Microsoft Word - 385-2422-2-LE-rev2


ACTA IMEKO 
ISSN: 2221‐870X 
November 2016, Volume 5, Number 3, 47‐54 

 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 47 

Signal and zero padding to improve parameters estimation of 
sinusoidal signals in the frequency domain 

Dušan Agrež
1
, Damir Ilić

2
, Janko Drnovšek

1
 

1
University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia 

2
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia  

 

 

Section: RESEARCH PAPER  

Keywords: sampling process; sampling by averaging; signal padding; zero padding; estimation of parameters; interpolated DFT 

Citation: Dušan Agrež, Damir Ilić, Janko Drnovšek, Signal and zero padding to improve parameters estimation of sinusoidal signals in the frequency domain, 
Acta IMEKO, vol. 5, no. 3, article 8, November 2016, identifier: IMEKO‐ACTA‐05 (2016)‐03‐08 

Section Editor: Konrad Jedrzejewski, Warsaw University of Technology, Poland 

Received May 13, 2016; In final form July 11, 2016; Published November 2016 

Copyright: © 2016 IMEKO. This is an open‐access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited 

Corresponding author: Dušan Agrež, e‐mail: dusan.agrez@fe.uni‐lj.si 

 

1. INTRODUCTION 

In the last decade, considerable research has been carried out 
on the analysis of efficient methods capable of accurately 
estimating parameters of the frequency components of interest 
[1], [2]. In many cases the problem of evaluating the spectral 
performance of a given periodic signal reduces to the 
estimation of parameters of each spectral component 
(frequency, amplitude, and phase). Parameter’s estimations of 
periodic signals mostly base on sampling and acquiring digital 
values of samples by analog-to-digital converters. In this 
procedure values of sampling points are results of averaging in 
the aperture time – measurement time. This averaging (or 
integration) gives reduction of noise but causes systematic 
errors in estimations of the signal parameters [3]–[5]. In this 
paper, algorithms for estimation of parameters by signal and 
zero padding first and then interpolation in the frequency 
domain are presented. 

A sampling process can be modelled with four signals and 
their frequency spectra in the time and the frequency domain: 
measured signal )()( F fGtg   (Figure 1), impulse response 

of the sampling channel )()( F fHth   (Figure 2), sampling  

 
 

 

function )()( F fSts   (Figure 3), and the window function 

of the measurement interval )()( F fWtw   (Figure 4) 
where F stands for the Fourier transformation from time 
domain to frequency domain and vice versa. 

maxf maxft

 tg

f

 fG

F

Figure 1. Measured signal. 

Figure 2. Impulse response of the sampling channel. 

0

F

t

 th

f

 fH

0

ABSTRACT 
This paper presents the procedure to  improve the estimation of the basic sinusoidal signal parameters (frequency, amplitude, and 
phase, respectively) in the case of signal sampling by averaging in the aperture time. Prior to estimation in the frequency domain by 
the interpolated DFT algorithms the sampled signal is padded with the signal average values in the aperture times and zeroes in the 
rest of the sampling interval. We can increase padding points and a number of the signal cycles in the whole measurement interval 
and with this nearing the errors to the  level as with estimation of the signal without average sampling even the sampling Nyquist 
condition is not fulfill. 



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 48 

The measured signal )(tg is always filtered by the impulse 
response of the input front circuit of the measurement channel 
represented by )(th f  in Figure 5 and after that sampled by the 

real finit duration sampling pulses represented by )(th  

convolved on the sampling function )(ts  (Figure 3: typically 
time uniformly distributed) and finally only a finite number of 
samples is taken into consideration represented by the window 
function )(tw (Figure 4) to get a filtered, sampled and 

windowed signal )(* , tg wf (Figure 5). 

Considering that the equivalent of multiplication in the time 
domain is convolution in the frequency domain 





  d)()()()( 21

F
21 fGGtgtg  and vice 

versa )()(d)()( 21
F

21 fGfGtgg  



  [6] 

the sampling procedure can be modelled as follows (Figure 5): 

It is evident that the spectrum of the sampled signal starts to 
change with modification of the sampling pulses 

)()( F fHth   (Figures 6 and 7). 

