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1. INTRODUCTION 

An indoor space is a place in which lives are spent and 
activities developed. A building can be considered as a passive 
container of activities where requirements of safety and 
security could be improved compared with external or 
partially covered spaces. The most important criteria related 
to comfort should be considered in building spaces to support 
health, wellbeing, and productivity. In addition, the building is 
actively involved in the delivery of services, such as air 
conditioning, ventilation, illumination, connectivity, 
communication, video support, and exchange of information 
in the connected building towards fruitful interaction of 
devices and functions. 

The optimisation of flows (i.e. people, data, energy, 
materials) leads to a better and easier way of developing our 
lives, and the evolutionary level is not the smart building in 
the smart city, but the cognitive building [1] in the cognitive 
city [2]. The cognitive building approach is an evolution of 
traditional home automation: A cognitive building can 
understand a user’s needs directly based on their habits. This 
new paradigm implements interactions between the building 
and the user, and it is based on a behavioural design [3] that 
can lead to the improved use of spaces and to a bi-directional 
relationship in an adaptive environment that is able to support 
users’ choices and preferences according to wider objectives 
of wellbeing and energy saving. The first step towards such a 
scenario is a building that is able to identify and estimate its 
state autonomously and to share such information with other 
buildings.

ABSTRACT 
In recent years, energy-savings policies have affected many aspects of everyday life. Considering a typical building, the heating, 
ventilation, and air conditioning (HVAC) system is the most energy-consuming system. This consideration is especially true for large 
public-access buildings, such as schools, and public administrations. In these cases, the energy saving of buildings depends on the 
capability to optimise the behaviour of the HVAC. Typically, the HVAC control system is based on static models of the building, which 
consider the average occupancy rate of each of the rooms. On the contrary, in this research work, a cognitive system based on an 
occupancy rate model that is able to take into consideration user habits and indoor air quality (IAQ) provided by IoT sensors is considered 
for the control of HVAC systems. This approach has been applied to the eLUX lab building of the University of Brescia, Italy. Data provided 
by IoT IAQ sensors (temperature, relative humidity, CO2) is used to refine the results of the occupancy rates for the models of the rooms 
of this building. The experimental results show, as in 22.15 % of the samples, the CO2 concentration exceeded the 1,000 ppm threshold 
of the perception of fresh air and good conditions. 
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In the past, the problems related to indoor air quality (IAQ) 
have been labelled as sick building syndrome, affecting 30 % of 
new buildings, as the World Health Organization alerted in 1984. 
The problems related to ventilation and materials were overcome 
in the 1990s; nevertheless, many existing buildings have outdated 
heating, ventilation, and air conditioning (HVAC) systems, and 
the use and intensity of occupancy has challenged the systems 
and equipment. Indoor environmental quality (IEQ) is affected 
by IAQ as well as other physical and psychological aspects of 
indoor conditions (e.g. lighting, visual quality, acoustics, and 
thermal comfort) [4], [5]. 

In addition, IAQ has a strong impact on health and 
concentration in educational institutions. Research has 
demonstrated that IAQ significantly impacts the learning 
performance of the students. The parameter of carbon dioxide 
(CO2) is used to assess the IAQ [6] and is easily calculated [7] and 
measured [8]. Specific dedicated sensors network can be used to 
monitor and extract information by the data collection [9]. 

This research aims to investigate the possibility of integrating 
IAQ data generated by IoT sensors installed into the learning 
spaces of an educational building adopted as a case study to 
estimate the number of people and occupancy rate, which is 
crucial for modulating and customising the operational range of 
the HVAC systems. 

The implementation of IoT architecture to connect the 
sensors to the building management system has been described 
in previous research work [10], while the current research aims 
to improve the evaluation of the occupancy rate of traditional 
probabilistic models adopted for energy simulations. The 
proposed methodology has been applied to the educational 
laboratories and lecture classrooms of the ‘Modulo Didattico’ 
building located at the University of Brescia’s Smart Campus, 
headquarters of eLUX lab. In the preliminary phase of analysis 
of the case study building and considering the behavioural factor 
as a crucial element to develop comfort models and diagnostics, 
interviews were conducted and discomfort was often been noted 
during the whole year (with a changing level in the different 
seasons nonetheless widely recurrent). 

The learning spaces are frequently too warm and humid, 
furthermore intensive occupancy causes an increase of CO2 
concentration during the day and a perception of the air as stuffy 
and malodorous. For that reason, users in spring and summer 
open windows and doors to increase ventilation and promote 
additional air changes coupled with mechanical ventilation. In 
order to assess the degree of user satisfaction, considering, as 
reported by ASHRAE [11], that ‘an acceptable air quality is one 
for which a substantial majority of people (less than 80 %) do 
not express dissatisfaction’ a further aim is to promote 
compliance checking of the indoor conditions related to users’ 
request for IAQ for improved learning performance. 

The critical indoor conditions reported for educational 
buildings have also increased interest in the development of the 
interactive bi-directional app [1] where formal and informal 
feedback is collected in order to understand the level of comfort 
(i.e. thermal, visual, acoustic, olfactory), and customised comfort 
conditions could be provided according to energy-saving 
measurements. 

