A characteristic of mycelium biomass of edible boletus WANDA WOŹNIAK Department of Fruit and Vegetable Technology, Institute of Food Technology The August Cieszkowski Agricultural University of Poznań Wojska Polskiego 31, PL-60-624 Poznań, wozwa@owl.au.poznan.pl W o ź n i a k W.: A characteristic of mycelium biomass of edible boletus. Acta Mycol. 42 (1):129-140, 2007. The paper presents the results of studies on the production and quality assessment of mycelia of three varieties of King Bolete: Boletus edulis var. pinicolus Vitt. Boletus edulis var. piceicolus Vasilkov and Boletus edulis var. reticulatus (Schaeff. ex Boud.) Bat. In the biomass of mycelium for food the following physicochemical parameters were determined: contents of dry matter, soluble protein – albumins, globulins and prolamins, the rehydratation rate, sensory and microbial quality was assessed. Key words: mycelium of edible boletus, quality of mycelium INTRODUCTION Fungi have been a source of food for humans for several thousand years. As a result of deforestation, especially at intensive mushroom harvesting, resources of wild mushrooms in natural habitats have been constantly decreasing. In recent years, applying the advances in biochemical engineering and biotechnol- ogy, studies have been initiated on obtaining under controlled conditions of mycelia of large-fruited mushrooms, which could be used as substitutes of fruiting bodies of mushrooms in foodstuffs or as sources of active substances used in medicine ( -� y - b e r g e n , S c h e f f e r s 1972; K o h l m ü n z e r 1992; B e a u s é j o u r 1999; B i l a y et al. 2000; L a w 2001). In this way it would be possible to limit the harvesting of mush- rooms from natural habitats. �stablishing conditions of mycelium culture in labora- tories makes it possible to carry out studies in the field of biology, medicine and food science on all fungus species, irrespective of their seasonal occurrence (� y b e r g e n , S c h e f f e r s 1972; � r z y b e k 1992; K o h l m ü n z e r 1992; � a l l , Wa n g 199�; Wa s s� r z y b e k 1992; K o h l m ü n z e r 1992; � a l l , Wa n g 199�; Wa s s � a l l , Wa n g 199�; Wa s s - e r , We i s 1999; Ya n g et al. 2 0 0 2 ; Wo ź n i a k et al. 2003 a , b ). Such investigations were initiated in the second half of the 20th century in the United States by �umbfeld, where at present biomass of morel is sold as flavour substances of this mushroom spe- cies (K o p i ń s k i , R o s z a k 19�7; K o p i ń s k i 19�9; M a e k a w a , I n t a b o n 2002). ACTA MYCOLO�ICA Vol. 42 (1): 129-140 2007 Dedicated to Professor Alina Skirgiełło on the occasion of her ninety-fifth birthday 130 W. Woźniak Such dried biomass for years has been competing on the American market with dried mushrooms imported from �urope (I l c z u k 19�5; O h t a , F u j i w a r a 2003). Production of mycelium biomass of wild mushrooms is an important issue also due to its potential application when new forests are established (K o p i ń s k i 19��; � a l l , Wa n g 199�; R y m k i e w i c z 199�; � a l l et al. 2003). In case of some fungi when mycelia are obtained under conditions of controlled production of submerged cultures, they may be cultivated, as it is the case e.g. with the cultivation of white truffle in New Zealand (Ve l l i n g a 2003). MAT�RIALS AND M�T�ODS The adopted objective of the study was to obtain mycelium for food production purposes from selected species of wild mushrooms characterized by large fructi- fications, attractive for consumers. In this study the following investigations were conducted: 1. Obtaining matrix mycelium from fruiting bodies of such mushrooms as: Boletus edulis var. pinicola Vitt., King Bolete ‘pine’ Boletus edulis var. piceicola Vasilkov, King Bolete ‘spruce’ Boletus edulis var. reticulatus (Schaeff. ex Boud.) Bat, King Bolete ‘reticulated’ 2. Production of mycelium for food production purposes under laboratory condi- tions using submerged culture. 