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1. INTRODUCTION 

During the last decade, an increasing number of historical 
bowed string instruments have been investigated, with a large 
suite of analytical techniques being employed by the researchers 
to discover the secrets of these masterpieces of craftsmanship 
[1],[2]. Here, the research was mainly focused on the nature of 

the precious varnish [3]-[5] and of the other materials involved 
in the finishing treatments used by the Cremonese violin makers 
[6],[7]. Generally, multiple thin varnish layers (a few microns of 
thickness) were applied on the wood, which was previously 
treated with a sealer and covered by a ground coat to prevent 
varnish penetration [8]. In addition, micrometric inorganic 
particles were often dispersed in the coatings [9],[10]. The most 
common materials involved in the finishing processes were 

ABSTRACT 
The investigation of the coating systems used on historical bowed string musical instruments is generally highly complex due to the 
coatings’ reduced thickness and multi-layered structure. Furthermore, sampling is rarely feasible, and non-invasive approaches do not 
always allow researchers to undertake a thorough characterisation. Thus, in the rare cases of availability, the opportunity must be taken 
to investigate the best micro-samples in detail using a suite of analytical spectroscopic techniques that allow for obtaining various 
informative spectra. Their subsequent interpretation should lead to the characterisation of the finishing layers, the preparation of which 
involves a careful selection of organic and inorganic compounds.  
In the present work, synchrotron radiation and micro-Fourier-transform infrared spectroscopy were combined in terms of reflection 
geometry and chemometrics to investigate six cross-sectioned micro-samples detached from four bowed string instruments produced 
by Antonio Stradivari, Francesco Ruggeri, and Lorenzo Storioni. Various chemometric tools enabled us to perform a preliminary 
exploration of the entire collected infrared dataset, while a classification model based on partial least squares–discriminant analysis was 
used to discriminate the materials through the characteristic signals. High model specificity (> 0.9) was achieved in the prediction, 
providing the groundwork for the application of a fast and rigorous methodological approach. 
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siccative oils, natural resins, casein or animal glue, inorganic 
fillers (e.g. calcium carbonate, gypsum, silicates), and pigments 
(both organic and inorganic) [11]-[13].  

The scientific investigations in this field, generally highly 
challenging due to the intrinsic complexity of the coating 
systems, are rendered even more arduous due to the large variety 
of unknown restoration materials that could have been laid on 
top of the original materials over time [14]. 

In addition, given the high value of the historical musical 
instruments, sampling is rarely allowed. In the rare case where a 
micro-sample can be taken from the surface, it is generally 
embedded in epoxy resin and then cut as a cross section [15]. 
Here, to obtain the maximum amount of information, 
researchers must collect a large amount of data using a suite of 
analytical techniques. While a non-invasive approach is generally 
preferred [16], a combination of non- and micro-invasive 
spectroscopic techniques is often used to comprehensively 
characterise the historical materials, generally in conjunction with 
various imaging, tomographic, and chromatographic techniques 
[17]-[21].  

In recent years, the use of chemometrics in the field of 
heritage science has been tested for an in-depth elaboration of 
large datasets [22]. These analytical tools are largely employed to 
support a preliminary interpretation of the spectroscopic results 
and to improve the visual representation of the information 
carried by the spectra [23]. 

In this work, six micro-samples mounted in various cross 
sections were analysed using synchrotron radiation (SR)–Fourier 
transform infrared (FTIR) micro-spectroscopy at Elettra 
Sincrotrone Trieste (Source for Imaging and Spectroscopic 
Studies in the Infrared [SISSI] beamline, Chemical and Life 
Sciences branch) [24]. The samples were detached from four 
historical bowed string instruments made in Cremona by 
Antonio Stradivari (1644–1737), Francesco Ruggeri ‘il Per’ 
(1630–1698), and Lorenzo Storioni (1744–1816) [25]. To 
preserve the surface of these unique cross sections such that 
further analyses can be developed in the future, a micro-
attenuated total reflection mode was excluded [26], with the 
spectra collected in reflection geometry ensure that the objective 
did not come into contact with the samples. The SR technique 
increased the lateral resolution and signal-to-noise ratio [27],[28], 
allowing us to set the analytical spot up to the minimum layer 
thickness of 10 µm.  