2. METHODOLOGY 

The IoT framework 

HVACs in large buildings, such as schools, universities, and 
public administrations, are equipped with sensors for monitoring 

the status of rooms and thus for controlling the quality of the 
comfort of the user. Generally, the data generated by these 
sensors is not available from third-party applications. The IoT 
paradigm allows us to overcome this situation thanks to the 
proper definition of a data model that can be exchanged over an 
ICT infrastructure. The ICT infrastructure for supporting IoT 
sensors is shown in Figure 1. Such an infrastructure is based on 
five layers: the device; the device abstraction; the data; and the 
cognitive and the visualisation layers. 

The device layer includes sensors and actuators placed on the 
systems in the building. The device layer includes also the 
feedback provided by the user of the building, explicit or implicit, 
on the quality of comfort. Each of the devices is characterised by 
a data model, which is used to exchange information with the 
upper layers using a proper communication protocol. The system 
is protocol agnostic i.e. it supports any communication protocol 
through the device abstraction layer, which provides the 
capability to support different devices to the upper layer. Among 
the communication protocols supported, message queue 
telemetry transport (MQTT), WebService REST, advanced 
message queueing protocol (AMQP), and Modbus should be 
mentioned. The data layer includes the information system used 
to store real-time data from sensors (Device Data DB); the 
model and information regarding the building and its 
components as well as the position of IoT sensors (BIM DB); 
and the information about the installed IoT devices (including 
metrological characteristics) (Asset Mgt DB). The information 
stored in BIM DB and in Asset Mgt DB are fundamental for 
extracting the correct information from the Device Data DB and 
for sharing such information between different buildings. The 
Data Layer has been structured using different databases because 
of the different characteristics of data that is to be stored; for 
example, real-time data requires a database that is able to store a 
huge amount of data from hundreds of sensors in parallel, while 
information about the building is quite static. The data stored in 
the Device Data DB can be used by the cognitive layer to infer 
additional information from the raw data coming from the 
sensors. For example, the number of people in a room and the 
flow of people in a building can be inferred from CO2 
concentration. Information inferred by the raw data is uploaded 
in Device Data DB as a virtual sensor. The information stored in 
the data layer can be processed by the cognitive layer and 
visualised by the visualisation layer. The visualisation layer takes 
the benefit of Grafana, an open framework for data analytics and 
monitoring. The cognitive layer is able to analyse the data and to 
operate and control the systems of the building to close the 

 

Figure 1. The reference ICT architecture used for the integration of IoT 
devices and the estimation of building parameters. 
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control loop (in the case, control feature is enabled). The 
interactions among the upper layers (device abstraction layer, 
data layer, visualisation layer, and cognitive layer) are provided by 
WebService REST. Thanks to the modular and service-oriented 
architecture of the informative system, each of the components 
could be located on different physical or virtual machines, 
promoting the scalability of this approach. 

Indoor air quality indices 

In the pilot building, the installation of the CO2, temperature 
(Ti), and relative humidity (RH) indoor sensors allowed for the 
possibility to check IAQ conditions. The standard UNI 10339 
[12] establishes air flow rates; the crowding index; indoor and 
outdoor temperatures; indoor and outdoor RH; and air velocity 
in the conventional occupied volume. 

The IAQ significantly deteriorates as the temperature and RH 
increase [13]. The surveys for air quality checks could be carried 
out by traditional methods (questionnaires) or by checking the 
quantitative values of the parameters, including ventilation air 
flow rate, intake air temperature, quantity of CO2, air 
temperature, and RH, as well as a check on the pattern of flow 
distribution in the environment. In Table 1, the CO2 
concentration has been correlated to indoor conditions and IAQ. 

‘Perfect’ fresh air is not free of CO2. The CO2 concentration 
of fresh air is low, around 350-400 ppm; acceptable conditions 
have a CO2 concentration of 600 ppm, while the upper limit is 
1,000 ppm. A concentration of 1,500 ppm is considered as 
unacceptable since air becomes stuffy from this level. Problems 
for users are reported at 2,000 ppm, and 10,000 ppm is the 
concentration at which bad air conditions occur and breath and 
headaches increase. Nausea issues could be detected, with 
repercussions on intellectual performance and attention. The 
HVAC parameters and values provided by international 

normative for university classrooms are shown in Table 2 and 
Table 3. 

3. CASE STUDY: MODULO DIDATTICO BUILDING 

Building configuration and use 

The adopted case study is an educational building located in 
the smart campus of the University of Brescia used for lectures 
and educational activities, included in the didactic programme 
and independently by the students. 

The building can be classified in the national regulation 
framework as E.7 – an educational facility [16]. The spaces used 
for the indoor activities are distributed in three levels: the 
underground floor, where computer labs (MLAB1, MLAB2) are 
equipped with pc. 

The ground floor is where two lecture rooms (MTA, MTB) 
are used every day for the didactic programme. They are 
connected to the exterior through a south-east oriented totally 
glazed atrium, which is used for the students’ shared learning 
activities. The first floor is where the ‘aula magna’ (M1) is located 
and used both for daily educational activities and for graduation 
day ceremonies. 

