
ACTA IMEKO
ISSN: 2221-870X
December 2018, Volume 7, Number 4, 3-8

ACTA IMEKO | www.imeko.org December 2018 | Volume 7 | Number 4 | 3

New approach to agile cycles containment effectiveness
metrics in automotive software development

Ionut-Andrei Sandu1, Alexandru Salceanu1

1 “Gheorghe Asachi” Technical University of Iasi, Mangeron Str. 67, 700050 Iasi, Romania

Section: RESEARCH PAPER

Keywords: Iteration Containment Effectiveness; Program Increment Containment Effectiveness; Defect Debt Trend; Phase Containment Effectiveness;
software quality metric; agile; defects handling

Citation: Ionut-Andrei Sandu, Alexandru Salceanu, New approach to agile cycles containment effectiveness metrics in automotive software development,
Acta IMEKO, vol. 7, no. 4, article 2, December 2018, identifier: IMEKO-ACTA-07 (2018)-04-02

Editor: Vilmos Pálfi, Budapest University of Technology and Economics, Hungary

Received March 13, 2018; In final form October 2, 2018; Published December 2018

Copyright: © 2018 IMEKO. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Funding: This work was supported by “Gheorghe Asachi” Technical University of Iasi, Faculty of Electrical Engineering

Corresponding author: Ionut-Andrei Sandu, e-mail: siandrei@gmail.com

 THE IMPORTANCE OF MEASURING THE PHASE
CONTAINMENT EFFECTIVENESS METRIC IN AGILE
SOFTWARE DEVELOPMENT

In the automotive industry, agile software development
began to be used among developers as far back as 12 years ago,
according to Kugler Maag Cie”s study in 2015 [1]. Since then,
more and more automotive companies (OEMs and suppliers)
that develop software-based electronic components are
implementing the agile methodology. This is mainly because
companies must keep pace and be flexible with constantly
changing requirements, especially in current times, when the
time to market is decreasing.

Organizations adopting the agile methodology also implicitly
implement continuous process improvement, as teams and
organizations must be effective and efficient. Agile process
transformation also implicitly triggers improvement actions and
measures for software development processes. In this way,
projects and organizations support and successfully fulfill the
requirements of the process assessment models (e.g.,
Automotive Software Process Improvement and Capability
Determination, A-SPICE® [2]).

One of the principles of the Agile manifesto is “working

software is the primary measure of progress [3].” The ideal
situation is that deliveries have no faults that affect the end user
or faults that are introduced due to the incorrect implementation
of the requirements.

For the minimization of the defects rate, the classic software
development approach is to use the Phase Containment
Effectiveness (PCE) metric to calculate the effectiveness of the
verification in each of the development phases. The PCE metric
answers the following questions: How efficient is the verification
process? Which phases escaped defects? Which phases
found/did not find those defects?

How can the above questions be answered concerning
programs and organizations that have adopted agile software
development?

We propose here a method of how to apply the PCE metric
to organizations and teams that have developed software for the
automotive industry using the agile software development
approach.

ABSTRACT
In an ideal agile development team, defects should not exist. However, in reality, especially in automotive agile software development,
there must be a mechanism for handling defects and tracking them to closure. In this article, we describe the benefits of and principles
underlying the measurement of defects handling metrics in automotive programs and in organizations that have adopted agile software
development. We present the Iteration Containment Effectiveness, Program Increment Containment Effectiveness, and Defect Debt
Trend metrics. The advantages acquired thereby are demonstrated by a detailed example of a real application concerning how to
measure the classic Phase Containment Effectiveness metric on the Iteration (Sprint) and Program Increment (Scum of Scrums / Scaled
Agile) Level.

mailto:siandrei@gmail.com

ACTA IMEKO | www.imeko.org December 2018 | Volume 7 | Number 4 | 4

 PREVIOUS ACHIEVEMENTS IN THIS FIELD

PCE was introduced in 1997 as a software quality
improvement metric by A. R. Hevner [4]. In 2003, it was also
adopted in the Six Sigma (a disciplined, data-driven methodology
for eliminating defects) [5]. This metric provides the ability to
measure verification (a review, inspection, or unit-testing
software method ensuring that each software unit satisfies its
design) effectiveness and allows the software development team
to improve their software development process.