Despite the constraints imposed by the sampling geometry 
and by the reduced layer thickness, numerous complex spectra 
were derived from the cross sections. While this analytical 
approach is promising for achieving the characterisation of the 
coating system, a huge amount of effort is required to obtain a 
reliable and rigorous preliminary picture of the information 
hidden in the entire infrared (IR) dataset. Consequently, to 
support the data-processing step in view of extending the use of 
this analytical technique to a larger number of samples, and to 

obtain as much information as possible from the analyses, it was 
decided to process the spectra using a multivariate approach. In 
fact, various chemometric tools are generally used to elaborate 
the data from a multivariate point of view, which allows for 
unravelling the relevant information carried by the spectroscopic 
signals in terms of, for example, SR–FTIR spectra. Specifically, 
through the use of an unsupervised exploratory procedure, 
namely, principal component analysis (PCA), it is possible to 
understand the relationship between all the variables and to 
extract the sample patterns according to the weight of the 
variables in a new reduced space defined by the PC components 
[29],[30]. Moreover, supervised classification methods (e.g. linear 
discriminant analysis, partial least squares–discriminant analysis 
[PLS–DA], support vector machines, artificial neural networks) 
enable the definition of rules aimed at distinguishing objects into 
classes, such as different materials, which allows for material 
classification and for skipping the visual inspection of the large 
number of spectra.  

Within this context, the present work aimed to (i) develop a 
multivariate methodological framework for managing and 
interpreting large IR datasets and subsequently (ii) compare and 
describe the spectra collected for the six micro-samples using the 
chemometric tools, namely, PCA and PLS–DA. 

The remainder of the paper is organised as follows. In section 
2, the musical instruments considered in the research, the micro-
sampling, and the embedding method are described, while the 
procedures used during the SR–FTIR micro-spectroscopic 
analyses are explained together with the chemometrics approach 
and the attendant procedures. In section 3, the expected IR 
bands and the results obtained via PCA from the IR dataset 
exploration are presented and discussed alongside the 
classification results obtained via PLS–DA modelling. Finally, 
the findings are summarised and potential future research 
directions are outlined in section 4. 

2. MATERIALS AND METHODS 

The experimental plan encompassed the analysis of six sub-
millimetric samples collected from four different bowed string 
instruments (Table 1): a fragment of a cello made by Francesco 
Ruggeri during the 17th Century (FR_c), the Toscano violin 
made by Antonio Stradivari in 1690 (AS_v), and the Bracco small 
violin (LS_sv1, LS_sv2 and LS_sv3) and a small privately owned 
violin (LS_v), which were made by Lorenzo Storioni in 1793 and 
1790, respectively. The samples were collected under high 
magnification, employing a disposable blade scalpel on selected 
areas of the musical instruments. Following the sampling, the 
fragments were embedded into epoxy resin (Epofix Struers and 
Epofix Hardener, 15:2), and then cut into cross sections. The 
surface was then dry-polished using silicon-carbide fine 
sandpaper (500–8000 mesh) to obtain a flat surface. At least two 
layers of organic binders with a minimum thickness of 10 µm 

Table 1. List of the violin makers, musical instruments and samples considered in this project. 

 Period Instrument Type Instrument Name Date Instrument part Sample Name 

Francesco Ruggeri “il Per” 1630 – 1698 Cello - 17th Century Back plate FR_c 

Antonio Stradivari 1644 – 1737 Violin Toscano 1690 Soundboard AS_v 

Lorenzo Storioni 1744 – 1816 Small Violin - 1790 Rib LS_v 

Lorenzo Storioni 1744 – 1816 Small violin Bracco 1793 Soundboard LS_sv1 

Lorenzo Storioni 1744 – 1816 Small violin Bracco 1793 Soundboard LS_sv2 

Lorenzo Storioni 1744 – 1816 Small violin Bracco 1793 Back plate LS_sv3 



 

ACTA IMEKO | www.imeko.org March 2021 | Volume 10 | Number 1 | 203 

were observed through an optical microscope in the coating 
systems of the five selected samples. 

The micro-samples were analysed at the SISSI-Bio beamline 
(Chemical and Life Sciences branch) at Elettra Sincrotrone 
Trieste (Italy) [31]. Measurements were performed on the 
polished samples in terms of reflection geometry via infrared 
synchrotron radiation (IRSR) using a Bruker Vertex 70v 
interferometer coupled with a Hyperion 3000 microscope 
(Bruker Optik GmbH) and a single point mercury–cadmium–
telluride (MCT) detector. A total of 512 scans were averaged in 
the acquisition spectral range of 4000–750 cm−1, with a spectral 
resolution of 4 cm−1 and a scanner speed of 120 KHz. The size 
of the acquisition points was set at 10 × 30 µm by closing the 
knife-edge apertures of the vis-IR microscope according to the 
sample stratigraphy. The acquisition of 97 spectra was carried out 
in single-point mode and linear map mode with a vertical step 
size of 10 µm. For each sample, the background was acquired on 
a gold substrate using the same acquisition parameters. The 
reflection IR spectra were then transformed into absorbance 
spectra (as required for the interpretation of organic compounds) 
by applying Kramers–Kronig (KK) transformations using Opus 
7.5 software. 