3. Physicochemical, sensory and microbial quality assessment of mycelium for food production purposes. The characTerisTic of experimenTal maTerial Raw material for the production of matrix mycelium were wild mushroom fruc- tifications growing in their natural habitats. King Bolete Boletus edulis Bull.: Fr. of three varieties were collected in the Milickie forests near Łazy Wielkie and in the Tucholskie forests near Brusy. Fruiting bodies of mushrooms, from which tissue ma- trix mycelium was collected, in terms of their quality and morphological characters could be classified as extra quality class according to the Polish Standard PN-76R- 7�505 for fresh mushrooms. Fructifications were young, healthy and all the mush- rooms exhibited characters characteristic of a given species and variety (Wo ź n i a k , Wą s o w i c z 19�1). Pileus surfaces were not damp, they were properly coloured. Mushrooms had whitish hymenophores with immature spores. All the mushrooms had a typical aroma. The flesh at intersection was whitish, firm and fleshy (� r ű n e r t , � r ű n e r t 19�4; L a e s s ø e , C o n t e 1997). Matrix mycelium obtained from these mushrooms was used a raw material in the production of mycelium for food production purposes. The mycelium was produced and its quality was assessed in the years 199�–2004. meThods Mycelium production. �rowth of mycelium on commercial agar solidified media. Matrix mycelium was obtained using tissue culture from wild growing mush- rooms. Reproduction of mycelium for food production purposes was produced on Mycelium biomass 131 potato and wheat media. In case of experimental mycelia mycelium growth incre- ments were established on Petri dishes. During mycelium growth the appearance of the mycelium was assessed descriptively in sensory analysis. Mycelium proliferation using submerged liquid cultures. Proliferation was con- ducted in sterile liquid media, each time in 16 replications. Media were spawned with reproduction mycelium. After spawning flasks were sealed with sterile cotton wool stoppers and placed in a 35� S Shaker (Fig. 1). Prolification parameters were established experimentally (Wo ź n i a k 2002; Wo ź n i a k , K o r z e n i e w s k a 2003). Constant p� and extract were maintained all that time in the medium. �rowth dy- namics was determined as a percentage increment of the liquid volume in reaction flasks taken up by the mycelium. The structure of mycelial filaments, the shape and colour of the mycelium were assessed visually and described every day, starting from the 2nd day after spawning. Tissue mycelia obtained using the traditional method were stored on Petri dish- es, sterile slants and sterile wheat grain (Fig. 2). Mycelia obtained in submerged cul- tures after the completion of proliferation were drained on the �4 filter, thoroughly washed with water and carefully filtered and surface dried. Mycelia for food were dried in a laboratory desiccator with enforced air circulation at 35°C and force dried at 55°C. The obtained dried mushrooms were packed in polyehtylene bags and next into glass jars and stored at 20–22°C, relative humidity of 35% in the dark (Fig. 3). Methods of quality appraisal of mycelium for food. In the biomass of mycelium for food were determined: physicochemical parameters, sensory and microbial qual- ity was assessed. – Determination of dry matter content using the scaling method (C h a r ł a m p o w i c z 1966). – Determination of contents of soluble protein compounds (in �2O, in 0.1 M NaCl, in 15% NaO�) using the colorimetry method (M a j b a u m - K a t z e n e l l e n - b o g e n , M o c h n a c k i 196�; Wo ź n i a k 19�3). – �ot determination of the rehydration coefficient in dried mycelium using the Loesecke method (C h a r ł a m p o w i c z 1966). – Determination of microbial purity (total microbial counts, levels of coliform bacteria, E. coli counts, contents of yeasts, moulds, the presence of coagulase-po- sitive staphylococci) using the platelet and test methods [PN-93 A-�6034/02; PN-90 A-75052/04; PN-90 A-75052/05; PN-90 A-75052/0�; PN-�N-ISO 6���-2;] – Determination of aromatic compounds using the SPM� method, gas chroma- Determination of aromatic compounds using the SPM� method, gas chroma-Determination of aromatic compounds using the SPM� method, gas chroma- tography, with the identification of isolated compounds using mass spectrophotom- etry (T h o m a s 1973; Wą s o w i c z , K a m i ń s k i 1974). – Sensory analyses of mycelia, using a 5-point scale according to Tilgner (B a r y ł k o -P i k i e l n a 1975). – Obtained results of conducted physico-chemical and sensory analyses, as well as mycelium growth dynamics were interpreted statistically. The STAT 6 by StatSoft software was used for the calculations. To illustrate mycelium growth dynamics the equation of the constant mycelium growth was applied : kP� = r = ∂ [Ø] / ∂ t;, in which kP� is the mycelium growth constant, r – function of trend, ∂ [Ø] – change in the thallus area in mm, ∂ t. – change in the time of mycelium growth increment in days (M c � w a n 1991; B r a n d t 2002). 