2. PADDING AND ESTIMATION OF PARAMETERS 

Sampling by the frequency SS 1 tf   of the periodic band 
limited signal  tg  composed of M  components can be 
expressed as    






1

0 SS
2sin

M

m mmm
tnfAtnw   with mf , mA  

and m  as frequency, amplitude, and phase of a particular 
component, respectively. In the estimation procedure one has 
to take into account that values of samples (Figure 8: line d) are 
representatives in the aperture time apt  or typically average 

values of the signal in the aperture integration interval (Figure 8: 
line c). For a demonstration of sampling, in Figure 8 three 
periods of the one component sine signal are presented with a 
duty cycle of sampling 4.0Sap  ttD  and with sampling 

ratio of 6.1SS  tTffr mm . 
With sampling representatives – average values – we lose 

some information of the signal and especially in the cases where 
the aperture time is so long that the signal changes significantly 

 

 th
 ts

 tg
 thf 



 tg f

 ts





 tg f

 tw
 tg wf,

t

S2t tSt0S2t St

S2t tSt0S2t St

t

1

MT

 
Figure 6. Signals in the sampling process. 

 
 

Sf S2fS2f Sf f0

 fS
 fH

 fGf

 fG wf,

 fGf

 fS

 fG
 fHf

 fW








maxf maxf f

Nyqf
0 fSf S2fS2f Sf

Sf S2fS2f Sf f0

Figure 7. Spectra of signals in the sampling process. 

 

 1  1 1  1  1 F

t

)()( Stntts
n





 

St S2t0S2t  St f

 S1t  S1t S1t  S1t  S1t

  )(1
SS







n t

n
f

t
fS 

S1 t S2 t0S2 t S1t  

Figure 3. Sampling function in the time and the frequency domain.   

 

 tg

0

M1 T M1 T

1

MT
t f

 fW

F

 tw

MT

Figure 4. Window function of the measurement interval. 

 

F

 tg
 thf 

 ts
 th 

 tg f

 ts





 tg f

 tw
 tg wf ,

 fG f

 fG wf ,

 fG f

 fS   

 fG
 fH f

 fS
 fH

 fW







 

Figure 5. Procedure of sampling in the time and the frequency domain. 



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 49 

in this interval and where the sampling Nyquist condition is not 
fulfilled ( 2S  mffr ).  One possibility to overcome these 
problems is to add zeroes (known as zero-padding technique 
[7]) and average values in the aperture times with the duty ratio 

Sap ttD  (Figure 8: line c). The aperture time is positioned 
symmetrically around the known sampling instants. 

By increasing the number of samples and acquired signal 
cycles it is possible to detect signals below the Nyquist 
condition (Figure 9: the whole acquired signal contains around 
50 cycles of the sinusoid 50S  Ntfff mmm  on 

00020N points). An undersampled sine wave still appears as 

a sampled sine wave but at a lower frequency mfkff  S     

( ...,2,1k ) or expressed by the relative frequency 

mk   S  where S  is the relative sampling frequency. 
With padding points we apparently increase the sampling 
frequency in relation to the signal frequency. 

To estimate parameters of the time-dependent signals 
containing any periodicity, it is preferable to use a 
transformation of the signal in the frequency domain. The 
discrete Fourier transformation (DFT) of the windowed signal 
   kgkw   on N  sampled points at the spectral line i  is given 

by: 

      



M

m
mmm

mm iWiWAiG
0

j-j ee
2

j   , (1) 

where mmmm iff    is the frequency component 
related to the base frequency resolution SM 11 tNTf   
and consists of an integer part and the non-coherent sampling 
displacement term 5.05.0  m . 