The atrium has also a first floor for independent study and 
social activities, and it is equipped with desks and electrical 
outlets. Moreover, on the underground floor, the 
interdepartmental lab eLUX – energy laboratory as University 
eXpo – is installed and used as hot spot of research and 
community activities. 

The pilot building that is used as a case study shows the 
photovoltaic system installed on the rooftop during the previous 
experimental project Smart Campus as Urban Open Labs 
S.C.U.O.L.A (Figure 2). 

The total useful surface is 1,786 m2. In Table 4, the spaces, 
that are officially designated for student’s use, are listed with the 
names, the actual number of users hosted in the educational 
spaces, the area of the spaces, the people density, and the capacity 
of the air handling units (AHUs) to provide air to the spaces. 

Table 1. Correlation between CO2 concentration and IAQ conditions in the 
indoor space. 

CO2 conc.  
in ppm 

IAQ description and  
detected issue 

IAQ conditions 

350 - 400 Fresh air Perfect conditions 

< 600 Almost fresh air Acceptable conditions 

< 1000 Upper limit of fresh air Limit of CO2 concentration 

< 1500 Stuffy and not fresh air Not acceptable 

< 2000 Weak people can faint  
and cough 

Bad air condition 

< 10000 Increase of breath rates, 
respiratory problems, 

headaches, nausea 

Very bad air condition 

Table 2. Parameters for educational building IAQ conditions. 

Parameter  Unit Value 

Minimum air flow rate vmin m3 / (h · p) 25.2 

Crowding index p / m2 0.6 

Correction factor for ventilation - 0.51 

Average daily presence factor - 8/24 

Internal gains sensitble heat W / m2 4 

Volumetric perc. of CO2 conc. % 0.1 

Acceptable noise levels dBA 30-40 

System noise levels dBA 25-30 / 30-35 

Table 3. Parameters for thermo-hygrometric wellbeing during the winter and 
summer periods. 

Parameter  Unit Winter Summer 

Dry bulb external temp. Tbse °C -7 32 

External RH URe % 60 48 

Dry bulb indoor 
temperature Tbsa 

°C 20 26 

Indoor relative humidity RHa % 35 < RHa < 45 50 < RHa < 60 

Metabolic activity Mr W / m2 ≥ 70 ≤ 116 

Thermal res. of clothing Icl m2°C / W ≥ 0.14 ≤ 0.09 

Air velocity v m / s 0.05 < v < 0.15 0.05 < v < 0.15 

 

Figure 2. University of Brescia Smart Campus. The pilot building is located on 
the left-hand side. 
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The atrium has not been designed for the allocation of desks; 
nevertheless, the two levels are intensively occupied by the users. 
The list of spaces follows the order from the underground floor 
to the first floor. 

Digital twin 

A BIM model of the building has been realised for multiple 
purposes. As first, the model was realised (Figure 3) by means of 
terrestrial laser scanner technology in order to acquire the 
geometrical information of the spaces. The model has been 
compared to the data available in the technical office of the 
university through paper-based traditional documentation. 
Additionally, the model has been used to calculate energy 
performances and compare refurbishment scenarios during the 
S.C.U.O.L.A. project – Smart Campus as Urban Open Lab 
(National funding 2014-2016). 

The same model has been also used to locate the installed 
sensors into the building and propose a methodology to visualise 
and communicate the data promoting indoor data-mapping to 
track comfort conditions [17]. A dynamic structure for the 
communication of data to the BIM model by means of the IFC 
standard has been proposed [18], and the test and verification 
phase is still in progress. The BIM model can be implemented to 
translate the data gathered by the sensors into useful information 
for building operation and management. IoT and BIM-based 
building management enable the cognitive building [2], [19] 
vision in which the asset would learn from the analysed data and 
would setup the indoor conditions in the different spaces 

according to optimised schemes and protocols for energy saving 
[20] and improved user experience [1]. 

The case study building dates back to the 1980s, and the 
documentation lacks details about performance, the actual 
situation of the systems, and recent distribution of spaces. The 
envelope performance information was not present in the main 
documentation, and assumptions have been made to define the 
envelope based on visual inspections (Figure 4). AHUs are 
installed (n. 8 units) to provide fresh air to the indoor spaces, and 
fan coils are the emission terminals installed (in the bathrooms, 
and some additional spaces are equipped with radiators). 

Systems and issues 

The air conditioning and ventilation system in the 
underground floor was refurbished in 2012, and two AHUs have 
been positioned in additional service spaces in the northern part 
of the pilot building (Figure 5). The other two floors have 
autonomous AHUs, n. 4 in the ground floor, n. 1 for the first-
floor ‘aula magna’ and n. 1 for the atrium with n. 7 fan coils as 
terminals. Every unit has a thermostat in the extract air and 
electric water shut-off valves. The hydraulic power supply is 
derived from the building's general network. 

A main list of interventions for the HVAC system is proposed 
to improve the actual IAQ situation and comfort conditions in 
the spaces: 

1) verifying the operational phase of the systems related to 
the users’ profile; 

2) verifying the control system setting aimed at optimising 
the comfort conditions; 

3) verifying the sensing system to monitor and maintain an 
adequate IAQ level; and 

4) verifying the possible integration of the HVAC system 
with natural ventilation. 

