
ACTA IMEKO
ISSN: 2221-870X
October 2018, Volume 7, Number 3, 64 - 72

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 64

A software tool for the semi-automatic segmentation of
architectural 3D models with semantic annotation and Web
fruition

Giorgio De Nunzio1

1 Dipartimento di Matematica e Fisica “Ennio De Giorgi”, University of Salento, Lecce, Italy

Section: RESEARCH PAPER

Keywords: 3D models; semantic segmentation; photogrammetry; SfM; MVS; autocorrelation function

Citation: Giorgio De Nunzio, A software tool for the semi-automatic segmentation of architectural 3D models with semantic annotation and Web fruition,
Acta IMEKO, vol. 7, no. 3, article 11, month year, identifier: IMEKO-ACTA-07 (2018)-03-11

Section Editor: Egidio De Benedetto, University of Salento, Italy

Received April 8, 2018; In final form August 23, 2018; Published October 2018

Copyright: © 2018 IMEKO. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Funding: This work was partly supported by Corvallis SPA (Padua – Italy, http://www.corvallis.it)

Corresponding author: Giorgio De Nunzio, giorgio.denunzio@unisalento.it

1. INTRODUCTION

Nowadays, an important part of Architectural Heritage
documentation consists in 3D models of buildings, obtained by
photogrammetric techniques (i.e. from sequences of digital
photos processed by Structure from Motion, SfM, and
MultiView Stereo, MVS, procedures) or range data (by laser
scanning). These models can be stored in databases to be
retrieved via the World Wide Web. Professionals access this
data for better Cultural Heritage (CH) comprehension,
management and preservation, while tourists can take virtual
tours before traveling, or use the models as an alternative to the
usual souvenir photos. 3D digital representations can be
semantically enriched by adding annotations (metadata),
associated to the model as a whole or to its noteworthy
elements. In order to partition a digital model into parts, a
process known as segmentation is employed. When the parts
are significant, i.e. they reflect a possible decomposition into

standard architectural elements, and these elements are
conveniently annotated, we obtain a semantic segmentation. As
an example, an order [1] consists of three parts: the entablature,
the columns, and the crepidoma or the pedestal; each
component can be further subdivided, e.g. the entablature
consists of the cornice, the frieze, and the architrave; the
column is composed of the capital, the shaft, and may have a
base, and so on. The partition process goes on until we obtain
“atomic parts” which are the basic elements of classical
architecture. Each of these parts has a name, it may have
material information, a history, details on the conservation
status, etc.

Fruition within the semantic Web requires semantics and
annotations to be expressed in standard ways: metadata should
be assigned by respecting field-specific ontologies. The standard
formal ontology for CH is the CIDOC Conceptual Reference

ABSTRACT
The thorough documentation of Cultural Heritage artifacts is a fundamental concern for management and preservation. In this
context, the semantic segmentation and annotation of 3D models of historic buildings is an important modern topic. This work
describes a software tool currently under development, for interactive and semi-automatic segmentation, characterization, and
annotation of 3D models produced by photogrammetric surveys. The system includes some generic and well-known segmentation
approaches, such as region growing and Locally Convex Connected Patches segmentation, but it also contains original code for specific
semantic segmentation of parts of buildings, in particular straight stairs and circular-section columns. Furthermore, a method for
automatic wall-surface characterization is devoted to rusticated-ashlar detection, in view of masonry-unit segmentation. The software
is modular, so allowing easy expandability. It also has tools for data encoding into formats ready for model fruition by Web
technologies. These results were partly obtained in collaboration with Corvallis SPA (Padua – Italy, http://www.corvallis.it).

mailto:giorgio.denunzio@unisalento.it

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 65

Model (CRM) (http://www.cidoc-crm.org/) by the
International Council Of Museums (http://icom.museum),
which provides definitions and a formal structure to describe
the implicit and explicit concepts and relationships used in CH
documentation. CIDOC-CRM extensions specific to
Architecture exist, e.g. CRMba (http://www.cidoc-
crm.org/crmba/home-7), created to support building
documentation.

This article describes some results on the development of a
software system for partial semiautomatic semantic
segmentation, characterization, and annotation of building 3D
models produced by photogrammetric surveys, and their
fruition by Web technologies. The paper extends the work
reported in [2].

After the Introduction, Section 2 reports some details on
segmentation, while Section 3 gives a summary of annotation
with Web fruition. The concluding section sums up the main
results and states some perspectives.

2. SEGMENTATION

Many algorithms were integrated in the software to obtain
the segmentation of buildings into their salient elements, such
as stairs, columns (subdivided into capital, shaft and base),
walls, doors, windows. The software is written in C++ with the
Point Cloud Library, PCL, [3] and some Matlab parts for rapid
prototyping and testing.

