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1. INTRODUCTION 

For robots to be able to work in unstructured environments, 
areas dangerous to humans, or disaster sites, human intelligence 
is still vital. In such cases, the teleoperation of robots could be a 
solution. With recent advancements in robotics, the complexity 
of using robots has also increased. Nevertheless, currently used 
technology limits the majority of man-machine interfaces to text 
or GUI-based interfaces and joysticks. Such types of control can 
become cumbersome in the case of, for example, robots with a 
heavy control box or high degrees of freedom. Often, working 
in disaster areas could be stressful for an operator. Hence, 
alternate and intuitive control paradigms need to be developed. 

With recent progress in the field of hardware and software, 
focus has been given to easy interfaces wherein non-expert users 
can efficiently use the system. In order for new users to be able 
to use otherwise complex systems, gesture-based control seems 
particularly useful as it can be very intuitive [1], [2]. Such a control 
can potentially eliminate the need for physical interfaces and 
enables richer human-robot interaction [3]. 

In well-established approaches for gesture recognition, 
vision-based gesture control is well researched, but the setup 
time and dependency on controlled environmental conditions, 

like lighting, make teleoperation unsuitable for disaster areas. On 
the other hand, Hoffmann et al. [4] developed an Inertial 
Measurement Unit (IMU)-based control for a robot manipulator, 
which does not need any infrastructure. They transformed 
human arm motions into corresponding robotic manipulator 
motions using five IMUs attached to the sleeve of a wearable 
jacket. They showed that teleoperation performed in this way is 
very efficient and intuitive [4]. However, this direct control 
method cannot be used to trigger some predefined manipulator 
motion or to trigger robot-based motions. 

This paper presents an extension of the work done by 
Hoffmann et al. [4] in the area of wearable IMUs. We present a 
framework based on an Online Lazy Neighbourhood Graph 
(OLNG) search, which can identify and classify dynamic gestures 
in real time and can be used to trigger predefined robot motions. 
The main contribution of this work is the implementation and 
evaluation of an OLNG search-based algorithm for gesture 
recognition and robotics application. Additionally, we develop a 
software architecture that allows the integration of robotic 
platforms with our gesture recognition algorithm to trigger robot 
motions corresponding to the gestures with Robot Operating 
System (ROS) middleware. Prior to this OLNG search, the 
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algorithm was primarily used in the area of computer  
graphics [5]. 

2. RELATED WORK 

Gesture recognition has applications in a wide range of areas, 
such as human-computer interaction, sign language recognition, 
gaming, household device control, and robot control [6]. Most 
approaches in the field of gesture recognition are based on 
vision, IMU, and Electromyography (EMG) signals [7], [8], [9]. 
Furthermore, depending on the gesture types, gesture 
recognition techniques can be divided into static and dynamic 
gesture recognition. Dynamic gestures are more difficult to 
recognise due to their temporal variations. However, they 
ascertain more natural interaction and are more  
practical [10], [11]. 

For IMU-based approaches, many use glove-mounted 
sensors. Mummadi et al. [12] used an IMU-based glove for real-
time sign language recognition. They used various machine 
learning algorithms, such as Support Vector Machines, Naive 
Bayes, Multi-Layer Perceptron, and Random Forest, to classify 
the gestures. Wu et al. [13] used a data glove with perception and 
Hidden Markov Models (HMMs) to classify hand gestures. 
However, they only tested the results on simulated data. Georgi 
et al. [8] coupled IMU-based motion with EMG muscle activity 
to recognise hand and finger gestures. They used HMMs for the 
gesture recognition and obtained 74.3 % in accuracy with 
different users. Shin et al. [14] developed a system based on IMU 
and EMG sensors for controlling a mobile robot. They employed 
HMMs as the underlying algorithm for gesture recognition. 
However, these methods either only classified static gestures 
with the hand and fingers [8], [12], [14] or needed a huge database 
(about 1000 samples for each kind) [12]. 

In the domain of commercial products, the Myo armband by 
Thalmic Labs uses EMG signals along with IMUs to detect up 
to five different gestures and motions of the arm. Various 
learning approaches like Support Vector Machines [15], k 
Nearest Neighbour (kNN), and Dynamic Time Warping (DTW) 
[16] are used for gesture recognition with up to 86 % accuracy. 
However, a set of only five pre-defined gestures is supported. 