Table 4. Functional spaces of the ‘Modulo Didattico’ building. 

Name Places Users Dimension 
People 
density 

AHU 

 n. n. in m2 in p/m2 in m3/h 

MLAB 1 56 76 151.79 0.5 5000 

MLAB2 82 104 207.94 0.5 2000 

MTA 168 89 178.27 0.5 2000 

MTB 168 89 177.48 0.5 2000 

Atrium 0 56 180.78 0.3 5500 

 0 56 144.61 0.4  

M1 169 262 337.46 0.8 5500 

 

Figure 3. BIM model of the ‘Modulo Didattico’ building at the UNIBS Smart 
Campus. The three floors are shown together with the rooftop level. 

 

Figure 4. Visual inspection and survey on the building to gather information 
about envelope performance. 

 

Figure 5. AHUs for MLAB1 and MLAB2 (functional scheme) as an example of 
the system configuration for air exchange and IAQ. 
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Sensing system 

The abovementioned issues could be addressed by a dynamic 
and responsive building that monitors user presence; collects 
data about temperature and humidity levels; correlates the CO2 
concentration with the users’ attendance at the lectures; and 
activates an integrated natural and mechanical ventilation to 
reduce the energy and environmental impacts of the building, 
thereby increasing the comfort level [21]. 

The pilot building [22] has thus been equipped with sensors 
to monitor the parameters that are useful for implementing the 
abovementioned concepts. The monitoring system installed in 
the building has n. 96 nodes of measurement controlling the 
main systems of the building, such as lighting, ventilation, 
heating, and cooling systems (Figure 6). The systems are 
monitored as listed below: 

• Lighting system control through presence: n. 24; and 

daylighting control through illuminance: n. 4; 

• Ventilation system control sensing the inlet air 

temperature: n. 15; the air temperature n. 8; the RH n. 

9 (in each zone, and the ‘aula magna’ has two sensors 

of humidity); and 

• Control of heating and cooling systems with sensors of 

presence, CO2 concentration, ventilation, and a 

conditioning damper n. 18 for each service. 

The sensors have been installed and adopted to verify 
previous occupancy models, to define discomfort conditions 
reported by the users, and to enable strategies to increase the 
building IEQ and user satisfaction. 

IAQ in the educational spaces 

The specific problem with IAQ has demonstrated a strong 
correlation with the comfort of the users. and the parameter of 
the CO2 concentration is widely accepted as a way of assessing 
user presence and occupancy in the indoor spaces [21]. 

In the first phase of the analysis of the model of CO2 
concentration in different educational spaces, the calculation 
model has been developed by considering a standard level of 
occupancy and then by comparing the results of the model with 
the actual one. In addition, the real schedule of the educational 
programme in the building for a didactic week has been applied 
to understand the intensity of use of the spaces. Nevertheless, 
the real attendance at the lectures has not been measured, and 
thus, only a theoretical result is achievable. The use of the 
building and the spaces is actually intense, and the average 
number of occupations of the spaces during the week is 7.3 h per 
day, with a peak on Tuesday (8.5 h) and Wednesday (7.6 h). 

The atrium is considered constantly occupied, and the most 
occupied spaces are the PC laboratory and the aula magna 
(MLAB1 and M1), which have an average daily occupancy hours 
of 8.1 and 7.2 respectively (Figure 7). 

Theoretical model 

The IAQ of the building spaces has been studied assuming 
deterministic and probabilistic occupancy levels. The building is 
intensively exploited for the lectures and laboratories, which are 
occupied by students studying for their courses with the tutors, 
performing their individual learning path, or working with study 
groups. The occupancy scenarios have been developed starting 
from a survey on the maximum availability of seats in the 
different spaces given at the beginning of the research; however, 
specific people monitoring has not been conducted. The 
probabilistic scenarios of occupancy have been generated on the 
maximum number of people, assuming a triangular probability 
distribution function, which is: min = 0,3 no,max; mode = 0.6 no,max; 
max = 1.0 no,max. 

The calculation model assumed the air changes and the 
following data: 

• Air change vmin in the deterministic scenario is equal to 

21.6 m3 / (h · p) as required by the national standard, 

while in the probabilistic scenario, it is assumed to be 

equal to 25.5 m3 / (h · p). 

• People density in the deterministic scenario is equal to 

0.5 p / m2 as required by the national standard for 

educational buildings, while in the probabilistic 

scenario, it is assumed as described above, starting with 

the maximum value of possible users. 

Since the typology of users and the activity of learning in the 
considered spaces, the CO2 per occupant qp is assumed as 0.05 
m3/h, and the CO2 at the starting time (t=0) is assumed to be 
350 ppm, with no CO2 supplied by the inlet air from the 
ventilation system. c1 and clim is 1,000 ppm—the threshold for the 
acceptance of the CO2 in the learning spaces to promote a 
healthy and productive indoor environment. The calculation 
model could estimate the IAQ conditions for the different 
spaces, showing highly critical conditions in the non-refurbished 
spaces, such as MTA and MTB, which reach 3,000 ppm on a 
standard Wednesday in a learning week at the campus (Figure 8). 
The aula magna has also critical conditions reaching 2,500 ppm, 
while the maximum values for the computer laboratories 
MLAB1 and MLAB2 are both around 1,500 ppm, which exceeds 
the 1,000 pm acceptable situation for an optimal IAQ in learning 
spaces (Figure 9). 

