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1. INTRODUCTION 

The 3D reconstruction of submerged structures or 
archaeological finds has achieved notable popularity in 
Underwater Cultural Heritage (UCH) preservation, as the 
method may allow for the exploration of sites located in 
inaccessible and hostile environments.  

In the last decade, techniques and tools for 3D 
reconstructions have been widely employed in the underwater 
archaeology field according to the guidelines of UNESCO, 
which suggest the in-situ preservation of underwater heritage [1]. 
Among the different 3D imaging techniques that are suitable for 
underwater applications, photogrammetry represents a valid 
method of reconstructing 3D scenes from a set of images taken 
from different viewpoints [2]. The popularity of this technique is 
also due to the acquisition devices (still or a movie camera with 
appropriate waterproof casings) that are affordable and easy to 
use compared to dedicated devices like LIDAR, multi-beam, etc. 
[3]. Furthermore, these devices can be handled by scuba divers 
or mounted on underwater robots [4]. Unfortunately, image-

based acquisition suffers due to the poor environmental 
conditions. The depth of the water, flora, fauna, weather 
conditions, and sea currents are all factors that affect visibility, 
refraction, and lighting conditions. Consequently, these factors 
limit underwater photogrammetry’s scope to close-range 
applications, and further efforts are required to improve the 
radiometric quality of the images. For these reasons, the 
enhancement of underwater images is still a necessary step in 
improving the accuracy of 3D reconstruction and creating 
realistic textures.  

This article presents a performance evaluation of underwater 
image pre-processing algorithms for the improvement of multi-
view 3D reconstruction. Two existing colour enhancement 
models, i.e. ACE (Automatic Colour Equalisation) and PCA 
(Principal Component Analysis) algorithms, have been tested to 
compare their results with those provided by a new method 
based on histogram stretching and manual retouching (HIST). 
To this end, an experimental campaign has been planned using 
Design of Experiment (DOE) [5] criteria to investigate the 
factors that affect reconstruction accuracy. The experimental 
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campaign has been carried out in the underwater archaeological 
site of Baiae (Naples, Italy), where the seafloor, with a water 
depth ranging between 2.5 and 20 m, offers a particularly 
interesting environment, as it encompasses a submerged area of 
many hectares and presents a wide range of different 
architectural structures with a number of decorations that are still 
preserved. The research has been conducted in the context of the 
iMARECulture project [6], [7], [8], which aims to develop new 
tools and technologies for improving public awareness of UCH.  

The article is organised as follows. Section 2 presents related 
works about underwater image pre-processing methods. Section 
3 describes the image acquisition and pre-processing stage. In 
section 4, the results of the statistical analysis are detailed. Section 
5 presents the 3D reconstruction obtained by means of the 
enhanced images, and finally, conclusions are presented in 
section 6. 

2. UNDERWATER IMAGE PRE-PROCESSING ALGORITHMS 

Underwater pictures generally suffer from light absorption, 
which causes some defects mostly on the red channel (the first 
component of the light spectrum that is absorbed), and this 
effect is already noticeable at only a few metres of depth. The 
pre-processing of underwater images can be conducted with two 
different approaches: image restoration techniques or image 
enhancement methods [9], [10]. Image restoration techniques 
need some environmental parameters to be entered, such as 
scattering and attenuation coefficients, while image enhancement 
methods do not require a priori knowledge of the underwater 
environment. 

The physical effects of visibility degradation have been 
analysed in [11], showing that the degradation effects can be 
associated mainly with the partial polarisation of light. The 
developed algorithm is based on a couple of images taken 
through a polariser at different orientation, improving contrast 
and colour and doubling the underwater visibility range. The 
work of [12] presents an image restoration filter based on a 
simplified version of the Jaffe-McGlamery underwater image 
formation model, which can be used for images with limited 
backscatter in diffuse lighting. 