For vision-based gesture recognition, Microsoft Kinect is 
widely utilised. OpenNI or Kinect SDK software are used for 
motion tracking [17]. For gesture identification, algorithms like 
DTW, HMMs, or Artificial Neural Networks (ANNs) are 
implemented. For an overview thereof, see [18]. Amin et al. [19] 
developed a vision-based technique to identify hand gestures 
using Principal Component Analysis (PCA) and Gabor 
representation. Yu. et al. [20] devised a control architecture for 
gesture-based control of UAVs using the ASUS Xtion camera. 
They defined nine gestures and used ROS for integrating gesture 
recognition with UAVs. They achieve a recognition rate of over 
85 % in an indoor setting and with static gestures. Lai et al. [21] 
developed a hand gesture recognition system using the Microsoft 
Kinect camera with OpenCV libraries. They obtained an 
accuracy of about 95 %. However, vision-based approaches have 
limitations like occlusion and are vulnerable to bad performance 
due to ambient lighting and background changes. 

Considering the limitations of vision sensors and the lack of 
commercially available robust sensors, IMU-based gesture 
control suits our control requirements. 

3. APPROACH 

In order to control a mobile robot with gesture recognition, a 
two-step procedure is necessary. The first step involves 
recognition of the gesture and the second involves designing the 
control architecture to trigger pre-defined robot behaviours. 
Accordingly, the approach description is divided into two 
sections. The first one explains the underlying algorithm we 
developed for gesture recognition and the second section 
describes the complete system, including the robot control 
framework. 

3.1. Gesture recognition 

We assume that the IMU readings are available in the form of 

vectors at a discrete time interval (… , 𝛼⃗𝑡−2, 𝛼⃗𝑡−1, 𝛼⃗𝑡 , … ), where 

𝛼⃗ is a vector of Euler angles and t is time. This vector is referred 
to as input vector in this paper. An underlying training database 
consists of Euler angles obtained from the four IMUs. A 12-
dimensional vector forms a data point in the database. For 
building the database, sequences of such vectors labelled with the 
corresponding gesture names are saved while the gestures are 
being performed. Every vector in the database has a unique index 
i, which is later used for the identification of a particular vector. 

For sequence matching, a window of m input vectors is 
defined. The distance between the current input vector and each 
vector in the training database is calculated, and from this set of 
distances, the indices of the k nearest vectors (kNNs) and their 
spatial distances from the input vector are obtained and stored 
using Fast Library for Approximate Nearest Neighbours 
(FLANN) in real time [22]. FLANN allows a fast nearest 
neighbours search by combining two existing approaches: i) k-
means trees and ii) randomised kd-trees. Additionally, FLANN 
provides automatic selection of the algorithm and configuration 
of parameters for a given dataset and the desired precision for 
the task. 

A matrix is created for the kNNs in the training database and 
for a window of m input vectors. Considering these k × m vectors 
as nodes, a graph can be created, as shown in Figure 1. For each 
input vector, its k corresponding graph nodes are then sorted in 
ascending order of their database index i. For the sequence 
matching, nodes are chosen in such a way that their database 
indices are in strictly ascending order. A path is a sequence 
connected from the first vector in the window to the last vector. 

 
Figure 1. k × m nodes used for the construction of the OLNG. k is the number 
of neighbours in the window of the latest m sensor readings [5]. 
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 Figure 2 shows the possible sequences for three input 
vectors. If no valid neighbour index for a particular input vector 
exists, then the neighbours of the next input vector are 
considered for the path. In that case, an extra path cost is added 
for skipping one input vector. In this way, all possible paths are 
listed, and the best path among them is chosen based on its 
minimum cost. OLNG search offers extremely fast sequence 
matching and is suitable for real-time applications due to its 
linear complexity [5]. 

For gesture recognition, the following procedure is applied. 
1) kNNs to the current input vector are calculated using 

FLANN for the whole database. 
2) OLNG is then used to find a matching and valid 

sequence for a window of m input vectors. 
3) The best path found is saved along with its cost and 

sequence-matching length for comparison. 
4) An arm and hand movement is considered to be a 

gesture if the sequence matching length is more than a 
certain threshold value and the cost of the path is less 
than another threshold. 

Gesture recognition restarts when the robot signals the 
completion of a motion. All needed thresholds were chosen 
based on initial informal experiments and were tweaked and 
validated during our evaluation. 

In the next section, we present the overall system architecture 
including the robot control. 

3.2. Robot control architecture 

The control architecture is such that the user controls with a 
serial device in their hand whether or not the gesture recognition 
is triggered. A user with this serial device is shown in Figure 3. 
The serial device has two buttons, coloured red and green, to 
start and stop the gesture recognition respectively. A flowchart 
of the control scheme used for achieving gesture-based control 
of a mobile manipulator is shown in Figure 4. 