Several techniques and algorithms address the problem of
point cloud or mesh segmentation, such as region growing,
model fitting, and machine learning approaches [4]. It is well
known that no single method is able to manage all the
segmentation goals, so the software was designed with a
modular approach, i.e. as a framework in which the
implementation of new techniques might be easy. We used
some ideas from the literature as well as our own algorithms,
consistently integrating them in the system. Following this idea,
a number of segmentation priorities were identified. Before all,
some standard and generic segmentation approaches were
implemented, to give the user a sort of “Swiss knife” to cope
with different situations concerning object subdivision. Then,
specific algorithms were inserted for particular tasks. Horizontal
and vertical plane identification was achieved by RANSAC
(RANdom SAmple Consensus) [5-8]: this step is preliminary to
all the other segmentation tasks, because it allows the
identification of walls and the floor, and the ceiling if present in
the model. Wall identification is important in order to prepare
for the recognition of openings (doors and windows) [9], to
characterize wall-surfaces (e.g. distinguishing flat from

rusticated walls), and to define the interior and the exterior of
buildings. Stairs were identified by a generative approach, in
which parametrically generated shapes are localized in the
model by fitting procedures. Circular-section columns were
recognized by ground histogram calculation. As a
complementary result, walls were annotated as flat or rusticated
by a method based on the autocorrelation function, and
rusticated wall segmentation into the elementary wall element is
planned in the near future.

The various segmentation processes are of course not
completely automatic, because some parameters must be set in
accordance with the particular model features and are not
flawless.

In the following paragraphs, some more details and some
results will be given concerning the overall software structure
(Paragraph 2.1), the generic segmentation methods
implemented (Paragraph 2.2), the detection and localization of
straight stairs and round cross-section columns (paragraphs 2.3
and 2.4 respectively), the method for wall surface
characterization (paragraph 2.5).

2.1. Overall software structure and user workflow

The software is structured in a modular way, providing some
general-use segmentation methods, to be tested on typical
architectural 3D models built out of a photogrammetric-
reconstruction pipeline. The different methods will be definitely
incorporated in the code based on the results gradually obtained
during the tests. A picture of the software Graphical User
Interface is shown in Figure 1.

Most existing segmentation algorithms work on point
clouds. This software allows segmentation of both point clouds
and (textured) meshes: in the latter case, the mesh is
transformed into a “sparse” point cloud by “baking” the texture
on the mesh vertices. It is planned to convert also the mesh to a
“dense” cloud, by dense sampling. The segmentation
algorithms are then applied to the derived cloud. After
segmentation, if a particular cluster has been chosen as the
desired result of the segmentation procedure, before saving to
disk it is converted back to textured mesh.

The user workflow, to be adapted in various ways according
to needs, is as follows:

a. load a 3D model/scene to be segmented (e.g. for
annotation, or for model cleaning). The scene may
be composed of different disconnected parts, and
the various connected components may have a
finer structure to be partitioned (e.g., a column
could be segmented into a shaft, a base and a
capital).

b. visually examine the 3D scene: thanks to the
mouse-operated tools for space and object
manipulation (panning, rotation, scaling, and
viewpoint displacement), the scene is examined to
identify the constituent parts of interest (and
useless ones to be considered as noise, if present).

c. use the segmentation tools to cluster points and
identify/characterize/label the connected
components ("objects").

d. manipulate the objects of interest, with a variety of
selection/deselection/deletion/saving tools (mouse
click to explore and select, select all, deselect all,
reverse selection, delete selected, delete unselected,
restore deleted, save selected objects to disk)

Figure 1. The software Graphical User Interface.

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 66

e. start again with the segmentation procedures on
one or more of the objects produced in the
preceding steps.

f. if desired, add annotations to the objects.
One can imagine working on one object at a time,

eliminating the others, segmenting them into parts, and saving
the individual parts with their respective semantic labels:
afterwards, it will be possible to reconstruct the whole scene by
merging the labels and collecting the meshes together.

The procedure can be applied cyclically, selecting one or
more clusters each time in order to interactively reach a useful
and optimal segmentation.

An "undo" mechanism has been implemented to recover the
previous state of clustering when the one obtained is not
optimal: in this way, it is possible to try new algorithms or
different values of the parameters

2.2. General-purpose point-cloud segmentation

At present, the following segmentation approaches, already
available in PCL, have been tested and partially implemented in
the software: Euclidean Cluster Extraction1 (ECE), Conditional
Euclidean Clustering2 (CEC) Region Growing Segmentation3
(RGS), Min-Cut Segmentation4 (MCS), Difference of Normals
Based Segmentation5 (DoNS), Locally Convex Connected
Patches6 (LCCP). The ECE method implements a simple data
clustering approach in a Euclidean sense by using a 3D grid
subdivision of the space with fixed width boxes (octree). This
data structure is very fast to build and is useful for situations
where a volumetric representation of the point cloud is needed,
or the data in each octree leaf should be approximated with a
different structure. In ECE, the octree structure helps in the
implementation of a flood-fill like clustering technique by
efficiently determining each point nearest neighbours in a
sphere with radius smaller that a given threshold. CEC is similar
to ECE, with the advantage that the constraints for clustering
are now customizable by the user. Some disadvantages include:
no initial seeding system and no over- and under-segmentation
control. RGS belongs to the same family; its purpose is to
merge the points that are close enough in terms of a
smoothness constraint computed by comparing the angles
between point normals. The output is a set of clusters, where
each cluster is a set of points that are considered a part of the
same smooth surface. MCS is a well-known segmentation
method [10] that creates a binary segmentation of the given
input cloud. The algorithm divides the cloud into two sets:
foreground and background points (points that are considered
to belong to the object and those that are not). The algorithm is
based on a graph representation of the data, in which the cloud
points are the graph vertices, and edges connect the points to

