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1. INTRODUCTION 

Nowadays, an important part of Architectural Heritage 
documentation consists in 3D models of buildings, obtained by 
photogrammetric techniques (i.e. from sequences of digital 
photos processed by Structure from Motion, SfM, and 
MultiView Stereo, MVS, procedures) or range data (by laser 
scanning). These models can be stored in databases to be 
retrieved via the World Wide Web. Professionals access this 
data for better Cultural Heritage (CH) comprehension, 
management and preservation, while tourists can take virtual 
tours before traveling, or use the models as an alternative to the 
usual souvenir photos. 3D digital representations can be 
semantically enriched by adding annotations (metadata), 
associated to the model as a whole or to its noteworthy 
elements. In order to partition a digital model into parts, a 
process known as segmentation is employed. When the parts 
are significant, i.e. they reflect a possible decomposition into

 

standard architectural elements, and these elements are 
conveniently annotated, we obtain a semantic segmentation. As 
an example, an order [1] consists of three parts: the entablature, 
the columns, and the crepidoma or the pedestal; each 
component can be further subdivided, e.g. the entablature 
consists of the cornice, the frieze, and the architrave; the 
column is composed of the capital, the shaft, and may have a 
base, and so on. The partition process goes on until we obtain 
“atomic parts” which are the basic elements of classical 
architecture. Each of these parts has a name, it may have 
material information, a history, details on the conservation 
status, etc.  

Fruition within the semantic Web requires semantics and 
annotations to be expressed in standard ways: metadata should 
be assigned by respecting field-specific ontologies. The standard 
formal ontology for CH is the CIDOC Conceptual Reference 
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Model (CRM) (http://www.cidoc-crm.org/) by the 
International Council Of Museums (http://icom.museum), 
which provides definitions and a formal structure to describe 
the implicit and explicit concepts and relationships used in CH 
documentation. CIDOC-CRM extensions specific to 
Architecture exist, e.g. CRMba (http://www.cidoc-
crm.org/crmba/home-7), created to support building 
documentation.  

This article describes some results on the development of a 
software system for partial semiautomatic semantic 
segmentation, characterization, and annotation of building 3D 
models produced by photogrammetric surveys, and their 
fruition by Web technologies. The paper extends the work 
reported in [2]. 

After the Introduction, Section 2 reports some details on 
segmentation, while Section 3 gives a summary of annotation 
with Web fruition. The concluding section sums up the main 
results and states some perspectives. 

2. SEGMENTATION 

Many algorithms were integrated in the software to obtain 
the segmentation of buildings into their salient elements, such 
as stairs, columns (subdivided into capital, shaft and base), 
walls, doors, windows. The software is written in C++ with the 
Point Cloud Library, PCL, [3] and some Matlab parts for rapid 
prototyping and testing.  

Several techniques and algorithms address the problem of 
point cloud or mesh segmentation, such as region growing, 
model fitting, and machine learning approaches [4]. It is well 
known that no single method is able to manage all the 
segmentation goals, so the software was designed with a 
modular approach, i.e. as a framework in which the 
implementation of new techniques might be easy. We used 
some ideas from the literature as well as our own algorithms, 
consistently integrating them in the system. Following this idea, 
a number of segmentation priorities were identified. Before all, 
some standard and generic segmentation approaches were 
implemented, to give the user a sort of “Swiss knife” to cope 
with different situations concerning object subdivision. Then, 
specific algorithms were inserted for particular tasks. Horizontal 
and vertical plane identification was achieved by RANSAC 
(RANdom SAmple Consensus) [5-8]: this step is preliminary to 
all the other segmentation tasks, because it allows the 
identification of walls and the floor, and the ceiling if present in 
the model. Wall identification is important in order to prepare 
for the recognition of openings (doors and windows) [9], to 
characterize wall-surfaces (e.g. distinguishing flat from 

rusticated walls), and to define the interior and the exterior of 
buildings. Stairs were identified by a generative approach, in 
which parametrically generated shapes are localized in the 
model by fitting procedures. Circular-section columns were 
recognized by ground histogram calculation. As a 
complementary result, walls were annotated as flat or rusticated 
by a method based on the autocorrelation function, and 
rusticated wall segmentation into the elementary wall element is 
planned in the near future. 