A finite measurement time is a source of dynamic errors, 
which are shown as leakage parts of the measurement window 
spectrum convolved on the spectrum of the measured-sampled 
signal (Figure 9). The long-range leakage contributions can be 
reduced in more ways: by increasing the measurement time




meas
1 Tf , by using windows with a faster reduction of the 

side lobes (like the Rife-Vincent windows class I - RV1, etc. 
[8]), or by using the multi-point interpolated DFT algorithms. 
Dedicated algorithms are needed to obtain the correct 
parameters of the sinusoidal components in the signal. 
Parameters of the measurement component can be estimated 
by means of interpolation 9. From a comparative study 10 it 
can be concluded that the key for estimating the three basic 
parameters is in determining the position of the measurement 
component mmm i  between the DFT coefficients )( miG  
and )1( miG  surrounding the component m . In estimations, 
the well-known expressions for the three-point estimations for 
frequency (2), amplitude (3), and phase (4) were used. The 
three-point DFT interpolation gives optimal results owing to: 
symmetry around the local peak amplitude DFT coefficient; 
equal suppression of leakage coming from both sides; equal 
minimal error curves as with one-, five- and multi-point 
interpolations. Only the order P of the windows has to be 
changed using RV1 windows [9]. 

     
     121

11
13 




mmm

mm
m

iGiGiG

iGiG
P  (2) 

   
 

      121
πsin

π

!22

2
2

1

1

22
2

3






 




mmm

P

l m
m

m
P

m

iGiGiG

l
P

A 





 (3) 

The single phase can be estimated with the arguments of the 
three largest local DFT coefficients   mi iGm arg  [9], [11]: 

   
2

π

3

2

6

141 11
3 


  mimiimm

a
mmm


 . (4) 

3. EVALUATION OF THE ESTIMATIONS 

3.1. Systematic behaviour 

We can estimate three basic parameters of a particular 
component (true or apparent on Figure 9) by the three-point 
interpolations since we need only the local largest DFT 
coefficients. The estimation errors were compared for the 
frequency (2), amplitude (3), and phase (4) estimations using the 
Hann window ( 1P ). The absolute errors of the frequency 
estimation trueest.)(  E  and the phase estimation 

trueest.)(  E , and the absolute relative errors of the 

amplitude estimation 1)( trueest.  AAAe  are first checked 
for one sine component in the signal with a double scan, 
varying specific sampling parameters and the phase of the signal 

 

0

1

1

  maxgtg

t

a 

b 

apt

St

d 
c 

mT

St

Figure 8. Signals of sampling by averaging in the aperture time: a – original 
signal,  b  –  truncated  signal  in  the  aperture  intervals,  c  –  average  signal
values  in  the  aperture  integration  interval,  d  –  average  value
representatives of the sampled signal in the aperture integration interval. 



  G

50 100 150 200

10-6 

10-4

10-2 

1

s s2 s3

a 

b

c 
d 

c 
d 

m

ms  
ms  

Figure 9. Spectra of signals from Figure 8: a – original signal, b – truncated 
signal  in  the  aperture  intervals,  c  –  signal  with  average  values  in  the 
aperture integration interval, d – signal with average values in the aperture
integration interval with sinc correction. 



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 50 

at particular relative frequencies because the long-range 
leakages are frequency- and phase-dependent (Figures 10 to 23: 

1mA , and 2π2π   , 18π ).  
First, the sampling ratio mffr S was changed to find 

intervals where the interpolation algorithm can be used (Figures 
10 to 19). The absolute maximum error values (from 19 
iterations changing phase) at a given sampling ratio are 
compared using the duty ratio of 4.0Sap  ttD . In Figure 
10, we can see that it is possible to estimate the frequency of 
one component even better than if we have a complete signal 
also when the sampling ratio  mffr S  is in a interval 
between 1 and 2 (the sampling condition is not fulfilled). The 
vicinities around the integer values 1 and 2 where we cannot 
estimate parameters as in the case of the original signal depend 
on the number of signal cycles in the whole measurement 
interval MT . The largest value   gives a better frequency 
resolution and borders come closer to integer values 1 and 2 
(Figures 10, 11, and 12). The width of the error estimation 
main-lobe around integer values depends on the position of the 
investigated component and interspacing between neighbouring 
components if we have enough sampling points in one period   
(400 points are used in simulations from analysis in Figures 22 
and 23). If we have 50 cycles in the measurement interval 
(Figure 10) we get a basic bin resolution 501  and this 
resolution gives error main-lobe borders 15.185.0  r  and 

3.27.1  r  around integers where the frequency estimation 
errors increase due to leakage influence on the investigated 
component m  from its replicas mk  S  2,1k  (Figures 9 

and 12).  
It can be also noticed that there are error peaks which 

number increases below 32r  due to replicas mk  S with 
higher values of ..,4,3k (Figure 12). 