The PCE metric can also be used for measurement in
automotive software development by applying it in the specific
software development and test phases [6].

Faults can be classified as either errors or defects depending
on the phase into which they were injected and the phase in
which they were found.

Errors are faults that are discovered in the proper phase into
which they were injected (e.g., design faults caught by design
reviews). Defects are faults that were not identified in the
development phase (e.g., design faults caught in code reviews or
software tests).

Ideally, all faults should be discovered in the phase in which
they were introduced, leading to an idealistic PCE of 100%.
Considering that in the automotive industry the rate of software-
related recalls increased from 5 % in 2011 to 15 % in 2015 (Stout
Risius Ross”s study, based on data from the United States
National Highway Traffic Safety Administration [7]), improved
phase containment is needed in automotive software
development.

Increasing the faults detection rate within the development
phases will reduce the problem resolution effort and the test
effort. More precisely, detection of 10 % more defects in
software design or coding phases can lead to a potential saving
of 3 % in the total product development cost [8].

The error correction cost can even increase up to 90 times in
the post-production phase compared to the concept phase [9].
The price of recalls comprises, besides fault-fixing costs, legal
costs and image costs. At present, researchers have not decided
how to apply the PCE metric in agile software development.

 OUR SPECIFIC APPROACH

Agile software development is executed in iterations
(according to Scaled Agile Framework SAFe® model [10] or
sprints in SCRUM [11]). Working software (ideally fault-free)
should be delivered at the end of every iteration. Because
incremental build and continuous integration is undertaken in
agile software development [12], current delivery is used in the
next iteration to add features on top. However, if a delivery
containing undiscovered faults from Iteration N is used to add
new functionalities for the upcoming deliveries >N, the
undiscovered faults are also implicitly translated to these
deliveries.

Because defects can escape from one iteration to another in
agile software development, the iteration itself can be considered
as a phase in the classic PCE metric. Faults that have escaped
identification from one iteration to another (i.e., those that are
inherited by the next iteration) can be monitored and reduced by
analyzing and taking appropriate actions when measuring the
PCE for iterations, which we call Iteration Containment
Effectiveness (ICE):

• Iteration errors: faults caused during iteration N and
discovered/solved during Iteration N (e.g., during
architecture review, code review, software testing).

• Iteration defects: faults caused during Iteration N and
detected/solved during Iteration >N (the upcoming
iterations) or by the customer

The total number of faults is obtained by equation (1):

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑢𝑙𝑡𝑠 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟𝑠 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 (1)

ICE can be calculated for each iteration by calculating

equation (2):

𝐼𝐶𝐸 𝑓𝑜𝑟 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑁 =
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟𝑠

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑢𝑙𝑡𝑠
∙ 100% (2)

How can defects that will be fixed in the next iterations be
handled? A Problem Report (PR) should be opened, the defect
should be added to the Program Backlog, and it should be
prioritized accordingly. If the Defect Debt (the number of open
PRs) is increasing, a special iteration might be required for fixing
bugs.

How can defects (issues caused from previous iterations) that
have been discovered and will be fixed in the current iteration
be handled? If a defect that is not related to the current iteration
but is severe enough that an immediate fix is required, a PR
should be created. This will ensure transparency and alignment
with all the stakeholders, as the scope of the current iteration
may be affected. It will also support the project team concerning
future situations in which similar problems may be detected. If
the user story is closed, it is advised that a fix task or a PR is
created anyway and linked with the initial story. [13]

How can errors that are discovered and fixed in the same
iteration be handled? Valuable data would be lost if issues found
during testing activities are not captured. However, entering and
administrating formal PR entries is probably an overhead. This
issue can be handled in either of the following ways:

1) Such errors should be tracked to closure in a separate
list

2) The current workflow used by the team should be
followed. For example, when the development of a
current user story is complete, the user story should be
transitioned to a verifying state. If it did not pass the
verification, the ticket should be returned to the
implementing state. Only after the developer fixes the
discovered error is the user story transitioned again to
the verifying state.