The various segmentation processes are of course not 
completely automatic, because some parameters must be set in 
accordance with the particular model features and are not 
flawless.  

In the following paragraphs, some more details and some 
results will be given concerning the overall software structure 
(Paragraph 2.1), the generic segmentation methods 
implemented (Paragraph 2.2), the detection and localization of 
straight stairs and round cross-section columns (paragraphs 2.3 
and 2.4 respectively), the method for wall surface 
characterization (paragraph 2.5). 

2.1. Overall software structure and user workflow 

The software is structured in a modular way, providing some 
general-use segmentation methods, to be tested on typical 
architectural 3D models built out of a photogrammetric-
reconstruction pipeline. The different methods will be definitely 
incorporated in the code based on the results gradually obtained 
during the tests. A picture of the software Graphical User 
Interface is shown in Figure 1. 

Most existing segmentation algorithms work on point 
clouds. This software allows segmentation of both point clouds 
and (textured) meshes: in the latter case, the mesh is 
transformed into a “sparse” point cloud by “baking” the texture 
on the mesh vertices. It is planned to convert also the mesh to a 
“dense” cloud, by dense sampling. The segmentation 
algorithms are then applied to the derived cloud. After 
segmentation, if a particular cluster has been chosen as the 
desired result of the segmentation procedure, before saving to 
disk it is converted back to textured mesh. 

The user workflow, to be adapted in various ways according 
to needs, is as follows: 

a. load a 3D model/scene to be segmented (e.g. for 
annotation, or for model cleaning). The scene may 
be composed of different disconnected parts, and 
the various connected components may have a 
finer structure to be partitioned (e.g., a column 
could be segmented into a shaft, a base and a 
capital). 

b. visually examine the 3D scene: thanks to the 
mouse-operated tools for space and object 
manipulation (panning, rotation, scaling, and 
viewpoint displacement), the scene is examined to 
identify the constituent parts of interest (and 
useless ones to be considered as noise, if present). 

c. use the segmentation tools to cluster points and 
identify/characterize/label the connected 
components ("objects"). 

d. manipulate the objects of interest, with a variety of 
selection/deselection/deletion/saving tools (mouse 
click to explore and select, select all, deselect all, 
reverse selection, delete selected, delete unselected, 
restore deleted, save selected objects to disk) 

 

Figure 1. The software Graphical User Interface. 
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e. start again with the segmentation procedures on 
one or more of the objects produced in the 
preceding steps. 

f. if desired, add annotations to the objects. 
One can imagine working on one object at a time, 

eliminating the others, segmenting them into parts, and saving 
the individual parts with their respective semantic labels: 
afterwards, it will be possible to reconstruct the whole scene by 
merging the labels and collecting the meshes together. 

The procedure can be applied cyclically, selecting one or 
more clusters each time in order to interactively reach a useful 
and optimal segmentation. 

An "undo" mechanism has been implemented to recover the 
previous state of clustering when the one obtained is not 
optimal: in this way, it is possible to try new algorithms or 
different values of the parameters 

 