The ACE algorithm [13] is inspired by the human vision, 
which is able to adapt to highly variable lighting conditions, 
extracting visual information from the underwater environment 
[14]. The algorithm combines the Patch White algorithm with the 
Gray World algorithm, taking into account the spatial 
distribution of colour information. In the first stages of the ACE 
method, chromatic data and pixels are processed and adjusted 
according to the information contained in the image. 
Subsequently, colours in the output image are restored and 
enhanced [15]. Different to the ACE algorithm, which can adapt 
to widely varying lighting conditions and can extract visual 
information, in order to reduce the number of variables 
considerably while still retaining much of the information in the 
original dataset, it is possible to adopt the Principal Component 
Analysis (PCA) algorithm. PCA is one of the most popular 
multivariate statistical techniques that analyses a data table 
representing observations described by several dependent 
variables and extracts the important information in the form of 
a set of new orthogonal variables called principal components. 
In this specific application, the PCA algorithm allows us to 
extract a dominant colour of the image. Hence, in most cases, 
the water colour also provides good results in term of colour 
enhancement. 

An automatic enhancement algorithm that does not require 
any correction parameter has been proposed in [16], where each 
source of errors is corrected sequentially. The first step removes 
the moiré effect, then a homomorphic or frequency filter is 
applied to equalise brightness and to enhance the contrast. 
Regarding the acquisition noise, a wavelet denoising filter 
followed by an anisotropic filtering has been applied. Finally, 
dynamic expansion is applied to increase contrast, followed by 
colour equalisation. The process is performed on one channel, 
specifically the YCbCr colour space, in order to optimise the 
computation time. Even if this last step speeds up all the 
following processes avoiding the need to process each RGB 
channel each time, it is important to point out that the use of a 
homomorphic filter affects the geometry and could generate 
errors on the reconstructed scene. The effectiveness of the use 
of different colour spaces for the enhancement of underwater 
images has been demonstrated in [17], where a slide stretching 
algorithm has been used both on RGB and HSI colour spaces. 
After a contrast stretching on RGB colour space has been 
performed, the resulting images have been converted to HSI 
colour space and processed through saturation and intensity 
stretching in order to increase the true colour and solve the 
problem of lighting. The aim of underwater colour correction is 
not only to obtain better quality images, but also to improve the 
performance of feature extraction algorithms in terms of the 
detection of feature points. The effects of different image pre-
processing methods on the performance of the SURF (Speeded 
Up Robust Features) detector [18] have been investigated in [20], 
and the IACE (Image Adaptive Contrast Enhancement) method 
has been proposed. In particular, the IACE method enhances the 
intrinsic features in images, like corners, edges, and blobs, along 
with maintaining the relative contrast between the pixels. Thanks 
to this capability, the IACE method has proven better than other 
techniques, like Histogram Equalisation and Multiscale Retinex 
algorithm for Color Enhancement, in terms of the repeatability 
of their SURF detector and the robustness and distinctiveness of 
their SURF descriptor. 

Different to previous works [20] that focus on the 
comparison of different image enhancement algorithms, with all 
other conditions being equal, this article presents a performance 
analysis based on a DOE approach, which takes into account the 
main influential factors that affect 3D reconstruction quality. 

3. EXPERIMENTATION 

The experiment was undertaken in the underwater 
archaeological site of Baiae, which is located few kilometres 
north of Naples (Italy). The submerged environment of Baiae is 
characterised by highly critical visibility conditions due to water 
turbidity and the heavy presence of flora and fauna. The area 
selected for the experimentation is the thermal room of ‘Villa 
Protiro’, with a size of 5 x 8 m at an average depth from the sea 
level of 5 m. The choice of this area is due to the presence of 
different building materials (bricks, mortar, tile floors, etc.) and a 
strong colonisation of various bio-fouling agents. Because of the 
critical visibility conditions, 3D reconstruction techniques based 
on the multi-view stereo method are not sufficient for 
performing an accurate 3D reconstruction of the submerged 
archaeological area. The underwater images require, then, a pre-
processing stage involving the adoption of image enhancement 
algorithms that could have a relevant or mediocre impact on the 
quality of the final 3D reconstructed model. 
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3.1. Experimental setup 