Decreasing the bin resolution to 201  increases unusable 
intervals to 2.18.0  r  and 5.25.1  r (Figure 11). Going 
in opposite direction by increasing the bin resolution to 1001  
(Figure 12) reduces unusable intervals to 1.19.0  r  and 

15.285.1  r , and the frequency can be accurately estimated 
also in the interval of sampling ratio 85.11.1 S  mff  what is 
below the sampling condition. 

In the case of the amplitude estimation (Figures 13 and 15) 
we need to correct the estimated amplitude or the complete 
amplitude DFT spectrum (Figure 9, line d) by the well-known 
sinc correction    mm TtTtk apapsinc-corr πsinπ   [3]. We see 
the same behaviour of the errors in the cases of amplitude and 
phase estimations as with the frequency estimation (Figures 13 
to 16). A bin resolution of 501  reduces unusable intervals 

15.185.0  r  and 2.28.1  r  for the phase estimation as 
for frequency estimation (Figure 14) and even better for the 
amplitude estimation (Figure 13: unusable intervals 

1.19.0  r  and 3.27.1  r ). A resolution of 1001  
further reduces unusable intervals to 08.192.0  r  and 

15.285.1  r  (Figures 15 and 16). 

mffS

 

1 1.5 2 2.5

10-5

10-3

10-1

a b 

10

3

1k2k3k...
 maxE

 

Figure 12. Absolute maximum values of errors of the frequency estimation 
in relation to the sampling ratio: a – original signal, b – signal with average 

values;  k40N ,  Hz320Hz10S f ,  100m . 

 

mffS

  Aemax

1 1.5 2 2.5

10-5

10-3

10-1

a 

b 

10

3

Figure  13.  Absolute  maximum  values  of  relative  errors  of  the  amplitude
estimation  in relation to the sampling ratio: a – original signal, b – signal 

with average values;  k20N ,  Hz160Hz5S f ,  50m . 

mffS

  maxE

1 1.5 2 2.5

10-5 

10-3 

10-1 

a b 

10 

3 

Figure 10. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a – original signal, b – signal with average

values;  k20N ,  Hz160Hz5S f ,  50m . 

mffS

  maxE

1 1.5 2 2.5

10-5 

10-3 

10-1 
a b 

10 

3 

Figure 11. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a – original signal, b – signal with average

values;   k8N ,  Hz64Hz2S f ,  20m . 



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 51 

Algorithms were analysed also by the multi-component 
signal. The second harmonic component as the closest and the 
most disturbing component was added with amplitude 

1012 AA   ( 1.0THD ) and phase 02  , other parameters 
of simulations are the same as for Figure 8. We get the most 
disturbing replicas of the second harmonic at positions 5.1r  
and 3 due to the leakage effect mfkff 2S   ( 2,1k ) 
(Figures 17 to 19). Simulation results show that the proposed 
estimation procedures give very good results when the sampling 

condition is fulfilled, but beyond the Nyquist frequency the 
THD  has to be low ( 01.0 ). 

If we change the duty ratio Sap ttD  in the sampling 
interval (changing the aperture time at a fixed sampling 
frequency) the estimation errors do not change very much in 
comparison to the estimation of the original signal if we correct 
the estimation by a sinc correction [12]. In Figures 20 and 21 the 
duty ratio was changed almost in the whole possible interval 

998.0001.0 D  at 6.1S  mffr  with 400P N  

mffS

   degmax E

1 1.5 2 2.5

10-2 

1 a b 

102 

3

Figure 14. Absolute maximum values of errors of the phase estimation  in
relation to the sampling ratio: a –  original signal, b – signal with average

values;  k20N ,  Hz160Hz5S f ,  50m . 

 

mffS

  Aemax

1 1.5 2 2.5

10-5 

10-3

10-1 

a 

b 

10 

3

Figure  15.  Absolute  maximum  values  of  relative  errors  of  the  amplitude
estimation  in relation to the sampling ratio: a – original signal, b – signal 

with average values;  k40N ,  Hz320Hz10S f ,  100m . 