2.2. General-purpose point-cloud segmentation 

At present, the following segmentation approaches, already 
available in PCL, have been tested and partially implemented in 
the software: Euclidean Cluster Extraction1 (ECE), Conditional 
Euclidean Clustering2 (CEC) Region Growing Segmentation3 
(RGS), Min-Cut Segmentation4 (MCS), Difference of Normals 
Based Segmentation5 (DoNS), Locally Convex Connected 
Patches6 (LCCP). The ECE method implements a simple data 
clustering approach in a Euclidean sense by using a 3D grid 
subdivision of the space with fixed width boxes (octree). This 
data structure is very fast to build and is useful for situations 
where a volumetric representation of the point cloud is needed, 
or the data in each octree leaf should be approximated with a 
different structure. In ECE, the octree structure helps in the 
implementation of a flood-fill like clustering technique by 
efficiently determining each point nearest neighbours in a 
sphere with radius smaller that a given threshold. CEC is similar 
to ECE, with the advantage that the constraints for clustering 
are now customizable by the user. Some disadvantages include: 
no initial seeding system and no over- and under-segmentation 
control. RGS belongs to the same family; its purpose is to 
merge the points that are close enough in terms of a 
smoothness constraint computed by comparing the angles 
between point normals. The output is a set of clusters, where 
each cluster is a set of points that are considered a part of the 
same smooth surface. MCS is a well-known segmentation 
method [10] that creates a binary segmentation of the given 
input cloud. The algorithm divides the cloud into two sets: 
foreground and background points (points that are considered 
to belong to the object and those that are not). The algorithm is 
based on a graph representation of the data, in which the cloud 
points are the graph vertices, and edges connect the points to 

                                                           
1http://www.pointclouds.org/documentation/tutorials/clus

ter_extraction.php 
2http://pointclouds.org/documentation/tutorials/condition

al_euclidean_clustering.php 
3http://pointclouds.org/documentation/tutorials/region_gr

owing_segmentation.php 
4http://pointclouds.org/documentation/tutorials/min_cut_

segmentation.php 
5http://pointclouds.org/documentation/tutorials/don_seg

mentation.php 
6http://docs.pointclouds.org/trunk/classpcl_1_1_l_c_c_p_

segmentation.html 

their nearest neighbours and to two special vertices called 
source and sink. Weights are assigned to the edges (smoothness 
cost) and foreground/background penalties are calculated. 
Finally, the search of the minimum cut is made and the cloud is 
divided into foreground and background. DoNS algorithm [11] 
performs a scale-based segmentation of the given input point 
cloud, finding points that belong to each cluster within the scale 
parameters given. It is a computationally efficient multi-scale 
approach, quite effective in the segmentation of scenes with a 
wide variation of scale. For each point in a point cloud, two 
unit point normals are estimated with different radii and the 
normalized (vector) difference of these point normals is 
calculated to define the DoN operator. The motivation behind 
DoN is the observation that surface normals estimated at any 
given radius reflect the underlying geometry of the surface at 
the scale of the support radius. Finally, LCCP [12] is an efficient 
unsupervised and model-less approach, which begins by 
breaking down the scene into a surface patch adjacency graph 
based on a voxel grid. The graph edges are then classified as 
convex or concave using a combination of simple criteria that 
work on the local patch geometry. In this way, the graph is 
divided into locally-connected convex subgraphs, which - with 
great accuracy - represent parts of the modelled object. In 
addition, a new depth-dependent voxel grid is used in order to 
address the decrease in cloud point density at large distances. 
This improves segmentation, allowing the use of fixed 
parameters for very different scenes. The algorithm is simple to 
implement and requires no training data, yet it produces results 
comparable to the state of the art of methods that incorporate 
high-level concepts such as classification, learning and model 
adaptation. The algorithm aims to separate parts of objects 
rather than selecting whole objects. 

In our software, a tab widget allows to choose between the 
various segmentation approaches, exposing the algorithm 
parameters to the user (see Figure 2). In Figure 3 some example 
of model segmentation are shown. Even if segmentation is 
applied and performed to the point cloud, the result is then 
projected onto the original textured mesh, so for example 
Figure 4 shows the statue separated from the support, saved as 
a textured mesh.  

