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1. INTRODUCTION 

Control charts are useful for monitoring a process in various 
types of property control, such as a property of products, bias 
of a measuring device, and so on. In designing a control chart, 
optimization of the control parameters in terms of economic 
performance has been discussed so far as reviewed by Keats et 
al. [1]. When examining optimization, it is necessary to separate 
static processes, in which the property is time invariant, and 
dynamic processes, in which the property is time variant. 
Taguchi et al. [2] proposed an online quality control procedure 
for dynamic processes by which the checking interval and 
adjustment limit are economically optimized. (The checking 
interval corresponds to the calibration interval for the control 
of a measuring device. The calibration does not contain the 
adjustment of the measuring device in this case.) However, the 
procedure is approximately derived, so that the optimization is 
not precisely given even when the property is in a random-
walking process, which is the simplest stochastic process. 
Adams and Woodall [3] confirmed the property of Taguchi’s 
procedure and proposed a more accurate optimization 

procedure for random-walking processes. Srivastava and Wu 
subsequently reported a simpler solution than that of Adams 
and Woodall [4], followed by an improved version [5]. Box and 
Kramer [6] reported a procedure applicable to a more complex 
type of stochastic process.  

However, there has been little discussion of the adjustment 
uncertainty and time lag in the previous reports. With regard to 
the adjustment uncertainty, when a process is adjusted by 
replacing some parts, it is uncertain whether the idealistic 
property is realized. Environmental or human factors can be 
sources of an adjustment uncertainty. The time lag refers to the 
difference between the time at which an item is produced or 
employed and the time at which the item is checked. This was 
dealt with in Taguchi’s procedure in Taguchi et al. [2]. On the 
other hand, no time lag was discussed in the above studies, so 
the effect is unclear even in a random-walking process. Of 
course, there is some degree of time lag in a realistic process. 
Clarifying the effects of these two parameters on optimization 
is, therefore, a prerequisite in order to apply the optimization 
procedure to a realistic process.  

ABSTRACT 
Taguchi’s online quality control aims at the optimization of the checking interval and adjustment limit of a process from the economic 
point of view. (The checking interval corresponds to the calibration interval for the control of a measuring device.) The present study 
provides a mathematical formalism and an efficient computation method to take adjustment uncertainty and time lag into 
consideration in the optimization of a random-walking property. In cases where either the checking cost or the adjustment cost is free, 
the approximate analytical solution is given. Qualitatively, a larger uncertainty of adjustment yields a shorter optimized checking 
interval and a larger adjustment limit. On the other hand, a larger time lag yields a smaller checking interval and adjustment limit. 
Information of approximate equations and a data set useful for efficient computation is provided.  
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In the present study, the effects of the adjustment 
uncertainty and time lag on optimization are expressed 
mathematically and an algorithm to optimize the checking 
interval and adjustment limit is given. Moreover, a case in 
which the cost of checking is free, which seems interesting in 
terms of reality, as well as a case in which the cost of 
adjustment is free, are investigated here. In actuality, analytical 
solutions can be given for these cases.  

In the present study, only simple random-walking processes 
are discussed. Processes with a shift due to assignable causes, 
e.g., Lorenzen and Vance [7], Banerjee and Rahim [8], 
Nayebpour and Woodall [9], Surtihadi and Raghavachar [10], 
and Wu et al. [11], are not within the scope of our interest here. 
Measurement uncertainty in checking is also ignored. When 
measurement errors are constant, the effect of a measurement 
uncertainty can be assessed as in Taguchi’s procedure described 
in Taguchi et al. [12]. Although CUSUM or EWMA, which are 
presented in Zhang [13], Reynolds and Stoumbos [14, 15], and 
other reports, might be useful to attenuate random 
measurement errors, the application of these techniques raises 
complexity in the optimization procedure. The discussion of 
processes with measurement uncertainty will be a future task. 

This paper is organized as follows: In Section 2, the symbols 
employed in this paper are listed. Section 3 gives the 
mathematical formalism of the optimization problem including 
the effects of the adjustment uncertainty and time lag. Sections 
4 and 5 show the numerical procedure for the optimization and 
its application, respectively. Section 6 provides analytical 
solutions for cases in which the checking cost or the adjustment 
cost is free. The contents of the paper are briefly summarized in 
Section 7. Appendix 1 gives an explanation of the derivation of 
the equation in the main text. Information of approximate 
equations and a data set useful for efficient computation is 
provided in Appendix 2. Appendix 3 explains the derivation of 
the equation as well as Appendix 1. A data set useful for 
efficient computation is also provided as an Online Appendix. 