1http://www.pointclouds.org/documentation/tutorials/clus

ter_extraction.php
2http://pointclouds.org/documentation/tutorials/condition

al_euclidean_clustering.php
3http://pointclouds.org/documentation/tutorials/region_gr

owing_segmentation.php
4http://pointclouds.org/documentation/tutorials/min_cut_

segmentation.php
5http://pointclouds.org/documentation/tutorials/don_seg

mentation.php
6http://docs.pointclouds.org/trunk/classpcl_1_1_l_c_c_p_

segmentation.html

their nearest neighbours and to two special vertices called
source and sink. Weights are assigned to the edges (smoothness
cost) and foreground/background penalties are calculated.
Finally, the search of the minimum cut is made and the cloud is
divided into foreground and background. DoNS algorithm [11]
performs a scale-based segmentation of the given input point
cloud, finding points that belong to each cluster within the scale
parameters given. It is a computationally efficient multi-scale
approach, quite effective in the segmentation of scenes with a
wide variation of scale. For each point in a point cloud, two
unit point normals are estimated with different radii and the
normalized (vector) difference of these point normals is
calculated to define the DoN operator. The motivation behind
DoN is the observation that surface normals estimated at any
given radius reflect the underlying geometry of the surface at
the scale of the support radius. Finally, LCCP [12] is an efficient
unsupervised and model-less approach, which begins by
breaking down the scene into a surface patch adjacency graph
based on a voxel grid. The graph edges are then classified as
convex or concave using a combination of simple criteria that
work on the local patch geometry. In this way, the graph is
divided into locally-connected convex subgraphs, which - with
great accuracy - represent parts of the modelled object. In
addition, a new depth-dependent voxel grid is used in order to
address the decrease in cloud point density at large distances.
This improves segmentation, allowing the use of fixed
parameters for very different scenes. The algorithm is simple to
implement and requires no training data, yet it produces results
comparable to the state of the art of methods that incorporate
high-level concepts such as classification, learning and model
adaptation. The algorithm aims to separate parts of objects
rather than selecting whole objects.

In our software, a tab widget allows to choose between the
various segmentation approaches, exposing the algorithm
parameters to the user (see Figure 2). In Figure 3 some example
of model segmentation are shown. Even if segmentation is
applied and performed to the point cloud, the result is then
projected onto the original textured mesh, so for example
Figure 4 shows the statue separated from the support, saved as
a textured mesh.

Figure 2. The control panel containing the tab widget that allows the choice
of the segmentation algorithm and the assignment of parameter values.

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 67

2.3. Detection and segmentation of straight stairs

Stairs detection is important in several different fields, such
as multi-storey path finding for explorer robots venturing into
buildings [13–15], as an aid for the visually impaired [16–18],
and last but not least in the semantic segmentation of 3D
models of Architectural Heritage buildings [19, 20]. Algorithms
developed for the first two cases are usually not directly
applicable to semantic segmentation for CH, [15] because they
generally work on organized point clouds derived from RGB-D
data, while CH applications use unorganized clouds coming
from photogrammetry or laser scanners. They may anyway
suggest methods valid for unorganized point clouds too.

The literature proposes diverse techniques. Some start from
edge point extraction. For example in [13] edge points are
detected in RGB-D images by the Concave Hull algorithm
available in the PCL framework, then classification relies on
depth and geometric information. In paper [14], a staircase
extraction algorithm based on super-voxels is proposed. In [15]
the Authors develop a graph-based detection method for point
clouds, which first segments planar regions and extracts the
stair tread and riser segments. With these segments, a dynamic
graph model is initialized that is used to detect stairs. See [15]

also for a good review of some previous approaches useful for
unorganized point clouds, and for a discussion on plane-based
and edge-based methods. In [16] walls, doors, stairs, and a
residual generic class of obstacles on the floor are detected in
RGB-D data; stairs are found by searching for points on planes
at increasing height from the ground, with a given step height
and a tolerance. In [17] depth maps, calculated from RGB-D or
stereo data, are used to feed a classifier. In [18] the Authors
propose a staircase detection algorithm in RGB-D data, based
on a support vector machine (SVM): the Hough transform is
used to extract parallel lines in RGB frames so as to detect
stairs candidates, and the depth frames are employed to classify
the staircase candidates as upstairs, downstairs, and negatives
(such as corridors).

Paper [19] comes from the CH context and develops an
application specific to unorganized point clouds, by a generative
modeling approach: parameterized object models are built by
GML, the Generative Modeling Language, and fitted to the
point cloud (by subpart fitting without previous segmentation).
In [20] an interactive framework to extract hi-level primitives
(e.g. columns or staircases) from 3D models is presented, again
based on a generative and fitting approach.