 

Figure 2. The control panel containing the tab widget that allows the choice 
of the segmentation algorithm and the assignment of parameter values. 
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2.3. Detection and segmentation of straight stairs 

Stairs detection is important in several different fields, such 
as multi-storey path finding for explorer robots venturing into 
buildings [13–15], as an aid for the visually impaired [16–18], 
and last but not least in the semantic segmentation of 3D 
models of Architectural Heritage buildings [19, 20]. Algorithms 
developed for the first two cases are usually not directly 
applicable to semantic segmentation for CH, [15] because they 
generally work on organized point clouds derived from RGB-D 
data, while CH applications use unorganized clouds coming 
from photogrammetry or laser scanners. They may anyway 
suggest methods valid for unorganized point clouds too. 

The literature proposes diverse techniques. Some start from 
edge point extraction. For example in [13] edge points are 
detected in RGB-D images by the Concave Hull algorithm 
available in the PCL framework, then classification relies on 
depth and geometric information. In paper [14], a staircase 
extraction algorithm based on super-voxels is proposed. In [15] 
the Authors develop a graph-based detection method for point 
clouds, which first segments planar regions and extracts the 
stair tread and riser segments. With these segments, a dynamic 
graph model is initialized that is used to detect stairs. See [15] 

also for a good review of some previous approaches useful for 
unorganized point clouds, and for a discussion on plane-based 
and edge-based methods. In [16] walls, doors, stairs, and a 
residual generic class of obstacles on the floor are detected in 
RGB-D data; stairs are found by searching for points on planes 
at increasing height from the ground, with a given step height 
and a tolerance. In [17] depth maps, calculated from RGB-D or 
stereo data, are used to feed a classifier. In [18] the Authors 
propose a staircase detection algorithm in RGB-D data, based 
on a support vector machine (SVM): the Hough transform is 
used to extract parallel lines in RGB frames so as to detect 
stairs candidates, and the depth frames are employed to classify 
the staircase candidates as upstairs, downstairs, and negatives 
(such as corridors).  

Paper [19] comes from the CH context and develops an 
application specific to unorganized point clouds, by a generative 
modeling approach: parameterized object models are built by 
GML, the Generative Modeling Language, and fitted to the 
point cloud (by subpart fitting without previous segmentation). 
In [20] an interactive framework to extract hi-level primitives 
(e.g. columns or staircases) from 3D models is presented, again 
based on a generative and fitting approach. 

The particular approach described in this paper is inspired 
by [19]. It is generative and ideally automatic. The large 
computational effort, necessary for 3D subpart fitting is 
avoided by a pre-processing step which reduces the fitting 
problem to 2D. For this purpose, the horizontal straight edges 
outlining the steps are detected and their mean points are 
arranged into a 2D pattern used for fitting. 

It is useful to introduce the method by first giving the 
appropriate terminology and by classifying the various types of 
stairs by geometrical considerations [21].  

Stairs are made of series of steps (flights) with landings at 
appropriate intervals. Each step consists of a tread (the 
horizontal part, with its depth and width) and a riser (the 
vertical part between treads, with its height). We can 
distinguish: straight stairs (consisting of either one single flight 
or more than one flight with landings, with no change in 
direction; if there is a change in direction, we have parallel or 
angle stairs, such as quarter-turn stairs, half-turn or dogged-
legged stairs, etc); circular stairs; spiral stairs, and others. 
Sometimes only stairs without direction change are considered 
as true straight stairs.  

Our algorithm only addresses straight stairs, with or without 
direction change, so that we can assume parallel stairs edges. 

 

 

Figure 3. Examples of subsequent segmentation operations. Top: simple 
RGS was used to label the connected components with colour, thus 
separating the statue from the background. Bottom: LCCP allowed isolating 
the statue from its support. The white wireframe bounding boxes are used 
to select the various clusters prior to applying segmentation, preserving, 
deleting or saving commands. 