 The experimental setup consists of a camera, its underwater 
housing, and two underwater strobes. The camera is a Nikon 
D7000 reflex device equipped with a CMOS (Complementary 
Metal-Oxide Semiconductor) sensor size of 23.6 x 15.8 mm and 
a resolution of 4928 × 3264 pixels (16.2 effective megapixels), as 
well as a AF-Nikkor 20 mm lens. The underwater housing, 
manufactured by Ikelite, is equipped with a spherical port. The 
flashguns are connected to the camera housing with a pair of 
articulated arms at a distance of 45 cm. The two strobes have 
been fixed at a distance of 5 cm behind the dome pointing 
outwards to illuminate the object with the ‘edge’ of the light 
beam. A calibration panel, produced by Lastolite, has been used 
in the beginning of the survey to acquire a colour calibration 
image to perform in-situ white balance correction, while a digital 
depth gauge has been used to maintain a constant depth from 
the seabed. 

3.2. Image acquisition 

The photogrammetric survey of the submerged area has been 
carried out in two different dive sessions, in the north and south 
parts of the site. The survey has been carried out according to a 
standard aerial photography layout: The diver swims at a distance 
from the submerged structures of about 2.5 m, taking 
overlapping pictures along straight lines that cover the whole area 
in the north-south direction. Another set of images has been 
acquired in the east-west direction. The occluded areas have been 
acquired using oblique photographs. At the end of the survey 
activity, the dataset included a total of around 700 images. 

3.3. Colour enhancement of underwater images 

The original images (OR) have been then enhanced by means 
of three algorithms (ACE, PCA, HIST) and corrected through 
an in-situ white balance correction procedure.  

The ACE (Automatic Colour Enhancement) algorithm 
proposed in [9] and the PCA algorithm proposed in [21] have 
been adopted. 

The HIST (Histogram Stretching and Manual Retouching) 
algorithm is a semiautomatic enhancement methodology that has 
been developed for this study. It is based on histogram stretching 
and a manual colour retouching procedure and has been 
implemented using batch actions in a graphics editor to rescue 
the maximum amount of information from a set of defective and 
noisy pictures. In particular, the HIST method consists of the 
following three-step procedure: preliminary histogram stretching 
to improve the contrast; mixing of the colour channels to balance 
the missing information on the red channel; creation of a set of 
adjustment layers, including saturation enhancement for some 
missing hues, contrast masks, colour balancing, and equalising.  

In addition to the enhanced algorithms, the images have been 
processed by performing an in-situ white balance correction 
procedure (WB) performed by means of a Lastolite waterproof 
panel.  

The following figure shows an original uncorrected image 
(Figure 1a) and those enhanced with the WB procedure (Figure 
1b), ACE (Figure 1c), HIST (Figure 1d) and PCA (Figure 1e) 
algorithms. 

3.4. Design of the experimental campaign 

The experimental campaign has been planned according to 
the DOE criteria with the purpose of identifying the most 
influential factors affecting the results of the 3D reconstruction 
in the underwater environment. Particular attention has been 

given to the effect of the image enhancement methods on the 
camera orientation and the self-calibration bundle adjustment 
process. The measured data has been compared and analysed by 
means of standard statistical tools to verify if a particular factor 
(or a combination of factors) has an impact on a parameter with 
a certain confidence level. On the basis of the results of this 
analysis, it is possible to find the best combination of factors that 
should be used for an accurate and dense 3D reconstruction by 
using a multi-view stereo technique. 

3.5. Influencing factors 

The first step is the selection and identification of the 
influencing factors that could have an influence on the quality of 
a 3D reconstruction performed with a multi-view technique in 
the underwater environment. The influencing factors have been 
chosen among those that cannot be controlled in situ, such as 
the presence of marine organisms in motion and the level of 
turbidity of the water. Furthermore, factors that can be 
considered as a direct consequence of others have been taken 
into account. For instance, focus settings depend on the distance 
from the subject, and the focal length can be set according to the 
required field of view and to the working distance. The factors 
selected for the experiment are reported in Table 1. 