The particular approach described in this paper is inspired
by [19]. It is generative and ideally automatic. The large
computational effort, necessary for 3D subpart fitting is
avoided by a pre-processing step which reduces the fitting
problem to 2D. For this purpose, the horizontal straight edges
outlining the steps are detected and their mean points are
arranged into a 2D pattern used for fitting.

It is useful to introduce the method by first giving the
appropriate terminology and by classifying the various types of
stairs by geometrical considerations [21].

Stairs are made of series of steps (flights) with landings at
appropriate intervals. Each step consists of a tread (the
horizontal part, with its depth and width) and a riser (the
vertical part between treads, with its height). We can
distinguish: straight stairs (consisting of either one single flight
or more than one flight with landings, with no change in
direction; if there is a change in direction, we have parallel or
angle stairs, such as quarter-turn stairs, half-turn or dogged-
legged stairs, etc); circular stairs; spiral stairs, and others.
Sometimes only stairs without direction change are considered
as true straight stairs.

Our algorithm only addresses straight stairs, with or without
direction change, so that we can assume parallel stairs edges.

Figure 3. Examples of subsequent segmentation operations. Top: simple
RGS was used to label the connected components with colour, thus
separating the statue from the background. Bottom: LCCP allowed isolating
the statue from its support. The white wireframe bounding boxes are used
to select the various clusters prior to applying segmentation, preserving,
deleting or saving commands.

Figure 4. The statue in Figure 3, after saving it as a fully textured mesh.

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 68

As mentioned, a parametric generative model was chosen
for its versatility. The problem complexity was reduced by
projection to a 2D space before model fitting. As illustrated in
detail afterwards, the algorithm first detects the most significant
edge points in the cloud (Step 1) and finds the straight edges by
RANSAC (Step 2); then the horizontal edges are preserved and
clustered into groups of parallel segments (Step 3); the clusters
are projected to a plane perpendicular to the segments, so
getting a 2D pattern of points representing the cluster, and
modelling the stairs (Step 4); finally a parameterized generative
model of stairs is fitted to the point pattern (Step 5), giving an
accuracy measure and the model parameters; if the fit accuracy
is satisfying, the position of the stairs in the original 3D world is

found, and a bounding box is visualized in the cloud. In more
detail:

Step 1: edge points are detected by the fast and precise
method described in [22], where sharp edge features are
discovered by analysing the eigenvalues of the covariance
matrix that are defined by each point’s k-nearest neighbours.
The C++/PCL code for edge detection is kindly shared by the
Authors.7

Step 2: straight lines in the edge point cloud are detected by
the RANSAC method.

Step 3: the edges found at Step 2 are clustered by
DBSCAN8 (Density-Based Spatial Clustering of Applications
with Noise) [23], a density-based clustering algorithm which can
potentially identify clusters of any shape in a data set containing
noise and outliers. DBSCAN usually clustered the stairs edges
very well, collecting in a same group almost all and only the
detected edges pertaining to a single flight of stairs. Other
clustering algorithms were tested with far inferior results. The
features used for clustering were the stair direction (one of the
two non-zero direction cosines of the edges) and the three
coordinates of the edge center. A larger weight was given to the
direction feature because only strict parallel edges could belong
to the same stairs, having decided to limit to straight stairs.

Step 4: for each cluster, a plane is now defined, normal to
the cluster edges, and the edge centers are projected onto it, so
giving a planar pattern of points representing the possible stairs.
The coordinates of these points on the plane are defined by
introducing a pair of basis vectors (u, v) (orthogonal and unit
length). The definition of u and v is not unique, but a
convenient way is the following. Let n = (a, b, c) be the plane
normal unit vector: in our case, a is the average x direction
cosine of the edges in the cluster, b ~ 0 (y being the vertical
axis, and the edges being horizontal), and c = sqrt(1 – a2). We
can set:

u = (c, 0, –a)

v = n × u
(1)

where the × symbol represents cross product.
We now project each edge center (xc, yc, zc) onto the (u, v)

plane and calculate its (uc, vc) coordinates by dot product:

uc = u  (xc, yc, zc)

vc = v  (xc, yc, zc)
(2)

where the origin of the (u, v) coordinates is the world origin (0,
0, 0). Each point ideally comes from an edge, so marking the
transition from riser to tread, or from tread to riser. This
pattern can contain noise (points due to incorrect edges) and
may miss some points related to edges that were not found in
Step 2.

Step 5: a point pattern is generated as a stairs model (each
point being the projection of a stairs edge), depending on the
following stairs parameters: number of steps, riser height, tread
depth, 3D stair position (i.e. the position of the centre of first
edge of the lowest stairs step). The model is fitted to the
patterns obtained in Step 4, and the optimized parameters, as
well as the value of the objective function as an accuracy
measurement, are returned. These values are then automatically

7 https://github.com/denabazazian/Edge_Extraction
8 http://yaikhom.com/2015/09/04/implementing-the-

dbscan-clustering-algorithm.html

Figure 5. Point-pattern fitting. The small circles are the real-world points
obtained by projecting the edges centres (in an edge cluster) onto a plane
perpendicular to the edges (step 4; u and v are the coordinates in the
projection plane). There are some outliers (corresponding to erroneous
edges), points are noisy, and some may be missing. The model is on the left.
The fitted model perfectly reconstructs the stairs silhouette.

