Microsoft Word - 342-2440-1-LE-rev ACTA IMEKO  ISSN: 2221‐870X  September 2016, Volume 5, Number 2, 55‐63    ACTA IMEKO | www.imeko.org  September 2016 | Volume 5 | Number 2 | 55  3D  survey  technologies:  investigations  on  accuracy  and  usability  in  archaeology.  The  case  study  of  the  new  “Municipio” underground station in Naples  Luigi Fregonese 1 ,  Francesco Fassi 1 , Cristiana Achille 1 , Andrea Adami 1 , Sebastiano Ackermann 1 , Alessia  Nobile 1 , Daniela Giampaola 2 , Vittoria Carsana 3   1 Polytechnic of Milan, Department ABC, Hesutech laboratory, Campus Mantova, Piazza D’Arco 3 ‐ 46100 – Mantova, Italy  2 Superintendence Archaeology Campania, Piazza Museo Nazionale, 19 ‐ 80135 ‐ Naples, Italy  3 Assistant of the Superintendence Archaeology Campania, Via del Marzano, 6 – 80123 – Naples, Italy      Section: RESEARCH PAPER   Keywords: Close Range Photogrammetry; laser scanner; instruments; accuracy; calibration; 3D‐Model; archaeology  Citation: Luigi Fregonese, Francesco Fassi, Cristiana Achille, Andrea Adami, Sebastiano Ackermann, Alessia Nobile, Daniela Giampaola, Vittoria Carsana, 3D  survey technologies: investigations on accuracy and usability in archaeology. The case study of the new “Municipio” underground station in Naples, Acta  IMEKO, vol. 5, no. 2, article 8, September 2016, identifier: IMEKO‐ACTA‐05 (2016)‐02‐08    Section Editor: Sabrina Grassini, Politecnico di Torino, Italy; Alfonso Santoriello, Università di Salerno, Italy  Received March 24, 2016; In final form July 22, 2016; Published September 2016  Copyright: © 2016 IMEKO. This is an open‐access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits  unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited  Corresponding author: Luigi Fregonese, e‐mail: luigi.fregonese@polimi.it    1. INTRODUCTION  Nowadays, three-dimensional models of objects from images are a standard in a wide range of applications from autonomous robotics to industrial vision and consumer digital entertainment. In addition, it has been a topic of intensive research since the early days of computer vision and in the field of Cultural Heritage [1], but it has eluded a general solution regarding the accuracy in photogrammetric systems. Image Based Modelling (IBM) is based on multiple 2D image measurements to recover 3D object information through a mathematical model. This method calculates 3D measurements from multiple views with the use of projective geometry and a perspective camera model. In addition, it guarantees a good portability and implies often low cost sensors [2]. However, the surveying results must meet specific criteria in order to provide the required accuracy for certain applications. For that reason, any geometric surveying task, such as the photogrammetric one, includes not only the definition of the relative positions of points and objects but also the estimation of the accuracy of the results [3]. With the least squares adjustment method, based on finding an approximate solution to overdetermined systems, it is ABSTRACT  Advanced 3D survey technologies, such as Digital Photogrammetry (imaged based) and Laser Scanner, are nowadays widely used in  Cultural Heritage and Archaeological fields. The present paper describes the investigations realized by the Laboratory Hesutech of the  Polytechnic of Milan in cooperation with the Superintendence Archaeology Campania in order to examine the potentiality of Image  Based  Modeling  (IBM)  systems  applied  to  the  archaeological  field  for  advanced  documentation  purposes.  Besides  the  3D  model  production workflow in an uncommon excavation environment, a special consideration about the reached accuracy will be discussed.  In the first part of the research, a comparison between photogrammetric camera parameters obtained with IBM systems and the ones  provided with the calibration certificate by the manufacturer of the camera is performed.   In the second part of the research, the operational phases of the application of such advanced 3D survey technologies are shown. The  test field is the archaeological excavation area for the construction of the new “Municipio” underground station in Naples. Due to its  position in one of the historical area of the city, its construction coexists with the archaeological excavations and it is strictly tied to  their evolution. In such conditions, the need to reduce as much as possible the time to build the public infrastructure is a very relevant  feature together with the ability to produce accurate documentation of what is considered archaeologically important.  ACTA IMEKO | www.imeko.org  September 2016 | Volume 5 | Number 2 | 56  possible to obtain reliable information concerning the accuracy of the results as well as the accuracy of the observations. The building of the new “Municipio” underground station in Naples has required extended as well as intensive archaeological investigations on almost the entire area of the construction yard. The importance of the findings and the evidences together with the need to speed up the completion of the infrastructure, required to introduce advanced 3D survey technologies to satisfy both the requirements. However, the high amount of almost every day photogrammetric surveys as well as restitutions, has not allowed to follow a rigorous workflow regarding the calibration procedure (e.g. with dedicated calibration test fields). Anyhow, a self-calibration has been always performed by using the same images acquired during the survey tasks, obtaining residuals on GCPs of few millimetres or 1 to 1.5 cm in the worst cases. In the following Section, a comparison between a self-calibration obtained in such way and the one certified by the manufacturer will be descripted and discussed. In the second part, a few numbers of the IBM system applications on different size and complexity objects will be shown. 