 

Figure 4. The statue in Figure 3, after saving it as a fully textured mesh. 
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As mentioned, a parametric generative model was chosen 
for its versatility. The problem complexity was reduced by 
projection to a 2D space before model fitting. As illustrated in 
detail afterwards, the algorithm first detects the most significant 
edge points in the cloud (Step 1) and finds the straight edges by 
RANSAC (Step 2); then the horizontal edges are preserved and 
clustered into groups of parallel segments (Step 3); the clusters 
are projected to a plane perpendicular to the segments, so 
getting a 2D pattern of points representing the cluster, and 
modelling the stairs (Step 4); finally a parameterized generative 
model of stairs is fitted to the point pattern (Step 5), giving an 
accuracy measure and the model parameters; if the fit accuracy 
is satisfying, the position of the stairs in the original 3D world is 

found, and a bounding box is visualized in the cloud. In more 
detail:  

Step 1: edge points are detected by the fast and precise 
method described in [22], where sharp edge features are 
discovered by analysing the eigenvalues of the covariance 
matrix that are defined by each point’s k-nearest neighbours. 
The C++/PCL code for edge detection is kindly shared by the 
Authors.7 

Step 2: straight lines in the edge point cloud are detected by 
the RANSAC method.  

Step 3: the edges found at Step 2 are clustered by 
DBSCAN8 (Density-Based Spatial Clustering of Applications 
with Noise) [23], a density-based clustering algorithm which can 
potentially identify clusters of any shape in a data set containing 
noise and outliers. DBSCAN usually clustered the stairs edges 
very well, collecting in a same group almost all and only the 
detected edges pertaining to a single flight of stairs. Other 
clustering algorithms were tested with far inferior results. The 
features used for clustering were the stair direction (one of the 
two non-zero direction cosines of the edges) and the three 
coordinates of the edge center. A larger weight was given to the 
direction feature because only strict parallel edges could belong 
to the same stairs, having decided to limit to straight stairs. 

Step 4: for each cluster, a plane is now defined, normal to 
the cluster edges, and the edge centers are projected onto it, so 
giving a planar pattern of points representing the possible stairs. 
The coordinates of these points on the plane are defined by 
introducing a pair of basis vectors (u, v) (orthogonal and unit 
length). The definition of u and v is not unique, but a 
convenient way is the following. Let n = (a, b, c) be the plane 
normal unit vector: in our case, a is the average x direction 
cosine of the edges in the cluster, b ~ 0 (y being the vertical 
axis, and the edges being horizontal), and c = sqrt(1 – a2). We 
can set: 

u = (c, 0, –a) 

v = n × u 
(1) 

where the × symbol represents cross product. 
We now project each edge center (xc, yc, zc) onto the (u, v) 

plane and calculate its (uc, vc) coordinates by dot product: 

uc = u  (xc, yc, zc) 

vc = v  (xc, yc, zc) 
(2) 

where the origin of the (u, v) coordinates is the world origin (0, 
0, 0). Each point ideally comes from an edge, so marking the 
transition from riser to tread, or from tread to riser. This 
pattern can contain noise (points due to incorrect edges) and 
may miss some points related to edges that were not found in 
Step 2.  

Step 5: a point pattern is generated as a stairs model (each 
point being the projection of a stairs edge), depending on the 
following stairs parameters: number of steps, riser height, tread 
depth, 3D stair position (i.e. the position of the centre of first 
edge of the lowest stairs step). The model is fitted to the 
patterns obtained in Step 4, and the optimized parameters, as 
well as the value of the objective function as an accuracy 
measurement, are returned. These values are then automatically 

                                                           
7 https://github.com/denabazazian/Edge_Extraction 
8 http://yaikhom.com/2015/09/04/implementing-the-

dbscan-clustering-algorithm.html 

 

Figure 5. Point-pattern fitting. The small circles are the real-world points 
obtained by projecting the edges centres (in an edge cluster) onto a plane 
perpendicular to the edges (step 4; u and v are the coordinates in the 
projection plane). There are some outliers (corresponding to erroneous 
edges), points are noisy, and some may be missing. The model is on the left. 
The fitted model perfectly reconstructs the stairs silhouette.  