The first factor (EN) is related to the original images (OR) 
and to the colour enhancement algorithm (WB, HIST, ACE and 
PCA) adopted to improve underwater images. 

 The second factor refers to image resolution (PYR). The full 
resolution images have not been used in order to save 
computational time. The raw images (4928 x 3264 pixels) have 
been resized by means of the Mitchell-Netravali Cubic Filter [22] 
in order to create the following levels: level 1 for images of 2464 
x 1632 pixels; level 2 for images of 1232 x 816 pixels; and level 3 
for images of 616 x 408 pixels. 

 The third factor is represented by the composite RGB image 
and its three R (Red), G (Green), and B (Blue) components. This 
factor has been taken into consideration in order to investigate 
the influence of a single-colour channel on the reconstruction 

 

Figure 1. Sample original image (a) corrected with the in situ white balance 
measurement (b), enhanced with the ACE method (c), HIST method (d), and 
PCA method (e). 
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quality with respect to the grayscale image obtained by 
combining the RGB components. 

In order to perform a quantitative analysis of the impact of 
camera layout on the processing results, the last influencing 
factor is referred to the type of image set (SET). Seven subsets 
have been created, which differ among each other according to 
the type of shot (aerial vs. oblique), working distance, and 
overlapping pictures. In particular, the first two sets include 
photos that have been taken with a standard aerial layout. The 
third set includes pictures characterised by high overlap and good 
visibility due to the reduced distance from the submerged 
structures. The fourth and fifth sets cover the outside masonry 
structures of the outer walls, while the sixth and seventh sets 
group oblique pictures with variable working distances. 

3.6. Measured parameters 

The 3D reconstruction quality has been evaluated by means 
of four different parameters: the mean number of extracted 
features; the percentage of matched features; the percentage of 
oriented cameras; and bundle adjustment mean re-projection 

error. The mean number of extracted features (𝑛𝑢𝑚𝐹̅) has been 
calculated according to the SIFT (Scale Invariant Feature 
Transform) operator [23] that consists of the following 
relationship: 

 

𝑛𝑢𝑚𝐹̅𝐸𝑁,𝑃𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇 =  
𝑛𝑢𝑚𝐹𝐸𝑁,𝑃𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇

𝑛𝑢𝑚𝐼𝑚𝑆𝐸𝑇

 (1)  

 

where 𝑛𝑢𝑚𝐹 is the total number of extracted features for 

each configuration, and 𝑛𝑢𝑚𝐼𝑚 is the number of images 
included in each set.  

The percentage of matched features (𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐹%) and 

percentage of oriented cameras (𝑐𝑎𝑚%) parameters have been 
evaluated using Bundler [24], through the following 
relationships: 

 

𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐹%
𝐸𝑁,𝑃𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇 =  

𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐹𝐸𝑁,𝑃𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇

𝑛𝑢𝐹𝐸𝑁,𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇

 
(2) 
 
  

𝑐𝑎𝑚%
𝐸𝑁,𝑃𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇 =  

𝑐𝑎𝑚𝐸𝑁,𝑃𝑌𝑅,𝐶𝐻,𝑆𝐸𝑇

𝑛𝑢𝑚𝐼𝑚𝑆𝐸𝑇

 (3)  

 

where 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐹 represents the number of matched 3D 
points in the sparse scene reconstruction resulting at the end of 

the bundle adjustment process, and 𝑐𝑎𝑚 is the number of 
oriented images for each configuration.  

The bundle adjustment mean re-projection error (available as 
output in the Bundler log file and measured in pixels) is the result 
of a minimisation problem applied to the sum of distances 

between the projections of each track (a connected set of 
matching key points across multiple images) and its 
corresponding image features. 