Figure 6. A case study. The stairs model (top-left picture) was downloaded
from https://archive3d.net (model N290716) and converted to a point
cloud by the CloudCompare software (http://www.cloudcompare.org/), the
edge points were detected (top-right image), then the straight edges were
located and the horizontal ones were clustered (bottom-left picture; light-
grey edges are those rejected as outliers). The straight stairs were then
detected as explained in the text, and automatically highlighted with
bounding boxes (bottom-right picture).

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 69

evaluated in order to accept or reject the cluster as representing
stairs. The point fitting algorithm, which gave the best results in
terms of robustness and accuracy, was Coherent Point Drift
(CPD) [24]. Figure 5 shows an example of model matching.

After stairs detection, the model consists of the following
parameters: lower-step center coordinates, stairs direction
parameter in the horizontal x-z plane, the number of steps,
tread depth, riser height, and step width.

The procedure was tested on synthetic and real-world
models. Step 5, in particular, was tested against synthetic point
patterns, and the fitting procedure was stressed by adding noise
to the ideal point position, by inserting points not
corresponding to stairs edges, and by removing significant
points.

Figure 6 shows the application of the algorithm to a
synthetic case of study.

2.4. Detection and segmentation of round cross-section columns

The literature is not rich in papers concerning column
detection in 3D scenes. For example, ef. [18] applies generative
models also to columns and arcades, while in [25] round and
rectangular cross-section columns are detected by ground
histogram calculation. For the sake of performance, we chose
the latter approach, which decreases the problem
dimensionality from 3D to 2D, and decided to initially limit the
scope to circular columns.

The model point cloud was projected to the ground plane,
and planar point density was evaluated, so obtaining ground
histograms. The vertical structures left easily recognizable
signatures in the point-density map, e.g. circular columns
produced circular shapes that could be located by the Circular
Hough transform (CHT), [26] with subsequent column
detection and segmentation. The columns were then partitioned
into their constituent parts. The details follow.

Step 1: after down-sampling, the point cloud is projected to
the ground plane.

Step 2: with the purpose of calculating point density in the
plane, and finding the signature of vertical structures, an octree
is built from the projected cloud, and box-searching is
performed in each cell so as to measure each cell occupancy; an
image is then built, containing one pixel per octree cell, with
grey value proportional to the point density in that cell.

Step 3: CHT is applied to the image created in Step 2, to
find the signatures of columns (circles) if present.

Step 4: the centers and radii of the circles give hints on the
horizontal column location, but nothing is known about vertical
position and size: therefore, a region, centered on each column
center and slightly larger than the column diameter, is searched
for a cylinder by RANSAC; looking for cylinders only in the
regions located by the CHT reduces false positives and speeds
thing up.

Step 5: the columns are finally segmented into their
constituent parts (capital, shaft and base) by convex
decomposition [27]; this algorithm computes a hierarchical
segmentation of the mesh triangles by applying a set of
decimation operations to the mesh dual graph, guided by a cost
function related to concavity: the generated segmentation is
then exploited to construct an approximation of the original
mesh by a set of convex surfaces; the generated convex hulls
can be used as space filters to segment the original points of the
point cloud. Segmentation is not always accurate enough,
causing small segments under the column base or in the
architrave – beside the three main column parts – to be

returned. To overcome this problem, the longest segment is
identified and assigned to the shaft, and the two segments
connected to it from above and from below are selected as the
capital and the base respectively, disregarding the other parts if
present. Of course, segmentation quality is affected by the
model quality.

Figure 7 shows the application to a model of the Apollo
Theatre (Lecce, Italy) and to the Gerrard Hall (North Carolina)
both reconstructed by photogrammetry from sets of about 100
pictures each (Gerrard Hall photos are available at
https://colmap.github.io/datasets.html). See the figure caption
for details.

2.5. Wall-surface characterization: flat vs rusticated walls

This module is not a segmentation tool in itself. Rather, it
acts as an automatic classification/annotation instrument and as
a pre-processing step for rusticated-ashlar masonry-unit
segmentation. For this reason, it is associated with the wall
segmentation module.

Figure 7. Top (black background): the Apollo theatre, in Lecce (Italy). The
model is followed by the ground point density map (obtained by projecting
the model to the ground plane), where CHT (Circular Hough Transform) was
applied, which allows column detection: the column signatures are shown
in red). A picture of the isolated columns follows. Bottom (white
background): the Gerrard Hall (North Carolina) model, after column
detection and segmentation into capital, shaft, and base (as convex
component parts). The model is followed by the ground density map with
CHT applied.