 

Figure 6. A case study. The stairs model (top-left picture) was downloaded 
from https://archive3d.net (model N290716) and converted to a point 
cloud by the CloudCompare software (http://www.cloudcompare.org/), the 
edge points were detected (top-right image), then the straight edges were 
located and the horizontal ones were clustered (bottom-left picture; light-
grey edges are those rejected as outliers). The straight stairs were then 
detected as explained in the text, and automatically highlighted with 
bounding boxes (bottom-right picture). 
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evaluated in order to accept or reject the cluster as representing 
stairs. The point fitting algorithm, which gave the best results in 
terms of robustness and accuracy, was Coherent Point Drift 
(CPD) [24]. Figure 5 shows an example of model matching. 

After stairs detection, the model consists of the following 
parameters: lower-step center coordinates, stairs direction 
parameter in the horizontal x-z plane, the number of steps, 
tread depth, riser height, and step width. 

The procedure was tested on synthetic and real-world 
models. Step 5, in particular, was tested against synthetic point 
patterns, and the fitting procedure was stressed by adding noise 
to the ideal point position, by inserting points not 
corresponding to stairs edges, and by removing significant 
points. 

Figure 6 shows the application of the algorithm to a 
synthetic case of study. 

2.4. Detection and segmentation of round cross-section columns 

The literature is not rich in papers concerning column 
detection in 3D scenes. For example, ef. [18] applies generative 
models also to columns and arcades, while in [25] round and 
rectangular cross-section columns are detected by ground 
histogram calculation. For the sake of performance, we chose 
the latter approach, which decreases the problem 
dimensionality from 3D to 2D, and decided to initially limit the 
scope to circular columns.  

The model point cloud was projected to the ground plane, 
and planar point density was evaluated, so obtaining ground 
histograms. The vertical structures left easily recognizable 
signatures in the point-density map, e.g. circular columns 
produced circular shapes that could be located by the Circular 
Hough transform (CHT), [26] with subsequent column 
detection and segmentation. The columns were then partitioned 
into their constituent parts. The details follow.  

Step 1: after down-sampling, the point cloud is projected to 
the ground plane.  

Step 2: with the purpose of calculating point density in the 
plane, and finding the signature of vertical structures, an octree 
is built from the projected cloud, and box-searching is 
performed in each cell so as to measure each cell occupancy; an 
image is then built, containing one pixel per octree cell, with 
grey value proportional to the point density in that cell. 

Step 3: CHT is applied to the image created in Step 2, to 
find the signatures of columns (circles) if present. 

Step 4: the centers and radii of the circles give hints on the 
horizontal column location, but nothing is known about vertical 
position and size: therefore, a region, centered on each column 
center and slightly larger than the column diameter, is searched 
for a cylinder by RANSAC; looking for cylinders only in the 
regions located by the CHT reduces false positives and speeds 
thing up. 

Step 5: the columns are finally segmented into their 
constituent parts (capital, shaft and base) by convex 
decomposition [27]; this algorithm computes a hierarchical 
segmentation of the mesh triangles by applying a set of 
decimation operations to the mesh dual graph, guided by a cost 
function related to concavity: the generated segmentation is 
then exploited to construct an approximation of the original 
mesh by a set of convex surfaces; the generated convex hulls 
can be used as space filters to segment the original points of the 
point cloud. Segmentation is not always accurate enough, 
causing small segments under the column base or in the 
architrave – beside the three main column parts – to be 

returned. To overcome this problem, the longest segment is 
identified and assigned to the shaft, and the two segments 
connected to it from above and from below are selected as the 
capital and the base respectively, disregarding the other parts if 
present. Of course, segmentation quality is affected by the 
model quality. 