2. SYMBOLS 

t: Time elapsed since the last adjustment. 
x = xt: Difference from the targeted value at time t. 
T: Checking interval. 
D: Adjustment limit. 
i: Number of checkings since the last adjustment. 
e: Error in an adjustment (x0 = e). 
: Population standard deviation of e.  
t: Time lag, meaning the time lapse between t = kT and the 
adjustment time.  
B: Normalized Brownian motion ((dB)2 = dt).  
: Diffusion coefficient. 
E[.]: Operator for expectation with respect to both B and e.  
k: Number satisfying |xkT| > D.  
Cq: Loss (= cost of poor quality) during t = 0 ~ kT. 
Cl: Loss during time lag (t = kT ~ kT + t). 
Cc: Cost of a single checking. 
Ca: Cost of a single adjustment. 
CT: Total cost during t = 0 ~ kT+t. 
L: Expected cost per unit time.  
T*: Optimum checking interval. 
D*: Optimum adjustment limit. 
L*: Optimum expected cost per unit time. 
: Dimensionless adjustment limit equal to D2/2T. 

: Dimensionless standard deviation of adjustment error equal 
to /D. 
f(, ): Dimensionless expectation of time between adjustments 
equal to 2/D2·E[kT]. 
g(, ): Dimensionless expectation of integration of xt

2 with t 

during t = 0 ~ kT equal to 2/D·E[∫ kT
0 xt

2dt] . 

h(, ): Dimensionless expectation of square of measured value 
in the last checking equal to E[xkT

2]/D2. 
n: Iteration number in computation procedure. 
N: Maximum iteration number in computation procedure. 
R0: Random variable derived from the normal distribution with 
a mean of 0 and a variance of 2. 
R: Random variable derived from the normal distribution with a 
mean of 0 and a variance of 1. 
D0:  Tolerance limit. 
L0: Cost per time when the property is out of the tolerance limit. 
D: Tentative adjustment limit for the parameter determination. 
T: Tentative checking interval for the parameter determination. 
ARL(D, T): Average run length with D and T. 
p: Approximate conditional probability such that |xiT| ≤  on 
the condition that |x(i-1)T| ≤  (1 ≤ i ≤ k－1). 

3. MATHEMATICAL FORMALISM 

Since there is an uncertainty in adjustment, the difference 
from the targeted value, x, at t = 0 is not 0 but e, which is 
derived from the normal distribution with a mean of 0 and a 
variance of 2. It is assumed that x is along with a random walk 
for t > 0. In other words, the variation of x, dx, is given by the 
following stochastic differential equation: 

dBdx  . (1) 
B is a normalized Brownian motion such that (dB)2 = dt. 

Note that it is not necessary for t to be actual time. In a case 
where the property varies with the number of produced items, t 
can be the number of items.  

The difference, x, is checked at t = iT. When |xiT| ≤ D, the 
process is not adjusted. After the k-th checking satisfying |xkT| 
> D, the process is stopped and the difference is adjusted. 
Although the magnitude of the difference at t = kT, xkT, is 
found to be larger than D, the process cannot be adjusted at t = 
kT but at t = kT + t because of the existence of the time lag, 
t. This is a process realized by a Brownian motion, B. 
Examples of a process without and with the adjustment error 
and the time lag are shown in Figure 1. 

A loss during an interval is expressed by the integration of 
the loss function proportional to the square of the difference, 
x2, as applied by Srivastava and Wu [4, 5]. Hence, the loss 
during t = 0 ~ kT is given as follows:  


kT

dtxqC
0

2
q . (2) 

The loss during the time lag, t = kT ~ kT+t, is also given 
as follows: 





tkT

kT
dtxqC 2

l . (3) 

The total cost during t = 0 ~ kT+t, CT, is given as CT = Cq 
+ Cl＋kCc + Ca. What is minimized in the optimization is the 
expectation of cost per the expectation of time, L = E[CT]/ 
E[kT+t]. It should be noted that this expectation operator, 
E[.], does not mean the expectation only with respect to B but 
also with respect to e.  
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The expectation of the loss during the time lag, i.e., t = kT ~ 
kT + t, is given as  