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 70

Two basic patterns used in stone masonry walls are rubble
and ashlar masonry [28-31]. The former is made from stones
with irregular sides (not at right angles to each other), while in
the latter, the stone sides are dressed square (at right angles to
each other). The front and back faces of the stone may be
dressed or undressed. Both rubble and ashlar masonry may be
random or coursed, according to mortar joint regularity.
Another attribute of masonry is rustication, in which the visible
faces of the dressed stones are raised with respect to the
horizontal and usually the vertical joints, which may be
rabbeted, chamfered, or bevelled. The joints are therefore
emphasized. The stones may be left rough or worked in such a
way as to give a strong textural effect. In particular, rusticated
ashlar is a coursed and dressed stonework with edges and joints
emphasized by rustication. Rustication has been used since
ancient times and was first described by Serlio in his famous
treatise [32]. One of the most known rusticated surfaces
belongs to the Palazzo dei Diamanti (Diamond Palace) in
Ferrara, with its rusticated façade of diamond-shaped marble
blocks.

The purpose of this software module is to distinguish
various types of stonewalls, in particular discriminating
rusticated ashlar from “flat” masonry.

From a mathematical point of view, a rusticated-ashlar
masonry cloud point is a surface presenting some sort of
periodicity. Let the x and the y axis be respectively horizontal
and vertical, then the joints parallel to the x axis are always
rearward with respect to the stone face, and many times this is
true also for the joints parallel to the y axis. As a consequence,
periodicity appears in the y axis or in both.

Periodicity can be studied and characterized by a large
number of tools, such as Fourier analysis, the autocorrelation
function, wavelets, and others. In this work, the Fourier
transform and the autocorrelation function were tried, and the
latter proved simpler, effective, and more resistant to noise.
This approach will be briefly described here, and some results
will be given.

The autocorrelation function (ACF) for a real, continuous,
univariate function f(x) is defined as:

𝑎(𝑡) = ∫ 𝑓(𝜏) 𝑓(𝑡 + 𝜏) 𝑑𝜏
+∞

−∞
 (3)

This definition, in the case of real, discrete, bivariate
functions on a finite support such as 2D digital images I,
becomes:

𝑎(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑚, 𝑛) 𝐼(𝑥 + 𝑚, 𝑦 + 𝑛)𝑁
𝑛=1

𝑀
𝑚=1 (4)

The ACF can be used as the basis of a texture measure in
2D images, because peaks in the autocorrelation function of a
regular-texture image characterize the texture periodicity.
Compared with the peaks in the Fourier spectrum, the peaks in
the ACF are usually more prominent and thus easier to find.
Moreover, the ACF is also less disturbed by noise. The use of
the ACF for 2D-image texture characterization is well-
established [33].

In the scope of this paper, the interest is not in 2D images,
but in 3D point clouds of building walls. It is nonetheless very
easy to convert our 3D problem to a 2D one, considering that a
rusticated surface can usually be expressed as a (non-uniformly

sampled) 2D function h = f(x, y) where h is the stone point
elevation from a reference plane xy parallel to the wall, and the
(x,y) coordinates locate the point projection to the plane.
Assigning a grey level to h, and applying (e.g. bilinear) 2D
interpolation, the wall can be converted to an image and all the
tools available for grey-level 2D images can be employed. This
is totally different from taking a single photograph of the
surface, which records colour and shadows but not directly 3D
structure.

So, in this work, the wall surface was converted to an image,
the ACF was calculated, and the horizontal and vertical profiles
(1D sections) passing through the ACF center were derived.
These profiles respectively contain the information on x and y
periodicity, if present, as coded in a certain number of peaks.
The absence of periodicity gives only a central peak, while
periodic signals give secondary peaks prominent from the
background. These peaks are smaller than the central one but
evident.

In order to get rid of the slowly varying ACF background, a
1D top-hat morphological operation is applied to the profiles,
and the central peaks are measured (for intensity reference) and
removed. Finally, the height of the remaining peaks is
measured. The ratio between the mean height of the latter
peaks, and the central-peak height, is used as a feature to assess
horizontal or vertical periodicities, which correspond to the
presence of rusticated ashlar. If a profile only contains the
central peak, 0 is assigned to the corresponding periodicity
feature. Large values (> 0.1) are a sign of periodicity. The result
of periodicity assessment is finally associated as an annotation
to the wall under exam.

In Figure 8 two cases are shown, a rusticated façade and a
flat wall.

In perspective, a similar approach can be used to estimate a
representative tile of the rusticated ashlar masonry, or to study
stone damage. A specific paper concerning method sensitivity,
robustness to noise, and accuracy as a function of feature
threshold, is in preparation.

3. SEMANTIC ANNOTATION AND WEB FRUITION

The system allows to insert annotations into the segmented
model according to standard CIDOC-CRM entity E22 (Man-
Made Object) and property P46 (is composed of), for future
compatibility with the semantic Web. The models are then
converted to the Nexus file format [34, 35]. Nexus, being a
progressive-mesh format, allows smooth LOD (Level of Detail)
choice depending on the current view (i.e., model distance,
framing, device power). With this approach, it is possible to
initially display a model with the lowest LOD and then let it
gradually show more and more details, with effective real time
visualization. As to Web fruition, our HTTP pages are
dynamically built based on 3DHOP [36] for real-time model
drawing, and some JavaScript code for semantic annotation
visualization by an information tree linked to the model: a click
on the model hotspots, defined by the previously segmented
architectural elements, allows selecting the corresponding tree
node, and vice versa (see Figure 9).