Figure 7 shows the application to a model of the Apollo 
Theatre (Lecce, Italy) and to the Gerrard Hall (North Carolina) 
both reconstructed by photogrammetry from sets of about 100 
pictures each (Gerrard Hall photos are available at 
https://colmap.github.io/datasets.html). See the figure caption 
for details. 

2.5. Wall-surface characterization: flat vs rusticated walls 

This module is not a segmentation tool in itself. Rather, it 
acts as an automatic classification/annotation instrument and as 
a pre-processing step for rusticated-ashlar masonry-unit 
segmentation. For this reason, it is associated with the wall 
segmentation module. 

 

 
 

 
 

Figure 7. Top (black background): the Apollo theatre, in Lecce (Italy). The 
model is followed by the ground point density map (obtained by projecting 
the model to the ground plane), where CHT (Circular Hough Transform) was 
applied, which allows column detection: the column signatures are shown 
in red). A picture of the isolated columns follows. Bottom (white 
background): the Gerrard Hall (North Carolina) model, after column 
detection and segmentation into capital, shaft, and base (as convex 
component parts). The model is followed by the ground density map with 
CHT applied.  
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Two basic patterns used in stone masonry walls are rubble 
and ashlar masonry [28-31]. The former is made from stones 
with irregular sides (not at right angles to each other), while in 
the latter, the stone sides are dressed square (at right angles to 
each other). The front and back faces of the stone may be 
dressed or undressed. Both rubble and ashlar masonry may be 
random or coursed, according to mortar joint regularity. 
Another attribute of masonry is rustication, in which the visible 
faces of the dressed stones are raised with respect to the 
horizontal and usually the vertical joints, which may be 
rabbeted, chamfered, or bevelled. The joints are therefore 
emphasized. The stones may be left rough or worked in such a 
way as to give a strong textural effect. In particular, rusticated 
ashlar is a coursed and dressed stonework with edges and joints 
emphasized by rustication. Rustication has been used since 
ancient times and was first described by Serlio in his famous 
treatise [32]. One of the most known rusticated surfaces 
belongs to the Palazzo dei Diamanti (Diamond Palace) in 
Ferrara, with its rusticated façade of diamond-shaped marble 
blocks. 

The purpose of this software module is to distinguish 
various types of stonewalls, in particular discriminating 
rusticated ashlar from “flat” masonry.  

From a mathematical point of view, a rusticated-ashlar 
masonry cloud point is a surface presenting some sort of 
periodicity. Let the x and the y axis be respectively horizontal 
and vertical, then the joints parallel to the x axis are always 
rearward with respect to the stone face, and many times this is 
true also for the joints parallel to the y axis. As a consequence, 
periodicity appears in the y axis or in both. 

Periodicity can be studied and characterized by a large 
number of tools, such as Fourier analysis, the autocorrelation 
function, wavelets, and others. In this work, the Fourier 
transform and the autocorrelation function were tried, and the 
latter proved simpler, effective, and more resistant to noise. 
This approach will be briefly described here, and some results 
will be given. 

The autocorrelation function (ACF) for a real, continuous, 
univariate function f(x) is defined as: 

𝑎(𝑡) =  ∫  𝑓(𝜏) 𝑓(𝑡 + 𝜏) 𝑑𝜏
+∞

−∞
 (3) 

This definition, in the case of real, discrete, bivariate 
functions on a finite support such as 2D digital images I, 
becomes: 

𝑎(𝑥, 𝑦) =  ∑ ∑ 𝐼(𝑚, 𝑛) 𝐼(𝑥 + 𝑚, 𝑦 + 𝑛)𝑁
𝑛=1

𝑀
𝑚=1  (4) 

The ACF can be used as the basis of a texture measure in 
2D images, because peaks in the autocorrelation function of a 
regular-texture image characterize the texture periodicity. 
Compared with the peaks in the Fourier spectrum, the peaks in 
the ACF are usually more prominent and thus easier to find. 
Moreover, the ACF is also less disturbed by noise. The use of 
the ACF for 2D-image texture characterization is well-
established [33]. 