 
Figure 6. Examples of the installed sensors in the building spaces: sensor of 
presence and sensor of temperature and humidity. 

 

Figure 7. Daily occupied hours per day during the learning week at the 
‘Modulo Didattico’ building in the University of Brescia’s Smart Campus. 



 

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 75 

Monitored results 

The CO2 concentration in the indoor spaces for learning is 
the main parameter that is used in this research to assess the 
presence of people in the spaces, and a data mining procedure 
was applied to the data collected, allowing us to discover how the 
different rooms were occupied during the monitoring campaign 
(from July 2017 to May 2018). 

The data gathered did not have the same continuity and 
precision for each classroom, and we had to start with a data 
cleaning process that excluded some spaces due to a lack of 
reliability in the data or a serious lack of information. 

The Atrium and MLAB1 have been excluded from the 
following analyses because of the lack of significance of the 
amount of data monitored, while MTB was subjected to strong 
data cleaning so as to avoid data ghosts with no actual relevance. 
The other learning spaces, MLAB2, MTA, and M1, showed 
reliable data. 

The data collection and the necessary cleaning process 
enabled the analysis of a large amount of data about the learning 
spaces, structured as follows: 

• Analysis of the cumulative distribution function 
(CDF) of the data in the different spaces to 
understand how many times the registered values are 
below or above the comfort level and IAQ 
threshold; the analysis includes CO2 concentration, 
indoor air temperature, and indoor RH; 

• Analysis of the minimum, maximum, and average 
values of CO2 concentration in the different 
occupied hours during the day in the analysed 
period; and 

• Definition of the number of people in the learning 
spaces based on the registered CO2 concentration. 

The adopted methodology allows us to evaluate the IAQ and 
is related to yet more significant parameters, such as temperature 
and RH. Moreover, the calculation permits us to monitor the 
actual number of people in the spaces by providing information 
for setting up, checking, and adapting the ventilation system and 
the window openings related to the use of the spaces (Figure 10). 

AI applications could be implemented based on the self-
learning of the system by targeting the data collection at the 
development of predictive control settings. 

4. RESULTS AND DISCUSSION 

The data collected has been analysed in order to verify the 
critical discomfort conditions that could be experienced by the 
users and to understand which parameters are clearly beyond the 
comfort range conditions and how frequently these conditions 
are experienced by the users. 

Cumulative distribution function 

The data analysis has been extended to the indoor comfort 
parameters, and thus, a cumulative distribution of the following 
parameters has been plotted: 

• CO2 concentration in ppm; 

• Indoor temperature Ti  in °C; 

• RH in %. 

The CDF demonstrates the probability that the considered 
variable assumes a value that is lower than a comfort threshold 
or between a range of values defining the comfort range during 
the year. For the variables listed above, we set the first threshold 
as 600 ppm for the CO2 concentration, which is an acceptable 
condition with almost fresh air perception. We set the second 
threshold at 1,000 ppm, which is the upper limit of fresh air and 
the limit for CO2 concentration before an unacceptable IAQ and 
user perception of stuffiness is reached [22], [23]. In MLAB2, 60 
% of the data showed an indoor CO2 concentration above 600 
ppm, and in about 20 % of cases, it is above 1,000 ppm. The 
MTA lecture room has values above 600 ppm in 50 % of the 
records and above 1000 ppm in 10 %. 80 % of the data 
concerning M1 is between 600 and 1,000 ppm, never exceeding 
the second threshold. Nevertheless, it is noteworthy that the 
monitoring period does not include the graduation days, and for 
that reason, the M1 (the aula magna used on those days) does not 
present such critical conditions as experienced and reported by 
the students in the University of Brescia Smart Campus. The 

 

Figure 9. Concentration of CO2 in the MLAB2 during the learning week. 

 

Figure 10. Analytical methodology and workflow of the research. 

 

Figure 8. Concentration of CO2 in the ‘Modulo Didattico’ building in the 
different classrooms on a standard Wednesday of the learning week. 
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most critical conditions have been registered concerning the 
MTB lecture classroom, where the data reached 5,299 ppm as a 
maximum value and an average value of 2,226 ppm. 80 % of the 
CO2 concentration values in MTB were above 1,000 ppm (Figure 
1). 

For indoor temperature, the two standard values for internal 
comfort in the winter (20 °C) and summer (26 °C) periods have 
been considered; however, in the learning spaces, a temperature 
of around 20 ± 2 °C is considered as preferable based on studies 
on learning ability and concentration (Figure 12). 

The CDF for the indoor temperature in the learning spaces 
shows that 60 % of the indoor temperature values in MLAB2 
and MTA were above 20 °C, and 5 % above 26 °C, with a similar 
distribution for the MTA lecture room. 50 % of the data 
concerning M1 was above 20 °C and 10 % above 26 °C. 40 % of 
the values for MTB were above 20 °C, and less than 5 % were 
above 26 °C. 