3.7. Dataset generation 

As mentioned above in section 3.5, the whole dataset has been 
grouped into seven subsets according to: camera orientation; 
distance from the subject; pictures taken with flash; and the 
heavy presence of dark and bright areas. The grouping procedure 
has meant a selection and reduction in the number of images to 
196 pictures. 

A Matlab script has been programmed in order to manage the 
selected images and apply the different image enhancement 
algorithms. Firstly, the enhancement methods (ACE, PCA, WB, 
HIST) and the WB correction technique have been applied to 
the original full resolution images. Secondly, the red, green, and 
blue colour components have been extracted only from images 
enhanced with WB correction, ACE, and HIST methods. Mo 
action has been taken on images enhanced with the PCA method 
because this method produces a single-channel output. Lastly, all 
the images have been resized according to the pyramid levels. 

4. STATISTICAL ANALYSIS 

Table 2 shows the mean values of the measured parameters, 
described in section 3.6, computed for each influential factor. 

The data has been analysed by means of statistical instruments 
and have been compared by performing an ANOVA test with a 
95 % confidence level. The summary of the results is presented 
in Table 3, in which the measured parameters have been 
computed from the main source only. The Tukey post hoc test 
has been performed in order to find out significant differences 
between the groups of each influential factor. 

4.1. Mean extracted features 

Figure 2 reports the mean values of the extracted features for 
all the factors of influence (summarised in Table 2). The results 
show that the number of extracted points strongly depends on 
image resolution: A greater number of features is obtained from 
images with a higher resolution. In this regard, the data 
summarised in Table 3 shows a statistically significant difference 

Table 1. Influential factors and related symbol and levels. 

Influential factor Symbol Level 

Colour enhancement method EN OR, HIST, ACE, PCA, WB 

Image pyramid level PYR 1, 2, 3 

Colour channel CH RGB, R, G, B 

Image set SET SET 1, SET 2,..., SET 7 

 

Figure 2. The mean values of extracted features for all the influential factors. 
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among the three levels of the PYR factor, and this result shows 
that the number of features has a strong relationship with image 
resolution. Nevertheless, the images at level 1 (four times more 
pixels than level 2), produces only three times more features than 
the images at level 2 and nine times more features than the 
images at level 3 (containing 16 times less pixels). The image 
enhancement methods ACE and HIST have returned the best 
results. On the contrary, the colour channel appears to be less 
influential than enhancement algorithms, because these last ones 
operate a mixing between the various colour channels in 
different ways. The results related to the factor ‘image set’ show 
a difference in behaviour within the seven datasets. In particular, 
the highest number of features is extracted from the images 
belonging to set 3, which includes pictures taken at a reduced 
distance from the subject. The first two sets are related to the 
same area: The second set has been acquired after having 
removed the sand that covered the tiled floor in order to improve 
the reliability of point detection. Set 6 shows a lower number of 
features, as the oblique pictures have been taken from a greater 
distance, and the presence of the blue background is more 
evident. 

4.2. Percentage of matched features 

The most influential factor on the parameter ‘percentage of 
matched features’ (Table 2) is the image enhancement algorithm 
used. As depicted in Figure 3, it is noticeable that the HIST 
algorithm allows for matching a higher number of features. The 
second factor in terms of influence is the colour channel: RGB 
images and the green channel allow for matching the maximum 
number of features. 

The results related to the factor ‘image pyramid level’ reflect 
the low influence deduced from the ANOVA analysis (Table 3), 
but it must be pointed out that resized images lead to a higher 
percentage of matched points. For all the three enhancement 
algorithms used in the experimentation, PYR levels 1 and 2 leads 
to a higher performance of the feature-matching algorithm. One 
of the reasons for this behaviour is the fact that by reducing the 
resolution, it is possible to find more robust features, as they are 
extracted from the more evident details. The images at level 3 
have not shown good results due to the lack of reliable details. 

Regarding the ‘image set’ factor, the matching of the images 
included in sets 5, 6, and 7 leads to poor results, since these are 
composed by oblique photographs only. The best results have 

Table 2. Mean values of the measured parameters computed for each influential factor. 