    2222
l 2

tqtxqEdtxqECE kT
TkT

kT




 


 . (4) 

See Appendix 1 for a detailed derivation of this equation. Thus, 
L can be expressed as follows: 

 
 

   
  tkTE

C
T
CkTEtqtxqEdtxqE

tkTE
CEL

kT
kT














 a
c222

0
2

T

2


. (5) 

Due to the time lag, the above equation is more complicated 
than the corresponding equation (22) in Box and Kramer [6]. L 
is the function of the combination of (D, T), and the 
optimization means the determination of the combination of 
(D*, T*) by which L is at its minimum.  

4. COMPUTATION 

D and T are the parameters of L, and it is necessary to 
compute equation (5) to obtain the optimized combination of 
(D*, T*). The calculation of the three expectations E[kT], 

E[∫ kT
0 xt

2dt], and E[xkT
2] is a computationally heavy task and it is 

not realistic to directly conduct the numerical integration 
involving these expectations every time D and/or T changes in 
the optimization procedure. To avoid this, the key is to 
transform these three expectations as follows: 

   


,2

2
fDkTE  , (6) 

 


,2

4

0
2 gDdtxE

kT




 , (7) 

    ,22 hDxE kT  , (8) 

where  = D2/2T and  = /D are dimensionless numbers 
considered as the dimensionless adjustment limit and the 
dimensionless standard deviation of the adjustment error, 
respectively. Once f, g, and h are computed for the various 
combinations of (, ) and references are prepared with tables 
or approximate equations, the burden of computation of the 
expectations is considerably reduced by avoiding direct 
numerical integration. In the present study, a computation 
procedure entailing the following five steps was conducted to 
obtain the values of f, g, and h with N = 1000:  

1) Set  and . T = 1/. n = 0. 
2) n = n + 1. Derive R0 from the normal distribution with 

a mean of 0 and a variance of 2 where x0 = R0. 
3) Repeat to derive R from the normal distribution with a 

mean of 0 and a variance of 1 where xjT = x(j-1)T + 
√T·R until |xjT| > 1 

4) k = j. Fn = kT, Gn = ∑ 1
0



k
i {(T/3)·(xiT

2+ x(i+1)T
2+ 

xiT·x(i+1)T) +2T2/6} and Hn = xkT
2. Go to 2) until n = 

N. 

5) f(x,) = (1/N)·∑ 1
0



k
i Fn, g(x,) = (1/N)·∑ 1

0



k
i Gn, and 

h(x,) = (1/N)·∑ 1
0



k
i Hn.  

See Srivastava and Wu [4] (the third equation on p. 2152) for 
the calculation of Gn in Step 4). Although in the case of  = 0, 
approximate equations for f and g (or those with minor 
mathematical differences) have been given in previous studies 
such as Adams and Woodall [3], Srivastava and Wu [4, 5], Box 
and Kramer [6], and Box and Jenkins [16], f and g with  = 0 
are also recalculated in this study. The approximate equations 
for f, g and h are provided in Appendix 2. The approximate 
equations are applicable for 0.1 <  < 10 and 0 <  < 1. 
Moreover, since the utilization of tables and second-order 
interpolation seems to be helpful in obtaining more precise 
values for f, g, and h than approximate equations with a small 
number of parameters, tables were made for the range of 0.001 
<  < 1000 and 0 <  < 1 with smoothing of the computed 
results. The information on the reference tables for log(f), 
log(g), and log(h) are also provided in Appendix 2. Once the 

 
 

(a) 
 

 
 

(b) 
 

Figure 1. Examples of a random-walking process (a) without and (b) with the
adjustment error, e, and time lag, t. The open circles denote the starting
points and the filled circles denote the checking points. 
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values of f, g, and h are obtained, L can be derived from 
equations (5)–(8) as follows: 

   

 

  tfD

C
T
CfD

tqthqDgDq

L



































,

,

2
1,,

2

2

a
c

2

2

222
2

4

. (9) 

Based on this equation, we can obtain (D*, T*) satisfying 
both ∂L/∂D|D = D* = 0 and ∂L/∂T|T= T* = 0 by an appropriate 
numerical method, such as Newton's method.  