2. ACCURACY WITH IBM METHOD  2.1. Method for the determination of the accuracy with IBM  Nowadays, high-resolution cameras allow to acquire excellent quality images in terms of resolution and sharpness and can be used to perform precision surveys. The best way to evaluate the efficiency and the quality of this instrument as well as the whole process is to focus on camera calibration, the common issue in photogrammetric applications, especially when the precision for dimensional measurements is a not negligible variable. In order to perform this calibration, the process follows a three steps approach: 1. Image acquisition; 2. Image alignment with the software Photoscan®, to define position of images and camera parameters (internal orientation and lens distortions); 3. Comparison of the calculated values with those reported in the metric calibration certificate. Compared to the other aberrations, lens distortion is the one that mainly affects photogrammetric measurements in terms of accuracy, and the images must be corrected in photogrammetry. Lens distortions are of several kinds, but the radial one is the most significant. It is the radial displacement of a projected image point on the sensor from its theoretically true position or, equivalently, a change in the angle between a ray and the optical axis. In order to define the distortions, the parameters of the internal orientation of a camera are calculated by means of the self-calibration, in which the distortion and camera parameters are included as part of the bundle adjustment solution. The digital camera used in this test is the Rollei 6008 (Figure 1) with fixed digital 72405433 pixel (49.23236.9444 mm) resolution back sensor (Phase One) and with a 40 mm optical lens. This camera has the following features:  it can save Loss-free or RAW-format images, up to 48 bit colour depth, 32 MB per image;  interchangeable metric lenses PQ (fastest shutter speed: 1/500 s) between 40 mm and 350 mm, interchangeable metric lenses PQS (fastest shutter speed: 1/500 s) between 50 mm and 500 mm;  metric calibration certificate for each lens;  pixel size 6.8 μm. The calibration certificate provided by the manufacturer includes the following parameters:  Ck: 41.195 mm;  Xh: 0.161 mm and Yh: +0.460 mm;  A1: 3.6010-5 and A2: 2.4410-8 as parameter for the radial distortion;  R0: 0.0 mm;  R: [0, 31] mm. The curve of distortion is defined by Rollei with the following equation: ∆ ∙ ∙ ∙ ∙ . (1) The radial distortion curve reported in Figure 2 shows a Figure 1. Rollei 6008AF with Phaseone P45.  Figure 2. Lens radial symmetric distortion values in pixel and μm.  ACTA IMEKO | www.imeko.org  September 2016 | Volume 5 | Number 2 | 57  radial distortion of 374 μm (55 pixels) at 31 mm of radial distance. 2.2. Test for accuracy investigation  In order to evaluate the overall accuracy of the IBM system (in particular Photoscan) a calibration test was realized in a closed environment set-up in a square room of about 4 meters of length, with a cross vault on the top (Figure 3). In this room, a total amount of 108 coded targets (85 coded for PhotoScan and 23 for Leica HDS Cyclone) were displaced all around and measured with a Leica Total Station TS30. In the first data processing, all acquired targets have been used for camera calibration through the steps of image alignment and subsequently of optimization. In such a way the software Photoscan calculated the inner orientation, with the results reported in Table 1. These results are congruent with the data provided in the original calibration certificate of the camera and the distortion, as reported on also from the distortion curves of Figure 4. As concerning the accuracy of alignment of the photogrammetric model, the process has calculated its solution at high quality and it discovered about 120.000 points (Figure 5) with the quality values expressed in Table 2. The above described accuracy values clarify that the precision of the photogrammetric model (with an order of 0.5 pixel) well fits the standard deviations obtained for each direction X, Y, Z. To have a more significant comparison, about 2/3 of all GCP were used as check points (CPs) to verify the quality of the alignment of the total model: the results of such test are summarized in Table 3. Figure 5. GCP and Tie Points determined in alignment and calibration phase  of the model of investigation.  Table 1. Camera Parameters calculated with Photoscan software: exported  in Australis format.  Camera  Parameters  Value  Camera   Rollei 6008 P45 H sensor  7240pixel V sensor  5433pixel Pixel size  6.8µm  C  41.150mm Xp  ‐0.2549mm Yp  0.3618mm K1  ‐3.9628710 ‐5   K2  3.0461610 ‐8   K3  ‐4.7477510 ‐12   P1  3.5966310 ‐6   P2  1.6384410 ‐6   Figure  4.  Comparison  Lens  radial  symmetric  distortion  in  μm  (above)  and  pixel (below).  Figure  3.  The  Polygon  test  in  which  coded  target  for  Photoscan  and  HDS Laser Scanning were positioned.  ACTA IMEKO | www.imeko.org  September 2016 | Volume 5 | Number 2 | 58  As evident from the comparison, the IBM approach, based on photogrammetry and topography, is correct and we can use it also in the documentation of Cultural Heritage. Indeed, the network geometry adopted for the images acquisition in this work is the same as the one adopted during the surveys of architectural and archaeological artifacts; in addition, the order dimension of the acquired objects, for cases of close range survey, are similar. The IBM method is efficient not just for the acquisition stage (in terms of instrumental costs and timing for data acquisition), but also in terms of achievable accuracy. 2.3. Test on surface accuracy   The last part of the test concerns the comparison between the point cloud extracted with photogrammetric approach and a second one obtained by employing the laser scanner Leica HDS 7000 [4]. The laser scan was made by positioning the scanner in the centre of the room and it was registered in the same reference system used for the photogrammetric model by aligning it through the 23 black/white HDS targets. The results of the registration, made with Leica Cyclone, are shown in Table 4. The evaluation of surface accuracy has been made with the software CloudCompare which allows to measure the Euclidean distance between two pointclouds. In Figure 6, it is clear that the distances between photogrammetric and laser scanner pointcloud are included in the interval 0.0006