A user starts the gesture recognition by pressing a green 
button on the serial device. This enables data publishing with 
IMUs. The gesture recognition algorithm reads the IMU data and 
extracts movements in the specified window size, including the 
latest data. Then the algorithm checks if the input data 
corresponds to a gesture. If ‘yes’, then a pre-defined robot 

 

Figure 2. Path finding using OLNG search with k nearest neighbours The 
nodes of valid continuous paths are connected. The first valid path shown in 
the figure skips a column and hence it would be penalized [5]. 

 

Figure 3. A user wearing the jacket with IMUs attached to it and holding a 
serial device. The green button is used to start the gesture recognition and 
the red button is used to stop recognizing gestures. 

 

Figure 4. Complete system flowchart. After starting the gesture recognition, 
the stop signal for the gesture recognition and system exit is continuously 
checked in different threads using ROS. 
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motion is triggered. Otherwise, the input gesture window is 
modified to include the latest IMU data frame, and this new input 
window is checked for gesture recognition. Each recognised 
gesture triggers a specific motion of the robot. During the robot 
motion, no gestures are detected. 

At the same time, a check for an exit signal from the user or 
a red button press is performed continuously. When the red 
button on the serial device is pressed, the IMU measurement is 
stopped, and the system waits for a green button signal from the 
user to start the gesture recognition process again. Until the green 
button is pressed, the user’s motion has no effect on the gesture 
recognition system. When the system exit is signalled, the system 
needs to be restarted. 

The programming was done in C++ using a Linux operating 
system and ROS as a middleware. ROS is a software architecture 
that supports robotic platforms and includes various libraries to 
plan and execute robot motions. For generating and 
commanding motions to the robot MoveIt! motion planning 
framework is used. Different software programs called nodes 
communicate in ROS with published messages. Using these 
messages, we establish a link between gesture recognition node and 
the robot MoveIt! Interface. MoveIt! is a ROS-integrated software 
architecture that provides collision-free trajectory generation for 
a robotic manipulator. These trajectories in turn can be used for 
various tasks, including picking up and placing objects while 
making sure that the geometric and hardware constraints of the 
robot are not violated [23]. 

4. EXPERIMENTAL SETUP 

We validated our OLNG search-based algorithm by testing it 
for online gesture recognition. Xsens MTw sensors were used for 
the motion capturing and fo building a database. The sensor is a 

9-axis IMU consisting of a 3-axis gyroscope, acceleration sensor, 
and magnetometer, and it includes an extended Kalman filter. 
Internally, the sensors operate at 75 Hz, but such a high rate does 
not offer much additional information during arm movements. 
Hence, we used a frequency of 15 Hz to update the input. Four 
such sensors were mounted on a jacket at the humerus, radius, 
hand, and finger. 

The training database used consisted of 21 motions of each 
gesture from three different users for a total of 126 samples. The 
test database for obtaining the threshold cost values consisted of 
ten different motions of each gesture plus ten random arm 
movements. Once the threshold cost value was obtained, the 
algorithm was tested with a different dataset consisting of 20 
motions of each gesture. For OLNG search we considered k = 
40 nearest neighbours, a window of m = 10 vectors, and a path 
length of 9. These parameters were tweaked and fixed based on 
our initial informal experiments. Given these fixed parameters, 
the path cost was varied from 0 to 4 in steps of 0.05 square 
radians. 

We defined six gestures to test our algorithm: hurry, drive, 
gather, disperse, forward, and down. These are based on 
internationally used hand signals. Figure 5 shows the gestures 
used. For the gesture ‘Hurry’, the user performs an up and down 
motion of the arm with a closed fist above the shoulder. For the 
gesture ‘Drive’, a closed fist left-to-right motion is performed. 
For the gesture ‘Gather’, the arm rotates in a circular way above 
the shoulder. For the gesture ‘Disperse’, the arm is moved up 
and down from the elbow keeping the hand straight. For the 
gesture ‘Forward’, the arm is stretched downwards and with the 
hand facing outside, the forward motion of the arm is performed. 
For the gesture ‘Down’, the hand is moved down from the wrist, 
keeping the rest of the arm steady. 

To apply robot motions, a telemax manipulator from Telerob 
was used. The robot with the telemax arm is shown in Figure 6. 
The robotic arm has seven degrees of freedom, including one 
telescopic joint. The gestures defined are used to control the 
robot manipulator to perform the behaviours listed in Table 1. 

 
Figure 5. (a)-(f) show the six different gestures defined in our experiment. 