 

mffS

   degmax E

1 1.5 2 2.5

10-2 

1 a b 

102 

3
 

Figure 16. Absolute maximum values of errors of the phase estimation  in
relation to the sampling ratio: a –  original signal, b – signal with average

values;  k40N ,  Hz320Hz10S f ,  100m . 

mffS

 

1 1.5 2 2.5

10-5

10-3

10-1

a b 

10

3

mfk ;1 mfk 2;1mfk ;2 mfk 2;2
 maxE

Figure 17. Absolute maximum values of errors of the frequency estimation
in relation to the sampling ratio: a – original signal, b – signal with average 

values;  k20N ,  Hz160Hz5S f ,  50m . 

 

mffS

  Aemax

1 1.5 2 2.5

10-5

10-3

10-1

a 

b 

10

3

Figure  18.  Absolute  maximum  values  of  relative  errors  of  the  amplitude
estimation  in relation to the sampling ratio: a – original signal, b – signal 

with average values;  k20N ,  Hz160Hz5S f ,  50m . 

 

mffS

   degmax E

1 1.5 2 2.5

10-2

1
a b 

102

3

Figure 19. Absolute maximum values of errors of the phase estimation  in
relation to the sampling ratio: a –  original signal, b – signal with average 

values;  k20N ,  Hz160Hz5S f ,  50m . 



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 52 

samples in one period (other parameters were the same as in 
Figure 8). 

The estimation also much depends on the number of points 
in the period PN  and in the whole measurement interval. 
Padding with more points (average signal values and zero 
values) will improve estimations since interpolation equations 
(2), (3), and (4) are derived for large number of points 1N  
[9]. In Figures 22 and 23, the number of points in the period 

PN  was changed from 10P N  to more than 512P N  
(other parameters were the same as in Figure 8). We can see 
that the frequency estimation does not differ significantly if we 
have reduced the information of the signal (Figure 22: curves a 
and b) and both estimations errors decrease with increasing 
number of points. 

The amplitude estimation much more depends on the 
number of points (Figure 23) but after having more than 

128P N  points per period the estimation errors drop to the 
level as with the estimation of the original signal without 
averaging in the aperture time. 

3.2. Noise propagation 

The price for the effective leakage reduction is in the 
increase of the estimation uncertainties related to the unbiased 
Cramér-Rao bounds 13 fixed by the signal-to-noise-ratio for a 
particular component  22 2 tmm ASNR   corrupted by a white 
noise with standard uncertainty t 14. In Figures 24 and 26, 
there are standard uncertainties of the frequency, amplitude, 
and phase estimations related to the CR bounds, respectively. 

 
 CRB,

113


NSNR
, (5) 

AA
NSNR

CRB,

11
  , (6) 

  CRB,
11

2 
NSNR

. (7) 

Moving away from integers of the relative frequency, what is 
the case when the sampling ratio is below 2, the standard 
uncertainties increase in relation to the minimal attainable 
values (Figure 24 for the frequency estimation, Figure 25 for 
the amplitude estimation, and Figure 26 for the phase 
estimation) but these changes can be neglected. In the case of 
amplitude estimation the standard deviations even decrease if 
the frequency   is estimated first. 

 

1

2

3

  CRB,

6 1 5432

Figure 24. Standard uncertainty of the three‐point displacement estimation 
(2) related to the CR bound (5). 

Figure 20. Absolute maximum values of errors of the frequency estimation
in  relation  to  the  duty  ratio:  a  –  original  signal,  b  –  signal  with  average
values in the aperture interval. 

 

Sap tt

   5max 10Ae

0 0.1 0.5 

2.2 

2.6 

3.0 
a 

b 

3.4 

1

Figure  21.  Absolute  maximum  values  of  relative  errors  of  the  amplitude
estimation in relation to the duty ratio: a – original signal, b – signal with 
average values in the aperture integration interval with sinc correction. 

Figure 22. Absolute maximum values of errors of the frequency estimation
in  relation  to  the  number  of  sampling  points  in  the  period:  a  –  original 
signal, b – signal with average values in the aperture interval. 