132 W. Woźniak R�SULTS Mycelium for food was obtained from the second reproduction of matrix myc- elium, on potato and wheat media. These media in earlier studies gave good produc- tion yields and were asessed sensorily as the best (Wo ź n i a k et al. 2000; Wo ź n i a k 2002; Wo ź n i a k et al. 2002; Wo ź n i a k et al. 2003a, b; Wo ź n i a k , K o r z e n i e w s k a 2003; Wo ź n i a k et al. 2001; Wo ź n i a k et al. 2004; K o r z e n i e w s k a , Wo ź n i a k 2005). The production of mycelium for food was completed at the moment of the phase of growth inhibition in reaction chambers. Physico-chemical analyses were conducted immediately after production, after washing with distilled water and surface drying of mycelium. The analysis of aroma was conducted for fruiting bodies of fresh mushrooms, from which matrix mycelium was obtained. For the mycelium aroma was assessed between day 5 and day 10 of proliferation depending on the variety of the analyzed mushrooms. Sensory analyses were performed for fresh mycelium, dried mycelium and mycelium after rehydra- tion. The appaearance (colour and consistency), taste and aroma were assessed. For dried and ground mycelium for food the analysis of microbial purity was conducted in the range of analyses required for dried mushrooms. The production of mycelium for food was completed at the moment of the phase of growth inhibition in reaction chambers. Mycelia of all varieties grew faster on potato medium. Proliferation of matrix mycelium lasted approx. 64 days for the “spruce” variety, 74 days for the “pine” variety and 76 days for the “reticulated” variety. The production of biomass in case of mycelium for food lasted much shorter and thus it was 12 days for “pine” variety on potato medium and 14 days on wheat medium, for the “reticulated” variety it was � days on potato medium and 10 days on wheat medium. Mycelium, irrespective of the medium type, grew unformly in the form of hyphae, which constituted branching threads (Tabs 1-2, Figs 4-9). Mycelia of King Bolete in comparison to fruiting bodies had comparable con- tents of dry matter. Depending on the medium used for proliferation, in mycelia obtained from potato and wheat media the solids content for King Bolete ranged Ta b l e 1 Constant kP� for growth changes in matrix mycelium Medium Constant kP� for King Boletus ‘spruce’ ‘pine’ ‘reticulated’ wheat 1.�6 1.16 1.�1 potato 2.14 1.54 1.93 Ta b l e 2 Constant kP� for growth cymelium in submerged liquid method Medium Variety of King Boletus ‘spruce’ ‘pine’ ‘reticulated’ wheat 7.40 14.63 �.54 potato 9.29 1�.06 9.71 Mycelium biomass 135 fractions for mycelia of the same variety differed depending on the medium used for proliferation. In mycelia grown on potato medium the content of soluble protein was slightly higher than in mycelia obtained from wheat medium. The differences amounted to 2.4% for ‘spruce’ King Bolete, 2.�% for ‘pine’ King Bolete and 4.3% for ‘reticulated’ King Bolete. Contents of albumins ranged from 52% to 63% soluble protein contents, while those of globulins from 22.7% to 36% and prolamins from �.3% to 15.6%, respectively (Tabs 3-5). The hot determination of the rehydration ratio was conducted for 20 minut. The coefficient was high and amounted to approx. 6 for ‘spruce’ and ‘pine’ King Bo- Ta b l e 3 Contents of selected chemical contents in mycelium of ‘spruce’ King Boletus Analysis Contents mean (n=16) minimum maximum coefficient of variation multiplying on potato medium Dry matter (%) �.53 �.42 �.62 1.17 (g/100g s.s.) total solube protein albumins globulins prolamins 33.49 1�.94 11.39 3.16 33.65 1�.74 11.25 2.9� 33.31 19.0� 11.59 3.32 1.15 multiplying on wheat medium Dry matter (%) 9.14 9.04 9.22 0.76 (g/100g s.s.) total solube protein albumins globulins prolamins 32.71 1�.5� 11.41 2.72 32.57 1�.45 11.26 2.60 32.�5 1�.71 11.52 2.