 SYNTHESIS OF OBTAINED RESULTS

In the following example, we outline a Program Increment
with five execution iterations. Iteration 15 is the last one,
executed on the creation date of the report.

Equations (1) and (2) allow us to calculate the ICE for each
Iteration. This is how the values in Table 2 were obtained for a
specific program.

ACTA IMEKO | www.imeko.org December 2018 | Volume 7 | Number 4 | 5

Furthermore, in agile software development, the classic PCE
metric can be applied at the iteration level. To understand an
iteration in whose development and testing phases defects were
not identified, the classic PCE for Development metric [5]
(based on the development and test phases used in the iteration)
and the classic PCE for Testing metric [5] (considering only the
development and test phases used in the iteration) should be
used at the iteration level.

As a Program Increment (PI) consists of several iterations
and as the unit of a program execution is represented by the PI
[10], ICE can also be applied to the PI level by applying the same

mechanism. We therefore propose Program Increment
Containment Effectiveness (PICE) in equation (3), which
involves

• PI errors: faults discovered during PI N

• PI defects: faults that escaped from PI N and were

detected during PI > N (the upcoming PIs) or by

the customer

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑁 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
Program Increment Errors

Program Increment Errors+Program Increment Defects
∙ 100%

(3)

The ICE and PICE metrics can also be analyzed together
with the trend of open defects for each iteration/PI. In short,

Figure 1. ICE values for a specific Program using Agile.

Table 1. ICE values for a specific program using the agile methodology.

 It.6 It.7 It.8 It.9 It.
10

It.
11

It.
12

It.
13

It.
14

It.
15

Customer Total
errors

Total
defects

Total
faults

%
ICE

Program increment
2

Iteration 6 20 3 0 0 1 10 2 0 0 0 7 20 23 43 47

Iteration 7 100 10 0 5 22 3 1 0 0 8 100 49 149 67

Iteration 8 21 3 0 0 0 0 1 4 1 21 9 30 70

Iteration 9 36 3 1 0 1 0 0 3 36 8 44 82

Iteration 10 78 2 0 1 0 0 2 78 5 83 94

Program increment
3

Iteration 11 60 0 0 0 2 6 60 8 68 88

Iteration 12 57 1 0 0 3 57 4 61 93

Iteration 13 54 0 0 5 54 5 59 92

Iteration 14 63 10 4 63 14 77 82

Iteration 15 52 1 52 1 53 98

Figure 2. Program Increment Containment Effectiveness values for a specific
Program using Agile.

0

10

20

30

40

50

60

70

80

90

100

%
 It

er
at

io
n

 C
o

n
ta

in
m

en
t

Ef
fe

ct
iv

en
es

s

Iterations

Iteration Containment
Effectiveness for Agile SW

Development

% ICE Goal

0

10

20

30

40

50

60

70

80

90

100

PI2 PI3%
 P

I C
o

n
ta

in
m

en
t

Ef
fe

ct
iv

en
es

s
Program Increment

Program Increment
Containment Effectiveness for

Agile SW Development

% PI Containment Effectiveness Goal

ACTA IMEKO | www.imeko.org December 2018 | Volume 7 | Number 4 | 6

the number of open inherited defects that is increasing over time
from one iteration to another can be used as a starting point for
analyzing the result of the ICE metric with the ultimate goal of
detecting in which iteration defects escape.

As best practice, if the software development team does not
have the capacity to solve the issues detected during the current
iteration, open defects should be planned for implementation in
the next iteration. Furthermore, if the number of defects is high,
the team can decide to designate one iteration for bug-fixing
activities in order to reduce the Defect Debt.