 

pN

  Aemax

100 200 300 400 

10-5

10-3

10-1

a
b 

5000
 

Figure  23.  Absolute  maximum  values  of  relative  errors  of  the  amplitude 
estimation in relation to the number of sampling points in the period: a –
original  signal,  b  –  signal  with  average  values  in  the  aperture  integration 
interval with sinc correction. 

Sap tt

   5max 10E

0 0.1 0.5 

1 

3 

5

a b 

1

pN

  maxE

20 40 60 80 

10-4

10-3

a
b

100 0 120



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 53 

4. EXPERIMENTAL RESULTS 

To demonstrate the proposed algorithms in reducing both 
estimation errors (phase and noise contributions at different 
frequencies) in a real measurement environment we use a 
digitizing voltmeter to acquire signal, Agilent 3458A [15] and a 
stable voltage generator, Keysight 33500B [16] to generate a 
nominal sine voltage with amplitude V1n, uA                        

( %04.0THD ) and changing frequency. In opposite to 
simulations, the sampling frequency was set at kHz10S f

μs100S  t  and the signal frequency was changed from   
kHz100m f down to kHz125.3m f to achieve the same 

sampling ratio 2.31.0mS  ffr .  The fixed aperture time 
μs40ap t  determined the duty cycle of sampling 

4.0Sap  ttD  and with 80s.p. n  acquired sampling points 

the measurement time was ms8Ss.p.M  tnT  with a frequency 

resolution of Hz1251 M  Tf . As in the simulations, 
400padd N  padding points (for signal and zero padding) was 

used around the acquired points, and altogether 
k32padds.p.  NnN  was used in the interpolation DFT 

algorithms. Each sampling sequence of 80 points was 
synchronized using the ‘sync out’ terminal of the generator and 
the external trigger input of the voltmeter. 

Maximal estimation errors are shown in Figures 27 to 29, 
where reference values were those set on the  generator ( 1A , 

kHz125.3kHz100 f and 2π2π   , 18π ) 

and with 50 trials at each frequency and phase. The estimation 
error behaviours are very close to those in the simulations. 

It can be noticed that systematic error contributions behaves 
as expected and a very small second harmonic component is 
presented in the measurement system. The frequency 
estimation (Figure 27) can be compared with the simulation 
results from Figure 10 except the noise floor is higher and at 
the level of 4max 102)(

E  even in the interval below the 
sampling condition 8.115.1 S  mff . The results of the 

 

6.1

4.1

2.1

1
4 51 2 3 6 

b

a

AA CRB,

Figure 25. Standard uncertainty of the amplitude three‐point estimation (3)

related to the CRB (6); a –   is estimated, b –   is known. 

 

 

0

3

1

4

2

  CRB,m

53 61 2 4

a

b


 

Figure 26. Ratios of the uncertainties of the phase three‐point estimation

(4) related the CRB (7); a –   is estimated, b –   is known. 

mffS

 

10-2

 maxE

1 1.5 2 2.5

10-4

10-3

10-1

1

3

Figure 27. Absolute maximum values of errors of the frequency estimation

in  relation  to  the  sampling  ratio;  80s.p. n , k32N ,  kHz10S f , 
25800mm  ff . 

 

mffS

 

10-2

 Aemax

1 1.5 2 2.5

10-4
10-3

10-1
1

3

Figure 28. Absolute maximum values of the relative errors of the amplitude

estimation  in  relation  to  the  sampling  ratio;  80s.p. n , k32N , 
kHz10S f ,  25800mm  ff . 

 

mffS

   degmax E

1 1.5 2 2.5

10-1

1

101

3

Figure 29. Absolute maximum values of errors of the phase estimation  in

relation  to  the  sampling  ratio;  80s.p. n ,  k32N ,  kHz10S f , 
25800mm  ff . 



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3| 54 

amplitude (Figure 28) and the phase estimations (Figure 29) are 
worse in comparison to the simulation results (Figures 13 and 
14) due to inaccurate values at the output of the generator and 
inaccuracy of the sampling voltmeter, but the systematic 
contributions of errorss confirm the expected behaviour like 
with the frequency estimation.  