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 71

CONCLUSIONS

The paper presents a software framework for semantic
segmentation and Web fruition of Cultural Heritage 3D models.
The software includes some standard general-purpose
segmentation approaches available in PCL, and some specific

semantic segmentation modules (in particular, straight stairs and
circular-section columns). It also contains modules devoted to
object characterization, such as the one currently under test, for
the detection of rusticated ashlar masonry. In addition, the
paper gives some details on the Web system prototype. The
software proved successful in a number of monument models
and synthetic point clouds. Nonetheless, the framework is still
under development, with many segmentation modules relying
on parameter tuning. The development will continue, with new
modules added to the framework, and limitations hopefully
relaxed.

ACKNOWLEDGEMENT

The results reported in this work were partly obtained in
collaboration with Corvallis SPA (Padua – Italy,
http://www.corvallis.it), who also financially supported the
research.

REFERENCES

[1] A. Tzonis, L. Lefaivre, Classical Architecture: The Poetics of
Orders, 1987, The MIT Press.

[2] G. De Nunzio and M. Donativi, Semi-automatic segmentation of
architectural 3D models with semantic annotation and Web
fruition, Proc. IMEKO International Conference on Metrology
for Archaeology and Cultural Heritage, Lecce, Italy, October 23-
25, 2017.

[3] R. B. Rusu and S. Cousins, 3D is here: Point Cloud Library
(PCL), IEEE Int. Conf. on Robotics and Automation (ICRA),
May 9-13, 2011, Shanghai, China.

[4] E. Grilli, F. Menna, F. Remondino, A review of point cloud
segmentation and classification algorithms, The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. XLII-2/W3, 2017, 3D Virtual
Reconstruction and Visualization of Complex Architectures, 1–3
March 2017, Nafplio, Greece.

[5] M. A. Fischler and R. C. Bolles, Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography, Communications of the ACM, vol.
24, issue 6, June 1981, pp 381-395, doi:10.1145/358669.358692.

[6] P. Tang, D. Huber, B. Akinci, R. Lipman, A. Lytle, Automatic
reconstruction of as-built building information models from
laser-scanned point clouds: A review of related techniques.
Automation in Construction Vol 19, 2010, pp 829–843.

[7] K. Chen, Y.-K. Lai, S.-M. Hu, 3D indoor scene modeling from
RGB-D data: a survey, Computational Visual Media Vol. 1, No.
4, December 2015, 267–278.

[8] V. Pătrăucean, I. Armeni, M. Nahangi, J. Yeung, I. Brilakis, C.
Haas, State of research in automatic as-built modelling,
Advanced Engineering Informatics, 29 (2), 2015, pp. 162-171,
ISSN 1474-0346, http://dx.doi.org/10.1016/j.aei.2015.01.001.

[9] A. Martinović, J. Knopp, H. Riemenschneider, L. Van Gool, 3D
All The Way: Semantic Segmentation of Urban Scenes From
Start to End in 3D, 2015 IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[10] A. Golovinskiy, T. Funkhouser, Min-Cut Based Segmentation of
Point Clouds, Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on, 27 Sept.-4 Oct.
2009, Kyoto, Japan, DOI: 10.1109/ICCVW.2009.5457721.

[11] Y. Ioannou, B. Taati, R. Harrap, M. Greenspan, Difference of
Normals as a Multi-Scale Operator in Unorganized Point Clouds,
3D Imaging, Modeling, Processing, Visualization and
Transmission (3DIMPVT), 2012 Second International
Conference on, 13-15 Oct. 2012, Zurich, Switzerland, DOI:
10.1109/3DIMPVT.2012.12.

[12] S. C. Stein, M. Schoeler, J. Papon and F. Wörgötter, Object
Partitioning using Local Convexity, Proc. of 2014 IEEE

Figure 8. Two cases of wall periodicity measurement by the autocorrelation
function, for rusticated ashlar masonry detection. Top: a rusticated wall
(interior of Palazzo Adorno – Lecce, Italy); bottom, a flat wall with noise
(slight stone degradation). Both cases show the point cloud (left) and the
ACF of the corresponding 2D grey-level image obtained from the point
cloud (right). The rusticated wall gives well-defined peaks in the ACF,
related to periodicity, while the flat façade has none but the central one. In
the former case, the value of the periodicity features calculated as
described in the text is around 0.4, while in the latter case they are lower
than 10-3.

Figure 9. The Gerrard Hall model inserted in the Web system prototype,
using 3DHOP and some JavaScript code for tree management. Hotspots
were inserted at the column parts (top) and used as links to the semantic-
structure tree (bottom). Clicks on the model allow navigating the tree.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Harrap.QT.&newsearch=true

ACTA IMEKO | www.imeko.org October 2018 | Volume 7 | Number 3 | 72

Conference on Computer Vision and Pattern Recognition,
Columbus, OH, 2014, pp. 304-311.