The preliminary PCA data exploration was performed with a 
selection of 63 IR spectra (collected in linear map mode) from 
the IR dataset. Here, various spectral pre-treatments, namely, 
smoothing (Savitzky–Golay, 11 wavelengths gap size), first 
derivative (Savitzky–Golay, 11 wavelengths gap size and second-
order polynomial), and mean centre, were applied. To develop 
the PLS–DA classification model, the entire IR dataset (97 
spectra) was divided into a calibration set and a test set containing 
71 (approx. 80 %) and 26 (20 %) spectra, respectively. The 
calibration set contained spectra referred to as samples AS_v, 
FR_c, LS_sv1, and LS_sv3, while the spectra collected on 
LS_sv2 and LS_v were used as the test set. Meanwhile, the 
models were cross-validated using the ‘Venetian blinds’ 
procedure with eight splits. The classification via PLS–DA 
involved the application of PLS regression to a Y dummy, 
completing a rotation of the projection to latent variables to 
obtain the maximum separation among the classes [32]. All the 
data analyses were performed in MATLAB (v. 2016a, 
MathWorks, Inc., Natick, MA, USA) using the PLS toolbox 
software package (ver. 8.5, Eigenvector Research, Inc., 130 
USA). 

3. RESULTS AND DISCUSSION 

To obtain the maximum amount of information from the data 
and to reduce the impact of the non-diagnostic spectral features 
(e.g. signal noise and different baselines) the spectral range was 
initially reduced to a range of 3500–1000 cm−1 before being 
divided into six selected regions: 3500–3000 cm−1, 3000–2700 
cm−1, 1800–1550 cm−1, 1550–1450 cm−1, 1460–1260 cm−1, and 
1250–1000 cm−1. The reflection IR bands in the 3500–1000 cm−1 
range of the most common organic materials documented in the 
finishing layers of historical violins are summarised in Table 2. 

In the 3500–3000 cm−1 region, bands attributed to OH 
around 3500 cm−1 and to NH near 3300 cm−1 are generally 
present. However, the first overtone signal of the amide II is 
generally centred around 3080 cm−1 [35],[36]. Characteristic 
sharp, and often intense, signals produced by CH2 and CH3, can 
occur in the range of 3000–2700 cm−1. These diagnostic bands 
are related to the tens of organic compounds variously used in 
painting and finishing wood surfaces, such as siccative oils, 

natural resins (vegetal and animal) [33],[34], and proteins, as well 
as the wood itself [34],[37]. At lower wavenumbers, the bands in 
the region from approximately 1730 to around 1690 cm−1 are 
attributed to the carbonyl stretching vibration of esters (e.g. from 
oils) and carboxylic acids (e.g. from resins) [33],[34], while those 
falling in the range of 1700–1600 cm−1, mostly centred at around 
1650 cm−1, derive from the amide I of the proteinaceous 
materials (e.g. animal glue, casein) [35],[36]. Other marker bands 
related to these organic compounds can be identified in the 
fingerprint region, between 1450 and 1000 cm−1, as shown in 
Table 2. 

The presence of the epoxy resin used to embed the samples 
is clearly highlighted by the band at 1610 cm−1, which is related 
to C=C (aromatic ring), the intense and sharp band at 1510 cm−1 
C-C (aromatic ring), and by the bands between 1250 and 1000 
cm−1 [38]-[40]. Signals from the epoxy resin can be expected in 
the spectra obtained from acquisition areas falling close to the 
upper or lower boundaries of the embedded sample. 

Table 2. Wavenumber values between 3500 and 1000 cm−1 taken from the 
literature, together with their assignment, of the FTIR reflection bands 
produced by the materials identified in cross-sectioned samples. For the 
derivative bands, the value refers to the maximum of the band after the 
application of KK transformations. * Siccative oil and natural terpenic resins; 
** non-treated wood. 