5. EXEMPLIFICATION 

5.1. Calculation conditions 

The example in subsection 23.3 in Taguchi et al. [12] and 
modified cases are employed in the exemplification in the 
present study. Although this example is basically for the 
property control of products, the mathematical formalism is the 
same as that in the property control of a measurement device. It 
should be noted that the symbols in this study are different 
from those in Taguchi et al. [12]. Since the parameters of q and 
 are not employed in the original example, it seems preferable 
to touch on the derivation method of them here.  

According to Taguchi et al. [12], the parameter q can be 
determined as follows: 

2
0

0

D
Lq  , (10) 

where D0 is the tolerance limit for the property, and L0 is the 
cost per time when the property is out of the tolerance limit.  

Although,  = 0 is the prerequisite in the parameter 
determination of  in Taguchi et al. [12], the determination 
method can be modified for the case of  > 0 as follows: 

 

 


TDARL
D

,

22
2 
 , (11) 

where D and T is the tentative adjustment limit and checking 

interval for the parameter determination respectively, and 
ARL(D, T) is the average run length with D and T. 
However, this parameter determination is appropriate only 
when T << D2/2. To determine , it might be generally 
applicable to employ the relationship between the variation in 
time, (ti－tj), and the variation in difference, (xi－xj), that is 
E[(xi－xj)2] = |ti－tj|.  

The calculation conditions are summarized in Table 1. Case 
1 is the same example as that in subsection 23.3 in Taguchi et al. 
[12], while Cases 2 and 3 are examples emphasizing the 
adjustment uncertainty and time lag, respectively. The 
minimizations of equation (9) for all the cases are conducted 
with f, g and h obtained from the reference tables and second-
order interpolation. The information on the reference tables for 
log(f), log(g), and log(h) are provided in appendix 2. 

5.2. Calculation results 

The calculation results are also summarized in Table 1. The 
optimized combination for Case 1 is (D*, T*) = (2.98 m, 
288 units). This differs from the optimized combination of 
(3.80 m, 201 units) by Taguchi’s procedure in Taguchi et al. 
[12]. This result shows the necessity of taking the random-
walking behaviour of the property into consideration for 
accurate optimization. On the other hand, Adams and 
Woodall’s procedure using equation (4.2) in Adams and 
Woodall [3] gives the optimized combination of (2.91 m, 275 
units). This implies that our procedure is basically the same as 
that of Adams and Woodall, because the slight gap depends on 
the marginal difference in the mathematical expression and the 
accuracy of the approximate equation.  

Comparing the results of Case 2 with Case 1, the effect of 
the adjustment uncertainty can be confirmed. Qualitatively, the 
larger the adjustment uncertainty is, the larger the optimized 
adjustment limit is and the smaller the optimized checking 
interval is. It is interesting that the larger adjustment uncertainty 
derives a larger adjustment limit, because the larger adjustment 
limit basically means looser control. The optimized cost per 
time, L*, becomes larger with a larger adjustment uncertainty, 
so it can be said that the adjustment uncertainty has a negative 

 

Table 1. Calculation conditions and calculation results. 

 Case 1 Case 2 Case 3 

Calculation conditions 

 /m·unit-1/2 0.144 

q /$·m-2 0.003556 
Cc /$ 1.5 
Ca /$ 12
 /m 0 1.0 0 

t /unit 1 1 50 

Calculation results 

D* /m 2.98 3.14 2.85 
T* /unit 288 278 281

L* /$·unit-1 0.0342 0.0356 0.0361 
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impact in terms of the long-term cost. 
Comparing the results of Case 3 with Case 1, the effect of 

the time lag can be confirmed. Qualitatively, the larger the time 
lag is, the smaller both the optimized adjustment limit and 
checking interval are. The trend of the optimized adjustment 
limit differs from that of Case 2. In terms of the long-term cost, 
the time lag has a negative impact as does the adjustment 
uncertainty.  

Figure 2 shows the contours of the cost per time, L, for 
Cases 1 and 2. The qualitative features in both cases are 
basically the same. It can be seen that the gradient of the 
variation of L is small in a certain direction. In other words, 
when making D larger and T smaller or D smaller and T larger 
from (D*, T*), the variation of cost is relatively insignificant. 
When certain conditions are imposed on the combination of 
(D, T), the utilization of a contour might be helpful to 
determine the optimized combination.  