Factors Mean extracted features (1) % matched features (2) % oriented cameras (3) 
Bundle adjustment  

mean re-projection error (pixels) 

EN 

HIST 5344.9 2.41 43.24 0.19 

ACE 6984.8 1.45 37.72 0.22 

PCA 1841.2 2.07 33.38 0.18 

WB 2452.1 1.21 21.23 0.22 

OR  260.1 1.14  9.26 0.10 

PYR 

1 8806.0 1.61 37.22 0.24 

2 2829.6 2.04 32.58 0.16 

3  954.2 1.35 20.42 0.13 

CH 

RGB 3848.9 2.20 35.98 0.18 

R 4315.0 1.36 30.51 0.17 

G 3300.1 2.19 34.82 0.18 

B 5322.4 0.91 18.97 0.16 

SET 

1 2813.7 1.71 28.44 0.14 

2 4120.1 1.81 25.97 0.15 

3 5986.0 2.39 48.46 0.13 

4 3647.2 2.56 47.02 0.22 

5 4654.6 0.96 22.62 0.24 

6 3040.7 1.43 26.59 0.24 

7 5022.6 0.98 20.90 0.22 

Table 3. Summary of the results of the ANOVA analysis. 

Factors Mean extracted features (1) % matched features (2) % oriented cameras (3) 
Bundle adjustment  

mean re-projection error 

 F p-value F p-value F p-value F p-value 

EN 1065.41 0 21.07 0 91.08 0  9.17 0.0002 

PYR 1457.10 0  5.93 0.005 20.61 0 13.82 0 

CH 47.80 0 14.54 0 12.39 0  0.18 0.9129 

SET 92.79 0  7.76 0.0001 18.64 0  6.11 0.0002 
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been obtained for sets 3 and 4, which include images taken with 
a reduced working distance and a greater picture overlap. 

4.3. Percentage of oriented cameras 

The image enhancement algorithm is the most influential 
factor on the parameter ‘percentage of oriented cameras’ (Table 
2). The performances obtained using each method are clearly 
better than the results obtained with the original images. For the 
latter, only 9 % of the cameras have been oriented, while about 
43 %, 37 %, and 33 % of cameras have been successfully oriented 
while using the HIST, ACE, and PCA enhancement methods, 
respectively.  

The second most influential factor is image resolution. By 
analysing the results in Figure 4 and the outcomes of the Tukey 
post hoc test, it is noticeable that there are no statistically relevant 
differences between the values for the first and second levels of 
the image pyramid. This means that it is possible to obtain the 
maximum number of oriented cameras with a lower resolution, 
also saving computational time. 

4.4. Bundle adjustment mean re-projection error 

The ANOVA results (Table 3) show that the most influential 
factor for the parameter ‘mean re-projection error’ is image 
resolution. If we consider the pixel size of the subsampled images 
and the mean distance from the subject of 2.5 m, the first and 
second pyramid levels have demonstrated errors measured on 
the ground of 0.29 and 0.38 mm, respectively. 

By analysing the results presented in Table 2 and depicted in 
Figure 5, it is noticeable that a higher error has been measured 
on the image sets containing oblique photographs only. The 
presence of the blue background in almost all the pictures 
reduces the accuracy of the bundle adjustment process.  

Furthermore, the ANOVA analysis results (Table 3) reveal 
that there is not a statistically significant difference among the 
different colour channels (CH). 

4.5. Discussion 

The statistical analysis allowed for choosing the best 
combination of factors that should be used to perform the 3D 
reconstruction of the site. The accuracy of the SfM (Structure 
from Motion) procedure (namely the mean re-projection error) 
is mainly related to the camera network orientation. Sets 1, 2 and 
3 are characterised by convergent images with a high overlap, 
forming a more robust network. Moreover, as reported in the 
previous section, both levels 1 and 2 led to errors below the 
acceptable value of 0.5 mm. For these reasons, it is possible to 
save computational time using subsampled images, which also 
result in a higher percentage of matched features. In fact, in the 
same conditions and varying only the image resolution, the 
average reconstruction time for the datasets taken into account 
in the study presents a saving time of 81 % for PYR2 compared 
to PYR1, and 92 % for PYR3 compared to PYR1. 