Material 
Wavenumber  

(cm−1) 
Band shape Assignment 

Proteins 3330 Der vasNH 

[35],[36] 3080 Der Overtone of amide II 

 2960, 2875 Der vasCH3, vsCH3 

 2935, 2850 Der vasCH2, vsCH2 

 1650 Der vC=O (amide I) 

 1550 Der δNH + vC-N (amide II) 

 1450, 1400 Der δCH 

 1350–1200 Der 
δNH + vC-N, δCH, δNH 

(amide III) 

 1200–1000 Der C-O 

Oil-resin varnish * 2950, 2870 Der vasCH3, vsCH3 

[33],[34] 2930, 2850 Der vasCH2, vsCH2 

 1720–10 Der vC=O 

 1465–55, 1380 Der δsCH2, δasCH3, δsCH3 

 1250, 1170, 1100 Der vC-O 

Wood ** 3450 Abs vOH 

[34],[37] 2940, 2900, 2840 Abs vasCH2, vasCH3, vsCH2, 

 1735 Abs vC=O 

 1650 Abs δOH 

 1598, 1505 Abs v(aromatic ring) 

 1465, 1430, 1380 Abs δCH2 

 1330 Abs δOH 

 1280–1240 Abs 
Guaiacyl ring vib., 
syringyl ring vib. 

 1157 Der vasC-O-C 

 1115 Der vas (glucose ring) 

 1060, 1035 Der vasC-O, vsC-O 

Epoxy resin 2960–2850 Der vCH (arom. and aliph.) 

[38]-[40] 1610 Der vC=C (aromatic ring) 

 1510 Der vC-C (aromatic ring) 

 1250 Der vC-O-C (oxirane group) 

 1180 Der Phenyl vib. 

 1035 Der vC-O-C (ether) 
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In addition to the signals at high wavenumbers, the wooden 
substrate produces certain characteristic frequencies in the region 
between 1750 and 1550 cm−1 and in the fingerprint region, as 
shown in Table 2.  

3.1. PCA investigation 

Figure 1 presents the results obtained via PCA in the six 
different selected spectral regions. Each object (i.e. each single 
spectrum) is classified and coloured in accordance with the 
position of the analytical spot in the coating system: epoxy resin 
(E), varnish (V), ground coat (G), and wood (W). Therefore, 
their assignment mainly reflects the distribution of the organic 
compounds in the samples. It is worth noting that the IR dataset 
was composed of spectra clearly related to a single organic 
material, indicating significant marker bands, together with 
spectra carrying signals produced by multiple layers (e.g. varnish 

+ ground coat). These expected ‘mixed’ profiles originated from 
the acquisition areas at the interface between two adjacent layers 
with different compositions and were labelled as Mix 1 (varnish 
+ epoxy resin), Mix 2 (varnish + ground coat), and Mix 3 (wood 
+ ground coat). 

The PC1 vs. PC2 scores plot, which related to the range at 
higher frequencies (Figure 1a), accounted for 86 % of the total 
variance. It is clear that the data exploration in this spectral region 
did not lead to a clear separation of the objects according to 
single organic materials. In the PC1 vs. PC2 scores plot (Figure 
1b), which related to the range between 3000 and 2700 cm−1 (85 
% of total variance), the objects were scattered in the four 
quadrants. Nevertheless, it is possible to observe a cluster formed 
by objects related to the spectra labelled as wood (W), which 
were grouped in the fourth quadrant. 

 

Figure 1. PCA results obtained in the six spectral regions selected in the range of 3500–1000 cm−1. The scores and loadings plots are related to the following 
spectral regions: (a) 3500–3000 cm−1, (b) 3000–2700 cm−1, (c) 1800–1550 cm−1, (d) 1550–1450 cm−1, (e) 1460–1260 cm−1, and (f) 1250–1000 cm−1. 
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The PC1 vs. PC2 scores plot related to the 1800–1550 cm−1 
range (Figure 1c) accounted for 74 % of the total variance, and 
this appeared to be the most promising range for discriminating 
the objects. The spectra identified as V were mostly grouped in 
the PC1 negative area of the plot, with the spectra identified as 
E mainly in the first quadrant. Furthermore, the spectra collected 
at the interface between the V and E adjacent layers (i.e. Mix 1) 
assumed intermediate scores. The objects corresponding to the 
W layer were well grouped in the first quadrant and partly 
overlapped with the E objects. On the contrary, the G elements 
did not form a coherent cluster; rather they were heterogeneously 
scattered. Meanwhile, the objects identified as Mix 2 (i.e. the 
interface between V and G) were heterogeneously distributed in 
the negative PC2 portion, albeit that some were close to the V 
cluster, thus suggesting a higher influence of the varnish 
signature in the corresponding IR spectra. This object 
distribution was well explained by the corresponding loadings. 
The loadings plot highlighted the significant contribution of the 
negative signals between 1750 and 1700 cm−1, which mainly 
characterised the PC1 and PC2 values of the V and Mix 1 groups. 
The positive signals between 1700 and 1600 cm−1, respectively in 
the PC1 and PC2 loadings plot, characterised the objects labelled 
as E and W. 