The RH parameter has a similar distribution in the different 
spaces in the ‘Modulo Didattico’ building: the 60 % of the data 
shows a CO2 concentration lower than 35 % (an indoor 
environment that is too dry) and in the 20-30 % of the data, the 
CO2 concentration was higher than 45 % (too humid). These 
values refer to the winter period, while in summer period, a range 
between 50 % and 60 % is required. In the diagram in Figure 13, 
the comfort bands are defined by the four values assumed as 
lower and upper thresholds in the winter and summer periods, 
as clearly defined in Table 2. 

The distribution shows that a great part of the data referring 
to the learning spaces is located outside of the bands; however, a 
detailed in-depth analysis of the two periods should be 
performed, with a focus on hygro-thermal comfort. 

Moreover, the RH reaches values that are higher than 60 % in 
10 % of the cases of use of the learning space, with a significant 
and critical level of discomfort. 

It is noteworthy that this first analysis on big data is able to 
estimate the percentage of discomfort hours during the use of 
the learning space of the educational building; however, detail on 
the moment of the day when the conditions are most critical and 
strategies that should be applied to improve the IAQ condition 
are crucial for understanding the daily trends of the comfort 
parameters. For that reason, an analysis of the hourly distribution 
of the CO2 concentration is performed and discussed in Section 
4.2. 

Hourly distribution of the data of CO2 concentration 

An analysis of the CO2 concentration data in the different 
classrooms has been conducted to outline when the values 
exceed the stated thresholds and how the data is distributed 
during the day. 

In Figure 14, the computer lab (MLAB2) and the lecture 
rooms (MTA, MTB) along with the aula magna (M1) are 
analysed. Maximum, minimum, and average values of CO2 
concentration obtained from the sensors are plotted. The trend 
of the distribution is mostly the same in the four classrooms, and 
at 10:00 am, a peak CO2 concentration is registered, with an 
average value of around 1,000 ppm and with maximum values 
reaching 1,500-1,600 ppm in MLAB2, MTA, and M1. It is also 
noteworthy that 1,500 ppm is reported as stuffy and not 
considered fresh air, since it is an unacceptable level (Table 1). 
During lunchtime (1:00 pm), a lower value is registered in each 
classroom on average, and restarting with the lectures in the 
afternoon, we can see at 4:00 pm a second peak point. The 
maximum values are 1,500 ppm from 9.00 am to 6:00 pm for 
MLAB2 and MTA and to 4:00 pm in M1. The most critical 
situation is reported in MTB. The average values are similar to 
the other classrooms; however, the maximum value monitored 
in MTB is 5,299 ppm at 11:00 am, and in the case that there is 
no additional ventilation and intense occupancy, after three 
hours of lectures, it is possible to detect such a high level of CO2 
concentration that is associated with very bad air conditions and 
problems with headaches; nausea; and reduced attention and 
concentration. 

 

Figure 11. CDF of CO2 concentration for the different spaces and curve 
calculated on the whole amount of data (TOT). 

 

Figure 12. CDF of the indoor temperature for the different spaces, calculated 
on the whole amount of data (TOT). 

 

Figure 13. CDF of the RH for the different spaces, calculated on the whole 
amount of data (TOT). 
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Definition of occupancy rate based on CO2 concentration 

The use of sensors to record the CO2 concentration supports 
and verifies the presence of people in the indoor spaces, where 
other monitoring systems are unavailable or mainly used to 
validate data from different sensors (e.g. people-counting 
solutions). 

In many cases, these devices present some problems in the 
recognition of user presence due to positioning and background 
noise issues. The accuracy of the recognition abilities of these 
sensors can be limited due to illuminance (i.e. in the case of optic 
sensors) and the cost can be very high (i.e. especially where there 
are multiple entrances to/exits from the classroom). 

The use of the CO2 concentration parameter as a reference 
for occupancy has been demonstrated and verified in many 
studies [24]-[26], and it represents an effective method of 
evaluating the presence of people in indoor spaces. 

The CO2 sensors could thus be adopted as informative IoT 
devices and correlated to actuators in order to improve 
ventilation (i.e. natural ventilation through windows opening or 
mechanical ventilation by increasing fan power). Information 
about user presence can also be used to estimate and customise 
indoor comfort conditions without the installation of additional 
detection systems. The importance of accuracy of data in the 
performance of relevant analyses is crucial so as to avoid the 
garbage-in-garbage-out effect. 

In the present research, the CO2 concentration monitored in 
the classrooms has been used to calculate the presence of people 

in accordance with the methodology described in prior research 
[27]. 

The comfort parameters of temperature and RH, obtained 
from the sensors, have been correlated to the occupancy range 
estimated based on CO2 data. A lecture room has been adopted 
as an example (i.e. MTA) checking the two sample days in spring 
and autumn (Figure 15 and Figure 16). 

It is important to note that with a 46 % occupancy rate, the 
threshold of 1,000 ppm is exceeded, and with a 62 % occupancy 
rate, the level can reach 1,500 ppm. 