In the long term, improvement actions and measures for
continuous process improvement at the iteration level should be
defined. Only by improving the PCE for development for the
phases used in the iteration can the fault debt and, implicitly, the
development costs be reduced. This is how both PCE and ICE
can be applied complementarily if the Defect Debt Trend
(DDT) indicates that a root cause analysis is necessary.

In the following section, we present the DDT using data from
the example mentioned above. This metric shows the cumulative
number of open defects in each iteration. It also considers the
number of resolved defects from past iterations. Similar to ICE,
the DDT metric can also applied be applied at the program level.

DDT iteration N =
(previous iteration defect debt)
+
(total number of defects introduced in the previous iterations
and discovered by iteration N)
–

(number of defects caused by the previous iterations and solved
in iteration N) (4)

By analyzing the DDT using equation (4), we can easily
identify that in sprint (iteration) 8, the agile team took corrective
actions to reduce the number of defects inherited from the
previous iterations. We can also forecast that the number of
defects should be reduced starting with iteration 11 or in the
upcoming iterations.

In , in the rows, we list the defects entered and solved in the
same iteration and the number of defects entered in iteration N
and discovered in the following iterations >N. We apply
equation (4) in order to calculate the DDT for each iteration. We
consider that the first iteration has a 0 Defect Debt. We present
here the data starting with iteration 6. When the report was
generated, the last iteration was iteration 15.

 ROOT CAUSE ANALYSIS WITH ICE AND PCE METRICS
WHEN MEASURING NUMBER OF CUSTOMER DEFECTS
PER LINES OF CODE METRIC

In order to monitor the quality of the delivered product, the
Customer Defects per Lines of Code (CDLC) metric can also be
used in automotive software development projects by applying
Equation (5) [14].

CDLC = number of customer defects/(kilo lines of code) (5)

The number of lines of code can be calculated by using
Equation (6):

Source lines of code (SLOC) = total project lines of code –
number of empty lines and commented lines (6)

The SLOC is used to determine the size and cost of software
development projects. Considering this metric, we can compare
the size and complexity of different projects.

Figure 3. Defect Debt Trend.

Table 2. Defect Debt values for each iteration.

 It. 6 It. 7 It. 8 It. 9 It. 10 It. 11 It. 12 It. 13 It. 14 It. 15

Past
iterations
defects

Solved
defects from
past
iterations Defect Debt

Program
increment

2

Iteration 6 20 3 0 0 1 10 2 0 0 0 4 0 39

Iteration 7 100 10 0 5 22 3 1 0 0 4 0 43

Iteration 8 21 3 0 0 0 0 1 4 16 50 9

Iteration 9 36 3 1 0 1 0 0 8 0 17

Iteration 10 78 2 0 1 0 0 21 0 38

Program
increment

3

Iteration 11 60 0 0 0 2 44 40 42

Iteration 12 57 1 0 0 6 0 48

Iteration 13 54 0 0 10 0 58

Iteration 14 63 10 6 50 14

Iteration 15 52 28 15 27

0

10

20

30

40

50

60

70

It
er

. 6

It
er

. 7

It
er

. 8

It
er

. 9

It
er

. 1
0

It
er

. 1
1

It
er

. 1
2

It
er

. 1
3

It
er

. 1
4

It
er

. 1
5

N
u

m
b

er
 o

f
O

p
en

 D
ef

ec
ts

Iterations

Defects Debt Trend

DDT

ACTA IMEKO | www.imeko.org December 2018 | Volume 7 | Number 4 | 7

By applying SLOC, the CDLC metric is normalized and can
be used for all types of projects, regardless of the complexity and
during the entire project lifecycle. As CDLC
values can be compared, they can be used for identifying the
lessons learned from completed projects for future projects [15].
When CLDC is measured in agile software development, for
every iteration, it can be used for continuous improvement. It
provides early feedback of the built-in quality achieved by the
delivered working system. It is a highly powerful metric, which
allows for the comparison of results between different types of
project complexities.