6. ANALYTICAL SOLUTIONS FOR SPECIFIC CASES  

6.1. Case of Cc = 0 

When the checking cost is essentially zero (or simply pushed 
aside), the difference, x, will be constantly monitored. This 
realistically means the total inspection of products or the 
everyday checking of a measuring device. Although this case 
has been discussed in previous studies such as Adams and 
Woodall [3], Srivastava and Wu [4, 5], and Box and Kramer [6], 
the effects of the adjustment uncertainty and the time lag have 
not yet been clarified.  

On the condition of  << D, calculation of two of the 

expectations, E[kT] and E[∫ kT
0 xt

2dt], can be replaced by solving 
the corresponding differential equations as shown in Øksendal 
[17]. The solutions of the corresponding differential equations 

are easily obtained: E[kT] = (D2－2)/2 and E[∫ kT
0 xt

2dt] = (D4

－34)/62. Since E[xkT
2] = D2 is obvious, L in equation (5) 

can be given as follows:  

 
tD

CtqtqDDq
L




 222

a
2242244

2
13

6
1




. (12) 

On the additional condition of t << E[kT] and 
t << D2/2, D* satisfying ∂L/∂D|D = D* = 0 can be 
approximately given as follows:  

t
q
CD a 










 22

212
* 6 

. (13) 

This is the exact solution in the case of  = 0 and t = 0. 
Moreover, it is worth noting that in the case of  = 0 and t = 
0, the distribution of x is an isosceles triangle with a range from 
x = － D to x = D. As suggested in the numerical 
exemplification in Section 5, equation (13) also implies that the 
adjustment uncertainty makes the optimized adjustment limit 
large.  

6.2. Case of Ca = 0 

According to Miyagawa [18], when |xiT| ≤ , the 
adjustment makes the variance of x larger. This gives rise to the 
phenomenon called hunting. Adjusting the process after every 
instance of checking is not the best means of reducing the 
variance and the cost per time, even when the adjustment cost 
is zero or pushed aside. To prevent hunting, the process should 
be adjusted only after the checking when |xiT| > . Thus, 
when the adjustment cost is zero or pushed aside, the 
optimized adjustment limit, D*, is not 0 but . Concerning the 
optimized checking interval, T*, although Srivastava and Wu [4] 
reported an analytical equation for this case when  = 0 and t 
= 0, the effects of the adjustment uncertainty and time lag have 
not yet been clarified.  

When 2 << 2T, the conditional probability such that |xiT| 
≤  (i = 1, 2, …, k－1) on the condition that |x(i-1)T| ≤  is 
considered almost constant irrespective of i. If the conditional 
probability is set as p (p << 1), L in equation (5) can be 
approximated as follows: 

 
(a) 

 
(b) 

 

Figure 2. Contours of the cost per time, L, with the calculation conditions of 
(a) Case 1 and (b) Case 2 in Table 1.  
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   
t

p
T

p
Ctq

p
tTq

p
Tq

L












1

12112
c22

222


. (14) 

See Appendix 3 for a detailed derivation of this equation. When 
t << T, it is easily found that the value of p is not significant 
to L because p << 1.  

On the condition that 2 << 2T and t << T, T* satisfying 
∂L/∂T|T= T* = 0 can be derived approximately as follows:  

t
q

CT  2
c* 2


. (15) 

It might be unexpected that  does not have an effect on the 
determination of T* according to equation (15). This is the exact 
solution in the case of  = 0 and t = 0. 

7. SUMMARY 

This paper offers a theoretical formalism and an efficient 
numerical computation algorithm for taking the adjustment 
uncertainty and time lag into consideration in an online quality 
control procedure with a random-walking process model. 
Although the adjustment uncertainty and time lag have been 
disregarded in most of the previous studies, these two 
parameters can have an impact on a realistic process. 
Qualitatively, it can be said that a larger adjustment uncertainty 
derives a larger optimized adjustment limit and a smaller 
optimized checking interval, while a larger time lag derives a 
smaller optimized adjustment limit and checking interval. 

REFERENCES  

[1] J.B. Keats, E. Castillo, E.V. Collani, E.M. Saniga, Economic 
Modeling for Statistical Process Control, J. Qual. Tech. 29 
(1997) pp.144–147. 

[2] G. Taguchi, E.A. Elsayed, T. Hsiang, Quality Engineering in 
Production Systems, McGraw-Hill, New York, 1989, ISBN 0-
07-100358-4. 

