=5Hz+160Hz, 8, =50.
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Figure 16. Absolute maximum values of errors of the phase estimation in
relation to the sampling ratio: a — original signal, b — signal with average

values; N =40k , fg =10Hz+320Hz, 6, =100.

Algorithms were analysed also by the multi-component
signal. The second harmonic component as the closest and the
most disturbing component was added with amplitude
A, =A/10 (THD =0.1) and phase @, =0, other parameters
of simulations are the same as for Figure 8. We get the most
disturbing replicas of the second harmonic at positions ' =1.5

and 3 due to the leakage effect f' =|ka -2 fm| (k=1,2)

(Figures 17 to 19). Simulation results show that the proposed
estimation procedures give very good results when the sampling

Figure 19. Absolute maximum values of errors of the phase estimation in
relation to the sampling ratio: a — original signal, b — signal with average

values; N =20k, f,=5Hz+160Hz, §,=50.

condition is fulfilled, but beyond the Nyquist frequency the
THD has to be low (< 0.01).

If we change the duty ratio D=t /ts in the sampling
interval (changing the aperture time at a fixed sampling
frequency) the estimation errors do not change very much in
comparison to the estimation of the original signal if we correct
the estimation by a sine correction [12]. In Figures 20 and 21 the
duty ratio was changed almost in the whole possible interval

D=0.001+0.998 at r=f/f =16 with N, =400
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Figure 20. Absolute maximum values of errors of the frequency estimation
in relation to the duty ratio: a — original signal, b — signal with average
values in the aperture interval.
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Figure 21. Absolute maximum values of relative errors of the amplitude
estimation in relation to the duty ratio: a — original signal, b — signal with
average values in the aperture integration interval with sinc correction.

samples in one period (other parameters were the same as in
Figure 8).

The estimation also much depends on the number of points
in the petiod N, and in the whole measurement intetrval.
Padding with more points (average signal values and zero
values) will improve estimations since interpolation equations
(2), (3), and (4) are detived for large number of points N >>1
[9]. In Figures 22 and 23, the number of points in the period
N, was changed from N, =10 to mote than N, =512
(other parameters were the same as in Figure 8). We can see
that the frequency estimation does not differ significantly if we
have reduced the information of the signal (Figure 22: curves a
and b) and both estimations errors dectease with increasing
number of points.

The amplitude estimation much more depends on the
number of points (Figure 23) but after having more than

N, =128 points per petiod the estimation etrors drop to the
level as with the estimation of the original signal without
averaging in the aperture time.

3.2. Noise propagation

The price for the effective leakage reduction is in the
increase of the estimation uncertainties related to the unbiased
Cramér-Rao bounds [13] fixed by the signal-to-noise-ratio for a
particular component SNR_ = A’ / (20'5) cotrupted by a white

noise with standard uncertainty o, [14]. In Figures 24 and 26,

there are standard uncertainties of the frequency, amplitude,
and phase estimations related to the CR bounds, respectively.

o, 2 ﬁ;L:GCRBﬂa o)
7 JSNR VN ’

0 20 40 60 80 100

Figure 22. Absolute maximum values of errors of the frequency estimation
in relation to the number of sampling points in the period: a — original
signal, b — signal with average values in the aperture interval.
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Figure 23. Absolute maximum values of relative errors of the amplitude
estimation in relation to the number of sampling points in the period: a —
original signal, b — signal with average values in the aperture integration
interval with sinc correction.
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Moving away from integers of the relative frequency, what is
the case when the sampling ratio is below 2, the standard
uncertainties increase in relation to the minimal attainable
values (Figure 24 for the frequency estimation, Figure 25 for
the amplitude estimation, and Figure 26 for the phase
estimation) but these changes can be neglected. In the case of
amplitude estimation the standard deviations even decrease if
the frequency @ is estimated first.