5. CONCLUSIONS 

The paper proposes algorithms for the estimation of basic 
sinusoidal parameters (frequency, amplitude, and phase of the 
frequency component), when the acquired sampling points do 
not fulfil the sampling condition and some signal information is 
lost due to signal averaging in the aperture time. In the 
proposed procedure, the empty space between successive real 
sampling points is virtually padded by average values of the real 
sampling point in the interval of knowing aperture and zeroes 
in the rest of the sampling interval. This procedure with suitable 
large acquired cycles in the whole measurement interval 
improves the frequency resolution, and the interpolated DFT 
estimation algorithms can be adopted for particular frequency 
components. 

In many cases the number of sampling points is limited but 
by performing the algorithms on a computer we can increase 
padding points and with this nearing the errors to the level as 
with estimation on the theoretically original signal without 
averaging in the aperture time and with the number of points 
equal to all padding points. Simulation and experimental results 
show that the parameters’ estimations are possible also even in 
the interval below the sampling condition. 

REFERENCES 

[1] G. D’Antona, A. Ferrero, Digital Signal Processing for 
Measurement Systems. Theory and Applications, Springer 
Science, 2006. 

[2] D. Agrež, "Dynamics of frequency estimation in the frequency 
domain", IEEE Trans. Instr. Meas. 56 (2007) pp. 2111-2118. 

[3] R. L. Swerlein, "A 10 ppm accurate digital AC measurement 
algorithm", Proc. NCSL Workshop Symp., 1991, pp. 17–36. 

[4] G. A. Kyriazis, "Extension of Swerlein’s Algorithm for AC 
Voltage Measurement in the Frequency Domain", IEEE Trans. 
Instr. Meas. 52 (2003) pp. 367-370. 

[5] H. E. van den Brom, E. Houtzager, S. Verhoeckx, Q. E. V. N. 
Martina, G. Rietveld, "Influence of Sampling Voltmeter 
Parameters on RMS Measurements of Josephson Stepwise-
Approximated Sine Waves", IEEE Trans. Instr. Meas. 58 (2009) 
pp. 3806-3812. 

[6] W. McC. Siebert, Circuits, Signals and Systems, The MIT Press, 
McGraw-Hill, Cambridge, New York, 1986, pp. 497-502. 

[7] G. Leus, M. Moonen, "Semi-blind channel estimation for block 
transmissions with non-zero padding", Records of Conf. on 
Signals, Systems and Comp., 2001, pp. 762-766. 

[8] F. J. Harris: "On the use of windows for harmonic analysis with 
the discrete Fourier transform", Proc. IEEE 66 (1978) pp. 51-83. 

[9] J. Štremfelj, D. Agrež, "Nonparametric estimation of power 
quantities in the frequency domain using Rife-Vincent windows", 
IEEE Trans. Instr. Meas. 62 (2013) pp. 2171-2184. 

[10] J. Schoukens, R. Pintelon, H. Van Hamme, "The interpolated 
fast Fourier transform: A comparative study", IEEE Trans. Instr. 
Meas. 41 (1992) pp. 226-232. 

[11] T. J. Stewart, "Spectral leakage errors when using an Agilent 
3458A to measure phase at mains power frequencies", Proc. 
NCSL Workshop Symp. 1991, pp. 17–36. 

[12] D. Agrež, D. Ilić, J. Drnovšek, "Estimation of periodic signal 
parameters by signal and zero padding", in Proc. XXI IMEKO 
World Congress/2015, Prague, Czech Republic, 2015,  TC4: 474-
479. 

[13] A. Moschitta, P. Carbone, "Cramer-Rao lower bound for 
parametric estimation of quantized sinewaves", Proc. IEEE 
IMTC/2004, Como, Italy, 2004, pp. 1724–1729. 

[14] Widrow B, Kollar I, Quantization Noise, Cambridge Univ. Press, 
2008. 

[15] 3458A Multimeter - User's Guide, Ed. 5, 1988-2012, 2011,  
Agilent Technologies. 

[16] 33500B Series Waveform Generators – Data Sheet, 5991-
0692EN, 2015, Keysight Technologies.