[3] B.M. Adams, W.H. Woodall, An analysis of Taguchi’s on-line 
process-control procedure under a random-walk model, 
Technometrics 31 (1989) pp.401–413. 

[4] M.S. Srivastava, Y. Wu, A second order approximation to 
Taguchi’s on-line control procedure, Commun. Statist. － 
Theory Meth. 20 (1991) pp.2149–2168. 

[5] M.S. Srivastava, Y. Wu, An improved version of Taguchi’s on-
line control procedure, J. Stat. Plan. Infer. 43 (1995) pp.133-145. 

[6] G. Box, T. Kramer, Statistical process monitoring and feedback 
adjustment—A discussion, Technometrics 34 (1992) 
pp.251-267. 

[7] T.J. Lorenzen, L.C. Vance, The economic design of control 
charts: A unified approach, Technometrics 28 (1986) pp. 3–10. 

[8] P.K. Banerjee, M.A. Rahim, Economic design of x -control 
charts under Weibull shock models, Technometrics 30 (1988) 
pp. 407-414. 

[9] M.R. Nayebpour, W.H. Woodall, An analysis of Taguchi's on-
line quality monitoring procedures for attributes, 
Technometrics, 35 (1993) pp. 53–60. 

[10] J. Surtihadi, M. Raghavachar, Exact economic design of X  
charts for general time in-control distributions, Int. J. Prod. Res. 
32 (1994) pp. 2287-2302. 

[11] Z. Wu, M. Shamsuzzaman, E. S. Pan, Optimization design of 
control charts based on Taguchi’s loss function and random 
process shifts, Int. J. Prod. Res. 42 (2004) pp. 379–390. 

[12] G. Taguchi, S. Chowdhury, Y. Wu, Taguchi’s Quality 
Engineering Handbook, John Wiley & Sons, Inc, New Jersey, 
2004, ISBN 0-47-141334-8. 

[13] N.F. Zhang, A statistical control chart for stationary process data, 
Technometrics 40 (1998) pp. 24–38. 

[14] M.R. Reynolds Jr., Z.G. Stoumbos, Should exponentially 
weighted moving average and cumulative sum charts be used 
with Shewhart limits?, Technometrics 47 (2005) pp. 409–424. 

[15] M.R. Reynolds Jr., Z.G. Stoumbos, Comparisons of some 
exponentially weighted moving average control charts for 
monitoring the process mean and variance, Technometrics 48 
(2006) pp. 550–567. 

[16] G.E.P. Box, G.M. Jenkins, “Further contributions to adaptive 
quality control: Simultaneous estimation of dynamics: Non-zero 
costs”, in: Bulletin of the International Statistical Institute, 
Proceedings of the 34th Session Ottawa 1963, H. Segal (editor), 
University of Toronto Press, Toronto, 1964, pp. 943–974. 

[17] B.K. Øksendal, Stochastic differential equations: An 
introduction with applications (in Japanese), Springer Japan, 
Tokyo, 1999, ISBN 4-43-170804-9. 

[18] M. Miyagawa, Technology for getting quality–What the Taguchi 
method has brought us (in Japanese). Union of Japanese 
Scientists and Engineers (JUSE), Tokyo, 2006, ISBN 
4-81-710339-6. 

APPENDIX 1: DERIVATION OF EQUATION (4) 

The expectation of Cl, E[Cl], can be expressed as follows: 

 
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where yt is the stochastic process satisfying y0 = 0 and dyt = dB. 
Equation (A1) can be decomposed into two terms as follows: 
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 (A2) 

because E[∫ TkT
kT

 xkT·ytdt] = E[xkT]·E[∫ T
0 ytdt] and both E[xkT] 

and E[∫ T
0 ytdt] are 0. As found from the equation for Gn in Step 

4) of Section 4 in the main manuscript,  
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 (A3) 

Note that y0 = 0 and E[yT
2] = T. Substituting equation (A3) 

into equation (A2) yields 

    222
l 2

TqTxqECE kT   . (A4) 

This is equation (4).  