A
O-H/O-CRB,H
3
T |
T I
2= |
T T T T
EE 4:
T I
I I
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1 2 3 4 5 6 0

Figure 24. Standard uncertainty of the three-point displacement estimation
(2) related to the CR bound (5).
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Figure 25. Standard uncertainty of the amplitude three-point estimation (3)
related to the CRB (6); a— @ is estimated, b— & is known.
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Figure 26. Ratios of the uncertainties of the phase three-point estimation
(4) related the CRB (7); a— @ is estimated, b— @ is known.

4. EXPERIMENTAL RESULTS

To demonstrate the proposed algorithms in reducing both
estimation errors (phase and noise contributions at different
frequencies) in a real measurement environment we use a
digitizing voltmeter to acquire signal, Agilent 3458A [15] and a
stable voltage generator, Keysight 33500B [16] to generate a
nominal  sine  voltage with  amplitude A, =1V

(THD <0.04%) and changing frequency. In opposite to
simulations, the sampling frequency was set at fg =10kHz
—> 1, =100pus and the signal frequency was changed from
f,, =100kHz down to f_ =3.125kHzto achieve the same
sampling ratio r = f/f =0.1+3.2. The fixed aperture time
t, =40ps
D=t, /’[S =0.4 and with n,, =80 acquired sampling points

determined the duty cycle of sampling

the measurement time was Ty, =N t; =8ms with a frequency
resolution of Af =1/T,, =125Hz. As in the simulations,
N, =400 padding points (for signal and zero padding) was

used around the

N=n_ -N_,4=32k was used in the interpolation DFT

acquired points, and altogether

algorithms. Each sampling sequence of 80 points was
synchronized using the ‘sync out’ terminal of the generator and
the external trigger input of the voltmeter.

Maximal estimation errors are shown in Figures 27 to 29,
whete reference values wete those set on the generator (A=1,

f =100kHz +3.125kHzand -n/2<@p<m/2, Ap=mn/18)

B, (6)
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Figure 27. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio; n,, =80, N =32k, f;=10kHz,

0, =f,/Af =800+25.
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Figure 28. Absolute maximum values of the relative errors of the amplitude
estimation in relation to the sampling ratio; n,, =80, N =32k,
f,=10kHz, 6, = f_/Af =800+25.
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Figure 29. Absolute maximum values of errors of the phase estimation in
relation to the sampling ratio; n =80, N=32k, f, =10kHz,

0, =1, /Af =800+25.

and with 50 trials at each frequency and phase. The estimation
error behaviours are very close to those in the simulations.

It can be noticed that systematic error contributions behaves
as expected and a very small second harmonic component is
presented in the measurement system. The frequency
estimation (Figure 27) can be compared with the simulation
results from Figure 10 except the noise floor is higher and at

the level of E

max

(0)=2-10™" cven in the interval below the
sampling condition 1.15< fg/f <1.8. The results of the
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amplitude (Figure 28) and the phase estimations (Figure 29) are
worse in comparison to the simulation results (Figures 13 and
14) due to inaccurate values at the output of the generator and
inaccuracy of the sampling voltmeter, but the systematic
contributions of errorss confirm the expected behaviour like
with the frequency estimation.

5. CONCLUSIONS

The paper proposes algorithms for the estimation of basic
sinusoidal parameters (frequency, amplitude, and phase of the
frequency component), when the acquired sampling points do
not fulfil the sampling condition and some signal information is
lost due to signal averaging in the aperture time. In the
proposed procedure, the empty space between successive treal
sampling points is virtually padded by average values of the real
sampling point in the interval of knowing aperture and zeroes
in the rest of the sampling interval. This procedure with suitable
large acquited cycles in the whole measurement interval
improves the frequency resolution, and the interpolated DFT
estimation algorithms can be adopted for particular frequency
components.

In many cases the number of sampling points is limited but
by performing the algorithms on a computer we can increase
padding points and with this nearing the errors to the level as
with estimation on the theoretically original signal without
averaging in the aperture time and with the number of points
equal to all padding points. Simulation and experimental results
show that the parameters’ estimations are possible also even in
the interval below the sampling condition.
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