These results refer to MTA, which has not been refurbished 
and uses a ventilation system that is outdated and is inadequate 
for such intensive use. Nevertheless, the spaces are not designed 
to provide further natural ventilation through the windows, and 
if in MLAB2 it is possible to open the below grade basement 
windows, in MTA, MTB, and M1, the building does not provide 
opening surfaces for natural ventilation. This situation means 
that only with mechanical ventilation is it possible to respond (or 
try to respond) to the required level of air changes related to the 
students’ presence. 

5. CONCLUSION 

This article demonstrates the capability of IoT architecture to 
exploit the use of sensor data for different application domains 
adopting the CO2 concentration parameters in combination with 
temperature and RH as the main indicator for IAQ using sensors 
to monitor the variation of the parameters in the indoor spaces 

 

Figure 14. Minimum, maximum, and average hourly values of CO2 concentration (in ppm) in the learning spaces based on the monitored data. 
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of an educational cognitive experimental building at the smart 
campus of the University of Brescia. 

The data gathered by the sensors is used to enhance the 
accuracy of estimation of the occupancy range in the learning 
spaces, at the same time providing information about 
environmental quality and thus potentially preventing discomfort 
and conditions that are not optimal for students’ attention and 
learning performance. CO2 concentration is adopted 
internationally as a factor for verifying and calculating indoor 
presence and for use as a basis for improving comfort conditions 
for users. In a user-centred design and strategies, it is relevant to 
have reliable information about the presence of users that could 
be integrated by customised requests in future. It could also be 
possible to deliver a tailored service to the users in the indoor 
space, which is the target of an increasing number of advanced 
studies on energy saving and operation and management 
optimisation. 

ACKNOWLEDGMENTS 

The authors would like to mention and acknowledge the 
Smart Campus School Project Team, including Eng. Marco 
Pasetti, Eng. Paolo Bellagente, and Eng. Federico Bonafini. 
Special thanks go to Prof. Fulvio Re Cecconi for his valuable 
collaboration in developing the data analysis models. 

REFERENCES 

[1] F.Bittenbinder, C.Liu, S.Rinaldi, P.Bellagente, A.L.C.Ciribini, 
L.C.Tagliabue, ‘Bi-directional interactions between users and 
cognitive buildings by means of a smartphone app’, Proc. of the 
IEEE Second International Smart Cities Conference (ISC2 2016), 
Improving the Citizens Quality of Life, 12-15 Sept., 2016, Trento, 
Italy. 

[2] L.C.Tagliabue, A.Pasquinelli, G.M.Di Giuda, V.Villa, 
A.L.C.Ciribini, E.De Angelis, ‘Cognitive adaptive urban systems 
for the living built environment’, Proc. of the 2nd Annual 
International Conference on Urban Planning and Property 
Development (UPPD 2016), 10-11 Oct., 2016, Singapore. doi: 
10.5176/0000-0000_UPPD.43. 

[3] P.J.Cash, C.Gram Hartlev, C.Boysen Durazo, Behavioural design: 
A process for integrating behaviour change and design, Design 
Studies, 48 (2017) pp. 96-128. 

[4] M.C.Lee, K.W.Mui, L.T.Wong, W.Y.Chan, E.W.M.Lee, 
C.T.Cheung, Student learning performance and indoor 
environmental quality (IEQ) in air-conditioned university teaching 
rooms, Building and Environment 49 (2012) pp. 238-244. 

[5] J.D.Spengler, IAQ Handbook, New York: McGraw-Hill Co., 
2001, I SBN: 9780074455494. 

[6] A.Szczurek, et al. ‘CO2 and volatile organic compounds as 
indicators of IAQ’, Proc. of the 6th AIVC Conference, 5th 
TightVent Conference, 3rd Venticool Conference, 23-24 Sept., 
2015, Madrid. 

[7] D.S.Dougan, L.Damiano, CO2-based demand control ventilation 
do risks outweigh potential rewards? ASHRAE Journal, 46 (2004), 

pp 47-53. 
[8] N.Mahyuddin, et al. A review of CO2 measurement procedures in 

ventilation research, International J. of Ventilation, 10 (2012) pp. 
353-370. 

[9] W.Torresani, N.Battisti, A.Maglione, D.Brunelli, D.Macii, ‘A 
multi-sensor wireless solution for indoor thermal comfort 
monitoring’, in Proc. of IEEE EESMS, 11-12 Sept., 2013, Trento, 
Italy, pp. 25-30. 

[10] P. Bellagente, P. Ferrari, A. Flammini, S. Rinaldi, "Adopting IoT 
framework for Energy Management of Smart Building: A real test-
case", in Proc. of IEEE RTSI, Turin, Italy, Sept. 16-18, 2015, pp. 
138-143. 

[11] ASHRAE 62/89, Ventilation for Acceptable IAQ. 
[12] UNI 10339:1995 Impianti aeraulici a fini di benessere – Generalità, 

classificazione e requisiti – Regole per la richiesta dell’offerta, 
l’offerta, l’ordine e la fornitura. 