 

Figure 6. The robot hardware used for demonstrating the gesture-based 
control.  
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5. RESULTS 

The Receiver Operating Characteristic (ROC) curves for all 
six gestures with varying path costs are shown in Figure 7. The 
areas under these curves are defined in Table 2. 
It can be observed that these areas are significantly above 0.5 
(value for a random guess); hence, we conclude that the 
algorithm we used is able to distinguish the gestures well. Based 
on the ROC curves, the threshold path cost was chosen to be 

1.80 square radians with 81.61% true-positive rate and a false-
positive rate of 15.12 %. By including random arm movements 
in the test database, all thresholds were also validated to only 
recognise a gesture when one was performed.  

The confusion matrix corresponding to the chosen cost is 
shown in Figure 8. ‘Down’ was considered the best at the chosen 
cost, with a 90 % prediction rate. It can be observed that the 
gesture ‘Disperse’ is more difficult to recognise, as it shares 
similarity with the whole gesture ‘Down’. Hence, the recognition 
rate of the gesture ‘Disperse’ was observed to be 75 %, the lowest 
among all other gestures. The same partial similarity is observed 
between the gestures ‘Gather’ and ‘Hurry’, which leads to the 
non-symmetrical confusion matrix. Nevertheless, we were still 
able to obtain a recognition rate of 80 % for both gestures. 

The recognition rates for all the gestures are given in Table 3. 
It can be observed that the gesture recognition rate is above 75 
% for all the gestures. 

6. CONCLUSION AND FUTURE WORK 

A novel algorithm based on OLNG search was implemented 
and evaluated for the application of gesture recognition in real 
time and used for mobile manipulator control. Experiments were 
performed to validate our approach for gesture recognition. 
Areas under the ROC curve for all gestures were observed to be 
higher than the random-guess value of 0.5. The highest area 
obtained was 0.97, and the lowest was 0.75, proving the viability 
of the algorithm. The results showed that we could obtain a 
gesture recognition rate of above 75 % for all six gestures, with 
a maximum recognition rate of 90 % at the chosen cost. The 

Table 1. The gestures and corresponding robot motions. 

Gestures Robot behaviour 

Drive Drive slightly forward. 

Hurry Increase the speed of the robot base. 

Gather Lookout position for the robot manipulator. 

Disperse Fold arm into transport position. 

Forward Extend arm forward for inspection. 

Down Decrease the speed of the robot base. 

Table 2. Areas under the ROC curve for the gestures with variable threshold 
path costs. 

Gestures Robot behaviour 

Drive Drive slightly forward. 

Hurry Increase the speed of the robot base. 

Gather Lookout position for the robot manipulator. 

Disperse Fold arm into transport position. 

Forward Extend arm forward for inspection. 

Down Decrease the speed of the robot base. 

 

Figure 7. ROC curve for all gestures with variable threshold path costs. A path 
cost corresponding to high true-positives and low false-positives is chosen. 

Table 3. Gesture recognition rates with the chosen threshold path cost. 

Gestures Gesture recognition rates 

Drive 80.0% 

Hurry 80.0% 

Gather 80.0% 

Disperse 75.0% 

Forward 85.0% 

Down 90.0% 

 

Figure 8. Confusion matrix for gestures with the chosen threshold path cost. 
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average recognition rate obtained in the later tests was 81.67 % 
compared to the initial rate of 81.61 % computed from the ROC 
curve, while keeping the false-positive rate low by design. A 
video showing our gesture recognition algorithm is available 
online at https://youtu.be/uILnMSN46dI. 

As a part of this work, we also developed a software 
framework to trigger predefined robot motions based on a 
detected gesture. This framework was integrated with our gesture 
recognition in ROS middleware. The developed architecture is 
robot independent; hence, it facilitates the integration of various 
robotic platforms. The developed framework also allows easy 
definition of new gestures and their addition to the existing 
database. 

In the future, we aim to expand our training database by 
adding correctly recognised gestures to it. We would also like to 
extend our algorithm to match parts of the start, middle, and end 
of a gesture to counter similarities between different gestures. 
This will enable us to further minimise false-positives and 
increase the robustness of the algorithm. 

For additional efficiency of finding the nearest neighbours, 
nanoflann [24], an optimised version of FLANN, will be 
integrated into the algorithm in the future. From a software 
architecture point of view, we would also like to include user 
feedback in the loop before sending commands to the robot 
based on a detected gesture. This will enable us to avoid robot 
motions due to wrongly detected or wrongly classified gestures, 
making the control more robust to both the false-negatives of 
the algorithm and human errors. 
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