[13] L. A. V. Souto, A. Castro, L. M. G. Gonçalves,
T. P. Nascimento, Stairs and Doors Recognition as Natural
Landmarks Based on Clouds of 3D Edge-Points from RGB-D
Sensors for Mobile Robot Localization, Sensors 17, 1824; 2017.

[14] K.-W. Oh, K.-S. Choi, Supervoxel-based Staircase Detection
from Range Data, IE Transactions on Smart Processing and
Computing, vol. 4, no. 6, 2015.

[15] T. Westfechtel, K. Ohno, B. Mertsching, D. Nickchen, S.
Kojima, S. Tadokoro, 3D Graph Based Stairway Detection and
Localization for Mobile Robots, 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Daejeon
Convention Center, October 9-14, 2016, Daejeon, Korea.

[16] H.-H. Pham, T.-L. Le, N. Vuillerme. Real-Time Obstacle
Detection System in Indoor Environment for the Visually
Impaired Using Microsoft Kinect Sensor, J Sensors, Vol. 2016,
Art. id 3754918.

[17] S. Cloix, G. Bologna, V. Weiss, T. Pun, D. Hasler, Low-power
depth-based descending stair detection for smart assistive
devices, EURASIP Journal on Image and Video Processing,
2016, 2016:33.

[18] R. Munoz, X. Rong, Y. Tian, Depth-aware indoor staircase
detection and recognition for the visually impaired, 2016 IEEE
Int. Conf. on Multimedia & Expo Workshops (ICMEW), 11-15
July 2016.

[19] T. Ullrich, V. Settgast, D.W. Fellner, Semantic Fitting &
Reconstruction, ACM Journal on Computing and Cultural
Heritage 1 (2), 2008.

[20] D. Portelli, F. Ganovelli, M. Tarini, P. Cignoni, M. Dellepiane, R.
Scopigno, A framework for User-Assisted Sketch-Based Fitting
of Geometric Primitives, Proc. of WSCG, 18th Int. Conf. on
Computer Graphics, Visualization and Computer Vision, 2009.

[21] S.D. Edgett and A.M. Williams, Vertical Circulation, in: Merritt
FS and Ricketts JT (editors), Building design and construction
handbook, 6th edition, McGraw-Hill, ISBN 0-07-041999-X
(Section 16), 2001.

[22] D. Bazazian, J. R. Casas, J. Ruiz-Hidalgo, Fast and Robust Edge
Extraction in Unorganized Point Clouds, Proc. of International
Conference on Digital Image Computing: Techniques and
Applications (DICTA), 2015.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based
algorithm for discovering clusters in large spatial databases with

noise. Proc. of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96). AAAI Press,
1996, pp. 226–231. ISBN 1-57735-004-9.

[24] A. Myronenko, X. Song, Point-Set Registration: Coherent Point
Drift, IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 32, issue 12, 2010, pp. 2262-2275.

[25] L. Díaz-Vilariño, B. Conde, S. Lagüela, H. Lorenzo, Automatic
Detection and Segmentation of Columns in As-Built Buildings
from Point Clouds, Remote Sens. 2015, 7, 15651-15667.

[26] R.O. Duda, P.E. Hart, Use of the Hough Transform to Detect
Lines and Curves in Pictures, Communications of the ACM 15,
1972, pp. 11– 15.

[27] K. Mamou, and F. Ghorbel, A simple and efficient approach for
3D mesh approximate convex decomposition, Proc. of 16th
IEEE International Conference on Image Processing (ICIP),
2009.

[28] N. Davies, E. Jokiniemi, Dictionary of Architecture and Building
Construction, Elsevier, 2008, ISBN: 978-0-7506-8502-3.

[29] F. D. K. Ching, Building Constructions Illustrated 5th ed., Wiley,
2014 , ISBN 978-1-118-45834-1, p. 5.33.

[30] J. Summerson, The Classical Language of Architecture, revised
and enlarged Ed., 1980, Thames and Hudson, ISBN 0-500-
20177-3, p.45–47, p. 58–59.

[31] R. Chitham, The Classical Orders of Architecture, 2nd ed,
Elsevier, 2005, ISBN 0 7506 61240, p. 190-192.

[32] S. Serlio, “Libro Quarto – Regole Generali di Architettura di
Sebastiano Serlio Bolognese sopra le cinque regole degli edifici”
XVI (1537).

[33] H.-C. Lin, L.-L. Wang, S.-N. Yang, Extracting periodicity of a
regular texture based on autocorrelation functions, Pattern
Recognition Letters 18 (1997) 433-443.

[34] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
R. Scopigno, Batched Multi Triangulation, Proc. IEEE
Visualization, pp 207-214, October 2005.

[35] F. Ponchio, M. Dellepiane, Fast decompression for web-based
view-dependent 3D rendering, Web3D 2015. Proc. of the 20th
International Conference on 3D Web Technology, pp 199-207

[36] M. Potenziani, M. Callieri, M. Dellepiane, M. Corsini, F. Ponchio,
R. Scopigno, 3DHOP: 3D Heritage Online Presenter,
Computers & Graphics Volume 52, November 2015, Pages 129-
141.