HIST and ACE methods considerably increase the 
performance of image matching. The first method returns better 
results in terms of the percentage of oriented cameras and 
matched features, increasing the performance by about 150 % 
and 50 %, respectively. The analysis of the effects of white 
balance correction has shown good results for the parameters 
‘mean number of extracted features’ and ‘percentage of oriented 
cameras’. In particular, white balance corrected images have 
shown a higher number of extracted features and better 
performances compared with PCA method. The images 

 

Figure 4. Mean values of the percentage of oriented cameras for all the 
influential factors. 

 

Figure 3. The mean values of the percentage of the matched features for all 
the influential factors. 

 

Figure 5. Bundle adjustment mean re-projection error for all the influential 
factors. 
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obtained using the custom white balance adjustment lead to less 
stable results, since the correction is performed at the beginning 
of the survey. 

The results in terms of the number of oriented cameras have 
shown similar values for the first and second image pyramid 
levels. Concerning the re-projection error, as described in section 
4.4, in this case the best choice is also to use a lower resolution 
in order to save computational time without affecting 
reconstruction accuracy. Regarding the colour channel, the data 
has demonstrated the better performance of the RGB images, 
particularly the green channel, which outperforms the results for 
other channels in terms of matched features and oriented images. 

Considering the results related to the factor ‘image set’, it is 
evident that the highest number of features is extracted from the 
sequences of images that have been taken using a standard aerial 
photography layout, with a reduced distance to the subject. On 
the contrary, oblique pictures, where the presence of the blue 
background is more evident, returned poor results in terms of 
percentage of matched features and percentage of oriented 
cameras. 

5. RESULTS 

The 3D reconstruction pipeline starts by performing the 
orientation of the whole dataset of 722 pictures by means of the 
Bundler software [25]. In the first instance, the 3D 
reconstruction has been performed on the dataset composed by 
the original images. The image orientation process failed to 
orient all the pictures in a single block: the dataset has been 
divided into two non-overlapping groups, the north and south 
parts, which have been reconstructed separately. In particular, 
384 images have been oriented for the north block and 116 for 
the south block. This failure is mainly due to the sandy seabed 
present in the central part of the room, which makes the 
extraction and matching of features difficult, as a consequence 
of the low contrast. Furthermore, the lack of overlapping areas 
in the reconstructed model prevented the alignment of the two 
blocks. 

The results of the statistical analysis allow for choosing the 
best combination of factors to be used in order to improve the 
reconstruction process, represented by RGB images resized to 

25 % (second pyramid level) enhanced with the HIST method. 
The enhanced dataset has been processed with Bundler, and a 
subset of 533 images related to the whole area has been aligned, 
allowing for the generation of a complete 3D point cloud without 
the need to register the different meshes (Figure 6). This result 
shows that colour correction considerably improves the 
matching process. 

The data returned by Bundler (camera positions and camera 
parameters computed by a self-calibration procedure) and the 
undistorted images have been processed with PMVS2 (Patch 
Based Multi-View Stereo) [26] in order to create a dense cloud of 
about 10 million points related to the whole site.  

This algorithm estimates the surface orientation while 
enforcing the local photometric consistency, which is important 
for obtaining accurate models for low-textured objects or for 
images affected by blur due to the turbidity in the underwater 
environment. Furthermore, PMVS2 automatically rejects 
moving objects such as fishes and algae. The dense stereo 
matching algorithm implemented in PVMS2 receives, as inputs, 
an undistorted set of images and the 3 × 4 camera projection 
matrix computed by Bundler. The output is a coloured dense 3D 
point cloud. The PMVS2 parameters used to fine-tune the 3D 
reconstruction are the size of the correlation window and the 
level in the internal image pyramid used for the computation. In 
our experiment, a fixed correlation window with a size of 7 × 7 
pixels was adopted, while the image resolution (image pyramid 
level) was chosen according to the results obtained through the 
variational analysis. Moreover, image triplets instead of pairs 
were used to increase the robustness of the reconstruction. 