In the scope of this paper, the interest is not in 2D images, 
but in 3D point clouds of building walls. It is nonetheless very 
easy to convert our 3D problem to a 2D one, considering that a 
rusticated surface can usually be expressed as a (non-uniformly 

sampled) 2D function h = f(x, y) where h is the stone point 
elevation from a reference plane xy parallel to the wall, and the 
(x,y) coordinates locate the point projection to the plane. 
Assigning a grey level to h, and applying (e.g. bilinear) 2D 
interpolation, the wall can be converted to an image and all the 
tools available for grey-level 2D images can be employed. This 
is totally different from taking a single photograph of the 
surface, which records colour and shadows but not directly 3D 
structure. 

So, in this work, the wall surface was converted to an image, 
the ACF was calculated, and the horizontal and vertical profiles 
(1D sections) passing through the ACF center were derived. 
These profiles respectively contain the information on x and y 
periodicity, if present, as coded in a certain number of peaks. 
The absence of periodicity gives only a central peak, while 
periodic signals give secondary peaks prominent from the 
background. These peaks are smaller than the central one but 
evident.  

In order to get rid of the slowly varying ACF background, a 
1D top-hat morphological operation is applied to the profiles, 
and the central peaks are measured (for intensity reference) and 
removed. Finally, the height of the remaining peaks is 
measured. The ratio between the mean height of the latter 
peaks, and the central-peak height, is used as a feature to assess 
horizontal or vertical periodicities, which correspond to the 
presence of rusticated ashlar. If a profile only contains the 
central peak, 0 is assigned to the corresponding periodicity 
feature. Large values (> 0.1) are a sign of periodicity. The result 
of periodicity assessment is finally associated as an annotation 
to the wall under exam. 

In Figure 8 two cases are shown, a rusticated façade and a 
flat wall. 

In perspective, a similar approach can be used to estimate a 
representative tile of the rusticated ashlar masonry, or to study 
stone damage. A specific paper concerning method sensitivity, 
robustness to noise, and accuracy as a function of feature 
threshold, is in preparation.  

3. SEMANTIC ANNOTATION AND WEB FRUITION 

The system allows to insert annotations into the segmented 
model according to standard CIDOC-CRM entity E22 (Man-
Made Object) and property P46 (is composed of), for future 
compatibility with the semantic Web. The models are then 
converted to the Nexus file format [34, 35]. Nexus, being a 
progressive-mesh format, allows smooth LOD (Level of Detail) 
choice depending on the current view (i.e., model distance, 
framing, device power). With this approach, it is possible to 
initially display a model with the lowest LOD and then let it 
gradually show more and more details, with effective real time 
visualization. As to Web fruition, our HTTP pages are 
dynamically built based on 3DHOP [36] for real-time model 
drawing, and some JavaScript code for semantic annotation 
visualization by an information tree linked to the model: a click 
on the model hotspots, defined by the previously segmented 
architectural elements, allows selecting the corresponding tree 
node, and vice versa (see Figure 9). 
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CONCLUSIONS 

The paper presents a software framework for semantic 
segmentation and Web fruition of Cultural Heritage 3D models. 
The software includes some standard general-purpose 
segmentation approaches available in PCL, and some specific 

semantic segmentation modules (in particular, straight stairs and 
circular-section columns). It also contains modules devoted to 
object characterization, such as the one currently under test, for 
the detection of rusticated ashlar masonry. In addition, the 
paper gives some details on the Web system prototype. The 
software proved successful in a number of monument models 
and synthetic point clouds. Nonetheless, the framework is still 
under development, with many segmentation modules relying 
on parameter tuning. The development will continue, with new 
modules added to the framework, and limitations hopefully 
relaxed. 
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