APPENDIX 2: APPROXIMATE EQUATIONS AND REFERENCE 
TABLES 

The approximate equations for f, g and h are provided in 
Table A1. It should be noted that the approximate equations 
are applicable only for the range of 0.1 <  < 10 and 0 <  < 1. 
The reference tables for log(f), log(g), and log(h) for the range of 
0.001 <  < 1000 and 0 <  < 1 are provided in the Online 
appendix at http://acta.imeko.org/index.php/acta-imeko/ 
article/view/IMEKO-ACTA-02%20%282013%29-02-04/198. 
In the calculation in the main manuscript, the reference tables 
and second-order interpolation are employed.  
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APPENDIX 3: DERIVATION OF EQUATION (14) 

Computation of the three expectations E[kT], E[xkT
2], and 

E[∫ kT
0 xt

2dt] is the key to the derivation of equation (14).  

As described in the main manuscript, when 2 << 2T, the 
probability that |xiT| ≤  (i = 1, 2, …, k－1) on the condition 
that |x(i-1)T| ≤  is considered to be almost constant 
irrespective of i. That probability is set as p (p << 1). The 
probability such that |xiT| ≤  (i = 1, 2, …, k－1) and |xkT| > 
 is therefore given as pk － 1·(1－ p). Hence, E[kT] can be 
calculated as follows: 
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Regarding E[xkT
2], the distribution of xkT is almost 

approximated to the normal distribution with a mean of 0 and a 
variance of 2T, but it should be kept in mind that the 
magnitude of xkT is larger than . Let the variance of the value 
that is derived from the normal distribution with a mean of 0 
and a variance of 2T and the magnitude of that is larger than  
be p

2. It can be said that 2T ≈ p
2p + E[xkT

2](1－p). Since the 

first term on the right-hand side is marginal compared with the 
second term, the following expression can be derived: 
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2
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As found from the equation for Gn in Step (4) of Section 4 

in the main manuscript, E[∫ kT
0 xt

2dt] is given as the sum of 

E[T/3·(xiT
2+ x(i+1)T

2+ xiT·x(i+1)T)+2T2/6] for i = 1, …, k－1. 
Because xiT

2 < 2 (i = 1, …, k－1) and 2 << 2T, E[T/3·(xiT 
2+ x(i+1)T

2 + xiT·x(i+1)T)] is negligibly smaller than 2T2/6 except 
when i = k－ 1. E[xkT

2] cannot be ignored but should be 

assessed by equation (A6). Thus, E[∫ kT
0 xt

2dt] can be 
approximated as follows: 
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Substituting equations (A5) to (A7) into equation (5) results 
in equation (14). 

 

Table A1. The approximate equations for f(,), g(,), and h(,). These approximate equations are applicable only for the range 0.1 <  < 10 and 0 <  < 1. 
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0

4

0

lnexp,
i j

ji
ijff   

fij j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 1.028 －2.386×10－2 －1.785×10－1 －8.825×10－3 3.794×10－2 
i = 1 －4.683×10－1 －2.215×10－3 －2.583×10－1 1.462×10－1 －2.548×10－2 
i = 2 9.580×10－2 5.409×10－3 －8.584×10－2 7.445×10－2 －2.008×10－2 
i = 3 －2.487×10－3 －6.615×10－4 1.406×10－2 －1.429×10－2 5.733×10－3 
i = 4 －2.071×10－3 －5.527×10－4 6.702×10－3 －7.450×10－3 2.685×10－3 
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gij j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 6.610×10－1 －1.503×10－2 2.771×10－1 5.225×10－2 －2.334×10－2 
i = 1 －1.135 －2.939×10－4 －1.889×10－1 1.703×10－1 －3.026×10－2 
i = 2 2.050×10－1 4.571×10－3 －1.114×10－1 1.167×10－2 2.088×10－2 
i = 3 1.051×10－3 1.463×10－3 1.341×10－2 －2.623×10－2 1.073×10－2 
i = 4 －4.765×10－3 1.966×10－4 7.269×10－3 －3.900×10－3 1.812×10－4 
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hij j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 1.028 －1.308×10－2 1.257×10－1 9.406×10－2 －2.560×10－2 
i = 1 －4.678×10－1 －1.008×10－2 －8.802×10－2 1.961×10－1 －5.909×10－2 
i = 2 9.608×10－2 －8.025×10－3 －2.901×10－2 3.029×10－2 －2.293×10－3 
i = 3 －2.540×10－3 6.767×10－4 4.578×10－3 －7.100×10－3 2.066×10－3 
i = 4 －2.113×10－3 1.066×10－3 －1.137×10－4 9.414×10－4 －1.133×10－3 