Fault severity classification (major or minor [16]) needs to be
defined either at the project or organization level. In order to
determine what must be filtered out from the calculation, the
business goal(s) and the questions that it is hoped that this metric
should answer should be used as the starting point. It should be
documented in the metric definition which type of defects will
be counted (e.g., all, only major ones, only customer-visible
defects).

A company that is using this metric should establish its targets
and monitor CDLC in projects accordingly. Companies should
take corrective actions [17] and improvement measures to fulfil
the defined targets. If deviations appear, a root cause analysis can
be undertaken by applying the ICE and PCE metrics. The
efficiency of the agile cycles and development phases can be
measured using these metrics. In this way, the number of defects
discovered by the customer is reduced, and the consequent value
and customer satisfaction increase significantly.

In lean agile development [18], the results of the ICE, DDT
[19], and CDLC metrics can be used at the retrospective
ceremony as process efficiency metrics. By analyzing the output
of these metrics, the agile software development team can
continuously improve the development and testing processes.
Even more so, these metrics can be used to provide objective
evidence of improvement.

In order to support organizations and agile software
development teams to improve continuously, we detailed in this
article the concepts and principles of ICE and DDT metrics [19].
We presented the latest experimental data for ICE, DDT, and
how CDLC can be used together with these metrics.

 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

In this article, we showed how classic PCE can be applied to
agile software development by considering iterations instead of
phases. The ICE metric was defined, and its application was
explained in the form of an example. By increasing ICE through
continuous process improvement, an agile software
development team will not be overwhelmed by the increasing
number of defects in the backlog, delivery commitments will be
fulfilled, and the quality of the developed product will improve.

We also presented how the ICE metric can be used to analyze
the results of the DDT metric, which shows the trend of open
defects over time. Even more so, as a result of the improvement
measures, the increased rate of ICE should lead to reduced
values and lower trends in the DDT. We scaled the ICE metric
usage to the PI Level by describing the relevant equation and
manner of usage.

Fault debt (remaining open problem reports) from one
iteration to another can be monitored and reduced by
monitoring, analyzing, and taking appropriate action when

measuring the ICE metric. The lowest rates should indicate that
a root cause analysis is necessary.

We presented an approach of how to handle defects from
previous iterations that are discovered and must be fixed within
the current iteration. We also indicated how to track to closure
the errors discovered and fixed within the same iteration. If these
problem reports are not fixed, the Defect Debt increases, and
the development process becomes unsustainable. Variability
increases, while for the entire product development system,
predictability decreases.

For root cause analyses and to understand an iteration in
which defects were not identified in the development or testing
phases, the classic PCE for Development (based on the
development and test phases used in the iteration) and the PCE
for Testing (considering only the development and test phases
used in the iteration) can be used.

If organizations want to improve their processes, their
products, and customer trust, they should first focus on
including in the ICE and DDT metrics only faults that are visible
to the end customer, regardless of whether they are critical or
not. This suggestion implies that fault severity classification also
needs to include customer visibility.

Concerning future research and development, we have clearly
proposed how to measure ICE and DDT metrics at the iteration
and PI levels. In the future, we intend to investigate how data
should be aggregated in order to measure these metrics also at
the upper levels of the scaled agile methodologies in the
organizations (e.g., the Scaled Agile Framework SAFe® model.

REFERENCES

[1] Kugler Maag Cie, “Agile in Automotive – State of Practice 2015”,
May 2015, [Online]. Available: http://www.kuglermaag.com.

[2] VDA QMC Working Group 13/Automotive SIG,
“Automotive SPICE Process Assessment/Reference Model,
Version 3.0”, 2015, pp. 74-75 [Online]. Available:
http://www.automotivespice.com/ fileadmin/software-
download/Automotive_SPICE_PAM_30.pdf.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R.
Jeffries, J. Kern, B. Marick, R. Martin, S. Mellor, K. Schwaber, J.
Sutherland, D. Thomas, ”Manifesto for Agile Software
Development”, 2001 [Online]. Available:
http://www.agilemanifesto.org.