The scores plot of PC1 vs. PC2 related to the 1550–1450 cm−1 
(Figure 1d) accounted for 89 % of the total variance. In this case, 
the objects that mostly differed along PC1 were V and E, albeit 
that the latter did not form a compact group but were distributed 
in the first and fourth quadrants. The spectra identified as W 
were close to each other and were distributed around the axes’ 
origin. All the mixtures (i.e. the objects identified as spectra 
collected in the interface between two layers) did not exhibit a 
specific distribution. The PC1 values of the E objects were 
positive and higher than those related to other materials. This 
was due to the intense and sharp marker band of the epoxy resin 
centred at 1510 cm−1 (C-C, aromatic ring), which was confirmed 
by the strong signals observed in the region around 1500 cm–1 
for both PC1 and PC2 loadings.  

In the PC1 vs. PC2 scores plot in the range of 1460–1260 
cm−1 (54 % of total variance), the picture was more chaotic 
(Figure 1e). Here, the objects did not form separate clusters, with 
the exception of E, which was mainly grouped in the second 
quadrant. The PC1 vs. PC2 scores plot related to the range of 
1250–1000 cm−1 (Figure 1f) accounted for 63 % of the total 
variance. In this case, a partial separation of the objects according 
to the position of the analytical spot in the coating system was 

identifiable, with most of the E, V, and W in the fourth, second 
and third quadrant, respectively. 

On examining the different examined regions, the object 
distribution in the ranges of 1800–1550 cm−1 and 1550–1450 
cm−1 appeared to be the most promising for discriminating the 
layers related to one single organic material and exhibiting 
significant marker bands. Meanwhile, the spectra acquired at the 
interface between two adjacent layers with different 
compositions did not always exhibit a clear trend.  

Following this, further PCA was performed on the entire 
dataset (97 spectra) while considering the 1800–1400 cm−1 range 
and grouping all the ‘mixed’ profiles in a separate class, labelled 
as U (undefined). On examining the PC1 vs. PC2 scores plot 
(Figure 2a), it was clear that the objects associated with the 
varnish (V) spectral profiles were mostly grouped in the bottom 
left quarter of the plot, as these objects had both negative PC1 
and negative PC2 scores. Meanwhile, most of the spectra 
identified as epoxy resin (E) corresponded to the objects 
grouped in the bottom right quarter, resulting from a positive 
PC1 combined with negative PC2 values. The objects 
corresponding to the spectra collected on the ground coat (G) 
did not form a sharp cluster in the PC1 vs. PC2 scores plot; 
however, all these objects were characterised by positive PC2 
scores and most of them were well separated from the other 
layers. Wood (W) groups formed around the origin of the PC1 
and PC2 axes close to the undefined layers (U).  

In addition, the third PC (accounting for 11 % of the variance) 
was investigated. As Figure 2b shows, the previously identified 
groups were confirmed, even though some were more scattered 
or formed sub-groups. 

From the loadings plot (Figure 2c), the signals corresponding 
to the bands used to detect epoxy resin, varnish, and ground coat 
(Table 2) – largely composed of proteins – appeared to be those 
that mostly influenced the spectra distribution in the groups 
according to the different materials constituting the layers. Here, 
it should be kept in mind that the spectra were transformed 
according to the first derivative, meaning the maximum of the 
diagnostic peaks was lost, while it did correspond to the 
inflection point of the loading profiles. As loadings can assume 
values from −1 to +1, the variables approaching extreme values 
in Figure 2c were those with a greater influence in constituting 
the PCs and, thus, were responsible for the spectra distribution 
in the score plots (Figure 2a,b). 

Here, PC1 effectively discriminated the varnish (V) from the 
epoxy (E) spectra, mainly due to the signals around 1700 and 
1510 cm−1 , while PC2 allowed for the discrimination of objects 

 

Figure 2. PCA results obtained in the region between 1800 and 1400 cm−1: a) PC1 vs. PC2 scores plot; b) PC1 vs. PC3 scores plot; c) PC1, PC2, and PC3 loadings 
plot. E = epoxy resin, V = varnish, G = ground coat; W = wood; U = undefined. 
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related to ground coat (G) due to the amide I signal (1665–1645 
cm−1). 