[13] F.Cumo, G.Caruso, L.Ferroni, E.Paladino, ‘L’indice di valutazione 
dell’Indoor Air Quality come indicatore di sicurezza in ambienti 
lavorativi confinati, con particolare riferimento al terziario 
avanzato’, Conferenza VGR 2006 Valutazione e Gestione del 
Rischio negli Insediamenti Civili e Industriali, 17-19 Ott., 2006, 
Pisa, Italy. 

[14] UNI/TS 11300-1:2014, Prestazioni energetiche degli edifici – 
Parte 1: Determinazione del fabbisogno di energia termica per la 
climatizzazione estiva ed invernale. 

[15] UNI 10349:1994, Riscaldamento e raffrescamento degli edifici – 
Dati climatici. 

[16] D.P.R. 26 Agosto 1993, n. 412. Regolamento recante norme per la 
progettazione, l'installazione, l'esercizio e la manutenzione degli 
impianti termici degli edifici ai fini del contenimento dei consumi 
di energia, in attuazione dell'art. 4, comma 4, della L. 9 gennaio 
1991, n. 10, Gazz. Uff. 14 ottobre 1993, n. 242, S.O. 

[17] D.Pasini, S.Mastrolembo, S.Rinaldi, P.Bellagente, A.Flammini, 
A.L.C.Ciribini, ‘Exploiting Internet of Things and building 
information modeling framework for management of cognitive 
buildings’, Proc. of the IEEE International Smart Cities 
Conference (ISC2 2016), 12-15 Sept. 2016, Trento, Italy. 

[18] M.Scheffer, M.Konig, T.Engelmann, L.C.Tagliabue, 
A.L.C.Ciribini, S.Rinaldi, M.Pasetti, ‘Evaluation of open data 
models for the exchange of sensor data in cognitive building – 
Dynamic linkage sensors – BIM model for the eLUX Lab’, Proc. 
of the IEEE International Workshop on Metrology for Industry 
4.0 and IoT, 16-18 Apr. 2018, Brescia, Italy. 

[19] S.Rinaldi, A.Flammini, L.C.Tagliabue, A.L.C.Ciribini, M.Pasetti, 
S.Zanoni ‘Metrological issues in the integration of heterogeneous 

 

Figure 16. Number of people related to CO2 in MTA (12 September 2017). 

 

Figure 15. Number of people related to CO2 in MTA (20 March 2018). 



 

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 79 

IoT devices for energy efficiency in cognitive buildings’, Proc. of 
the I2MTC – 2018 IEEE International Instrumentation & 
Measurement Technology Conference, 14-16 May, 2018, 
Houston, Texas, USA. 

[20] F.Bittenbinder, C.Liu, N.Moretti, F.Re Cecconi, L.C.Tagliabue, 
A.L.C.Ciribini, I.Kovacic, ‘A vision for a cognitive campus 
network of universities: the learnscapes of Poveglia Island’, Proc. 
of the 3rd SDEWES Conference, 30 Jun.-3 Jul., 2018, Novi Sad, 
Serbia. 

[21] S.Rinaldi, A.Flammini, L.C.Tagliabue, A.L.C.Ciribini ‘On the use 
of IoT sensors for indoor conditions assessment and tuning of 
occupancy rates models’, Proc. of the IEEE International 
Workshop on Metrology for Industry 4.0 and IoT, 16-18 Apr. 
2018, Brescia, Italy. 

[22] E.De Angelis, A.L.C.Ciribini, L.C.Tagliabue, M.Paneroni, The 
Brescia smart campus demonstrator: renovation towards a zero 
energy classroom building, Procedia Engineering, 28 (2015) pp. 
735-743. 

[23] A.Szczurek, et al. ‘CO2 and volatile organic compounds as 
indicators of IAQ’, Proc. of the 6th AIVC Conference, 5th 

TightVent Conference, 3rd Venticool Conference, 23-24 Sept., 
2015, Madrid, Spain. 

[24] D.Calì, P.Matthes, K.Huchtemann, R.Streblow, D.Müller, CO2 
based occupancy detection algorithm: experimental analysis and 
validation for office and residential buildings, Building and 
Environment 86 (2015) pp. 39-49. 

[25] D.Chen, S.Backer. A.Subbaswamy, D.Irwim, P.Shenoy, ‘Non-
intrusive occupancy monitoring using smart meters’, Proc. of the 
5th ACM Workshop on Embedded Systems for Energy-Efficient 
Buildings, 11-15 Nov., 2013, Roma, Italy, pp.1-8. 

[26] K.Akkaya, I.Guvenc, R.Aygun, N.Pala, A.Kadri, ‘IoT-based 
occupancy monitoring techniques for energy-efficient smart 
buildings’, Proc. of the 2015 IEEE Wireless Communications and 
Networking Conference (WCNC) Workshop, Energy Efficiency 
in the Internet of Things, and Internet of Things for Energy 
Efficiency, 9-12 Mar. 2015. 

[27] L.C.Tagliabue, M.Manfren, A.L.C.Ciribini, E.De Angelis, 
Probabilistic behavioural modelling in building performance 
simulation: the Brescia eLUX lab, Energy and Building, 128 (2016) 
pp. 119-131.

 