[4] A. R. Hevner, Phase containment metrics for software quality
improvement, Information and Software Technology, 39(13)
(1997), pp. 867-877 [Online]. Available:
http://www.sciencedirect.com.

[5] D. L. Hallowell, “Six Sigma Software Metrics Maturity, Part 1”,
Six Sigma Advantage Inc, 2003, [Online]. Available:
https://6sigma.com.

[6] I. A. Sandu, A., Salceanu, “Metrics improvement for phase
containment effectiveness in automotive software development
process”, Proc. of the 10th International Symposium on Advanced
Topics in Electrical Engineering (ATEE 2017), Mar. 23-25 2017,
Bucharest, Romania, pp. 661-666.

[7] Stout Risius Ross, 2016, Apr. 25, Automotive Warranty and Recall
Report 2016 [Online], Available: http://www.srr.com.

[8] C. Ebert and R. Dumke: Software Measurement, Springer,
Heidelberg, New York, 2007, pp. 245-300.

[9] D. Seidler, T. Southworth, IBM Rational Automotive Engineering
Symposium 2013, Source - Herstellerinitiative Software (Audi,
BMW, Daimler, Porsche and Volkswagen) 2016, Nov. 21
[Online]. Available: https://www.ibm.com.

[10] Scaled Agile Inc, “SAFe® 4.0” [Online]. Available:
http://www.scaledagileframework.com.

http://www.kuglermaag.com/
http://www.agilemanifesto.org/
http://www.sciencedirect.com/
https://6sigma.com/
http://www.srr.com/
https://www.ibm.com/
http://www.scaledagileframework.com/

ACTA IMEKO | www.imeko.org December 2018 | Volume 7 | Number 4 | 8

[11] Scrum.org, “The Home of Scrum” [Online]. Available:
https://www.scrum.org.

[12] J. Shore, S. Warden, The Art of Agile Development, O”Reilly
Media Inc, 2008

[13] ScrumCrazy.com, “One way to handle bugs and production
support in Scrum” [Online]. Available:
http://www.scrumcrazy.com/One+way+to+handle+Bugs+and
+Production+Support+in+Scrum.

[14] I. A. Sandu, 2018, “New approach of the customer defects per
lines of code metric in automotive SW development applications”,
XXII World Congress of the International Measurement
Confederation (IMEKO) Sept. 3-6, 2018, Belfast, Ireland.

[15] L. W. Walker, “Learning lessons on lessons learned”, Paper
presented at the PMI® Global Congress 2008 North America,
2008, Denver, Colorado, Newtown Square, Pennsylvania.

[16] K. El Emam, The ROI from Software Quality, Auerbach
Publication Taylor & Francis Group, 2005, pp. 14-16.

[17] D. E. Robitaille, J. Rothman, Corrective Action for the Software
Industry: A Pragmatic Approach to Effective Problem Solving,
2004, Paton Professional.

[18] D. P. Oosterwal, “The lean machine: How Harley-Davidson
drove top-line growth and profitability with revolutionary lean
product development”, 2012, AMACOM.

[19] I. A. Sandu, A. Salceanu, 2017, “Applications of the Phase
Containment Effectiveness metric in automotive industry agile
software development”, Proceedings of the 22nd IMEKO TC4
International Symposium and the 20th International Workshop on
ADC Modelling and Testing Supporting World Development
Through Electrical and Electronic Measurements, Sept. 14-15,
2017, Iasi, Romania.

https://www.scrum.org/
http://www.scrumcrazy.com/One+way+to+handle+Bugs+and+Production+Support+in+Scrum
http://www.scrumcrazy.com/One+way+to+handle+Bugs+and+Production+Support+in+Scrum
https://www.google.ro/search?tbo=p&tbm=bks&q=inauthor:%22Denise+E.+Robitaille%22&source=gbs_metadata_r&cad=7
https://www.google.ro/search?tbo=p&tbm=bks&q=inauthor:%22Johanna+Rothman%22&source=gbs_metadata_r&cad=7