3.2. PLS–DA classification model 

The materials identified through the observation of each layer 
position in the stratigraphy and confirmed via PCA were used as 
classes (E, V, G, W and U), thus constituting the a priori 
information (Y) to build the PLS–DA classification model (Table 
3) that has the capacity to predict the predominant materials in 
the layers based on the obtained spectral data (X). 

The PLS–DA model was first calibrated, that is, a 
classification rule (equation) was established based on a 
representative set of samples. Following this, the model was 
internally validated via an iterative exclusion of part of the 
calibration set, that is, one out of the eight groups of samples 
(selected via the ‘Venetian blinds’ procedure) served as an 
internal test set, while the remaining data were used for the 
calibration. The results of the eight tests were then averaged and 
the constituent strategy that achieved the highest accuracy was 
selected. The prediction ability of the optimised model was then 
tested using an external test set. 

The three steps of the model development (calibration, cross-
validation, and prediction) were evaluated in terms of sensitivity 
and specificity. Here, sensitivity relates to the model’s capacity to 
correctly recognise samples belonging to a specific class, while 
specificity relates to the model’s capacity to correctly reject the 
samples belonging to all other classes. The internal validation 
(cross-validation) of the model performed well for most of the 
considered classes, achieving a sensitivity of over 0.90 and a 
specificity of over 0.85. However, with the G class, the sensitivity 
was 0.75, as four out of the 12 samples were misclassified as A 
(3) and W (1). This misclassification was expected since the a 
priori assigned classes related to the most present component in 
the layer; however, it is unrealistic to assume that each single layer 
is made up by one pure substance, which means each spectrum 
would potentially contain signals from different compounds. The 
model’s prediction ability was optimal for the E and V classes, 
with a sensitivity of 1.00 and a specificity of over 0.78. However, 
while the specificity of the G and W classes reached the 
maximum level (1.00), the attendant sensitivity was poor. Here, 
one out of the two samples defined as ground coat was classified 
as undefined, while LS_v.25 and LS_v.26, which were defined as 
wood, were assigned to the epoxy class. The low performance of 
the prediction phase was largely related to the low number of 
spectra constituting some of the classes, mainly U and G. In fact, 
the misclassification of only one spectrum resulted in a specificity 
of 0.50 for the G class. However, the prediction phase presented 

the greatest strength of the developed model since this phase is 
missing in most heritage classification cases due to the difficulties 
in collecting data from different samples. 

4. CONCLUSIONS 

The investigation of precious and brittle micro-samples is a 
challenging task when thin layered systems such as those 
encountered in musical instruments are considered. In fact, to 
precisely characterise the attendant materials, an in-depth micro-
invasive – if not micro-destructive – wide analytical campaign is 
generally needed. As such, how to employ SR–FTIR micro-
spectroscopy to obtain hundreds of informative spectra on 
micro-samples without damaging the samples is a crucial aspect. 
Using SR at the SISSI-Bio beamline, it was possible to adopt 
reflection geometry with increased lateral resolution to take 
advantage of IRSR brightness to obtain better spectra (with 
higher signal-to-noise ratios) while avoiding contact with the 
cross sections and preserving the surfaces for further analyses.  

A preliminary elaboration of the large SR–FTIR reflection 
dataset was performed using chemometric tools to obtain a 
rigorous picture of the IR results and to distinguish different 
material classes, previously selected in accordance with the 
position within the coating system of the analytical spot. Three 
additional mixed classes were identified at the interface between 
the layers. The PCA, which was performed on different spectral 
regions, confirmed the preliminary material assignment by 
highlighting clear sample groupings for varnish, ground coat, 
wood, and epoxy resin on the basis of their spectral features. 
Moreover, the explorative analysis confirmed that the spectra 
collected at the interfaces between different layers exhibited 
coherent signals produced by different materials. The PLS–DA 
classification model revealed the feasibility of the proposed 
methodological approach aimed at discriminating the constituent 
materials of bowed string instruments in a fast and rigorous way 
without the need to visually inspect a large number of spectra. 

Further case studies are planned to expand the number of 
investigated historical instruments while considering other 
materials with characteristic spectral features. In addition, the 
method developed in this work will be tested on other datasets 
collected with different non-invasive analytical techniques (e.g. 
XRF, FTIR in reflection geometry) in relation to a large number 
of historical Cremonese musical instruments. 
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