The 3D point cloud has been elaborated with Meshlab tools. 
The first operation was the manual selection and deletion of 
unwanted areas and outliers caused by the presence of 
underwater flora and fauna and bad visibility conditions. Then, a 
watertight surface with about 25 millions of triangles (Figure 7) 
was obtained through the Poisson Surface Reconstruction 
algorithm. 

The resulting surface has been subsequently decimated in a 
mesh of 6.5 million triangles and 3 million points in order to be 
handled more efficiently without losing details. Since the camera 
orientation procedure has been carried out with an unknown 
scale factor, it is necessary to scale the model by selecting two 
points with a known distance. In this experimentation, a scale bar 
has been placed in the scene and reconstructed in order to 
evaluate the scale factor. 

The last step consists in the application of the texture on the 
3D surface. Colour information can be extracted directly from 
the coloured point cloud, but this method does not allow for the 

 

Figure 6. Results of the camera orientation process (enhanced pictures with 
HIST method): sparse point cloud and 533 oriented cameras. 

 

Figure 7. Reconstructed surface. 
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creation of a high-quality texture, because its resolution depends 
on the point cloud density. Moreover, since the enhancement 
procedure is often performed to improve the feature extraction 
process (by increasing the contrast without taking into account 
the fidelity of the colours – usually single-component or 
greyscale images are used), the colour information stored in the 
pixels cannot be used. Since the camera positions are known, the 
texture mapping has been carried out by means the projection 
and blending of high-resolution images directly on the 3D 
surface. In particular, an image subset has been selected because 
the averaging among neighbourhood values during the blending 
on the images works better if a small overlapping area is present.  

This subset of images has been extracted from the images 
enhanced with the HIST method, which also gave the best results 
in terms of texture quality. This is mainly due to the manual 
retouching step performed on a sample image and then exported 
to the whole dataset. 

The result of this procedure is a texture with a resolution 
comparable to the original images (Figure 8). 

6. CONCLUSIONS 

This paper has presented a performance analysis, based on a 
DOE approach, of the main influential factors that affect 3D 
reconstruction quality. The performance of three different 
colour enhancement algorithms, ACE, PCA, and HIST, have 
been evaluated by using a variance analysis, including the effects 
of image resolution and colour channels. The results of the 
ANOVA analysis show that the factors EN (image enhancement 
method), PYR (image pyramid level), and SET (image set) are 
influential, with a confidence level of 95 %, for all the parameters, 
while the results related to the factor CH (colour channel) have 
shown a limited influence, since each enhancement method 
performs mixing operations among the channels. 

The ANOVA data allowed for choosing the best combination 
of factors to optimise the SfM bundle adjustment mean re-
projection error, the number of extracted features, oriented 
cameras, and matched features, also taking the processing time 
into account. More precisely, the best combination is 
characterised by RGB images resized to 25 % and enhanced with 
the HIST method, which returns more stable results. 

By using the results of the statistical analysis to correct and 
process the underwater images, it has been possible to align an 
unordered sequence of more than 500 images belonging to the 
entire site. On the contrary, the original images could not be used 
to align all the cameras. Moreover, the corrected images allowed 
for creating a model mapped with a high-quality texture, 

comparable with original images in terms of resolution and with 
a fair colour balance, since the whole dataset shares the same 
colour statistics. 

Even if these techniques have been used in other works 
related to underwater archaeology, this experiment represents a 
significant case study for verifying their robustness in the 
presence of strong turbidity and poor environmental conditions, 
providing useful guidelines for an accurate modelling of a 
submerged site.  
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