�6 1.67 n = number of samples collected for analyses Ta b l e 4 Contents of selected chemical contents in mycelium of ‘pine’ King Boletus Analysis Contents mean (n=16) minimum maximum coefficient of variation multiplying on potato medium Dry matter (%) �.25 �.10 �.32 1.21 (g/100g s.s.) total solube protein albumins globulins prolamins 32.�4 17.�9 11.47 3.4� 32.75 17.7� 11.42 3.41 32.�9 17.92 11.56 3.55 0.74 multiplying on wheat medium Dry matter (%) �.07 �.01 �.13 0.3� (g/100g s.s.): total solube protein albumins globulins prolamins 31.53 16.30 10.�� 4.35 31.13 16.09 10.79 4.25 31.79 16.31 11.01 4.47 1.21 n = number of samples collected for analyses 13� W. Woźniak amounted in the fruiting body of ‘spruce’ and ‘pine’ King Bolete approx. 99% and in the ‘reticulated’ variety 72% total volatile compounds. In mycelia of these species it was 40% for ‘pine” King Bolete, 29% for ‘spruce’ variety and �% for ‘reticulated” variety, respectively (Tab. �). CONCLUSIONS Problems investigated in this study concern the production of high quality myc- elium of King Bolete of three varieties: ‘pine’, ‘spruce’ and ‘reticulated’. In the conducted investigations it was found that: 1. Composition of the medium applied for proliferation has a significant effect on growth dynamics of mycelium and on its quality. 2. Physico-chemical indexes (protein contents and dry matter, aromatic volatile substances), sensory attributes (appearance, taste and aroma) and microbial indexes indicate high quality of the produced mycelia. 3. Mycelia produced from the analyzed mushroom varieties after drying may constitute a good supplement of dried mushroom in foodstuffs. Ta b l e 7 Description of biomass for food of King Bolete Varietas Medium Quality attributes colour taste aroma ‘spruce’ potato light-cream mushroom mushroom intensive wheat light-cream-white mushroom mushroom, average intensive ‘pine’ potato light-cream mushroom mushroom intensive wheat light -cream-white small mushroom small mushroom ‘reticulated’ potato cream mushroom mushroom wheat cream-beige small mushroom small mushroom Ta b l e � Aroma components in mycelium and fruting bodies Contents of aroma components in ppm King Bolete volatile componends �- carbon compounds 1-octen-3-ol ‘spruce’ fruting 1 64�4 6329 6293 mycelium 2 2�30 24�� 725 ‘pine’ fruting 1 11496 10974 10�16 mycelium 2 2235 1600 642 ‘reticulated’ fruting 1 205�4 15375 11052 mycelium 2 3662 2�20 222 �xplanations: 1 Aroma components of fresh fruting bodies analyzed for mushrooms from which matrix mycelium was obtained. 2 Aroma components of mycelium biomass obtained in submerged liquid cultures on potato medium on day 5 of proliferation. Mycelium biomass 139 R�F�R�NC�S B a r y ł k o - P i k i e l n a N. 1975. Zarys analizy sensorycznej żywności. WNT, Warszawa. B e a u s é j o u r T. M. 1999b. �etting Started with Mushroom Cultivation. www.mycoweb.com/articels/ cultivation.html. B i l a y V. T. , S o l o m k o � . F. , B u c h a l o A . S . 2000. �rowth of edible and medicinal mushrooms on commercial agar media. Science and Cultivation of �dible Fungi. Van �riensven (ed.). Balkema, Rotterdam: 779–7�2. B r a n d t S . 2002. Analiza danych. Metody statystyczne i obliczeniowe. PWN, Warszawa. C h a r ł a m p o w i c z Z . 1966. Analizy przetworów z owoców, warzyw i grzybów. WPLiS. Warszawa: 133–135. � y b e r g e n � . C . v a n , S c h e f f e r s W. A . 1972. �rowth of the mycelium of Boletus edulis on agar me- dia and in submerged liquid cultures. Antonie van Leeuwenhoek; J. Microbiol. Serol. 3�: 44�–450. � r ű n e r t � . , � r ű n e r t R . 19�4. Pilze. Mosaik Verlag �mb�, Monachium: 52–56: 11�. � r z y b e k J. 1992. Kultury mycelialne grzybów wyższych źródłem substancji leczniczych. Biotech. 4 (19): 37–40. � a l l I. R., Wa n g Y. 199�. Methods for cultivating edible ectomycorrhizal mushrooms. Mycorrhiza manual. A. Varma (ed.). Springer Laboratory Manual. Springer Verlag, �eidelberg: 99–114. � a l l I . R . , Y u n W. , A m i c u c c i A . 2003. Cultivation of edible ectomycorrhizal mushrooms. Trends in Biotech. 21 (10): 433–43�. I l c z u k Z. 19�5. Wgłębna hodowla grzybów jadalnych. �rzyby 12: 30. K o h l m ü n z e r S . 1992. �odowle myceliarne grzybów wyższych jako źródło biologicznie aktywnych substancji. Probl. �ig. 36: 10–15. K o p i ń s k i L . , R o s z a k J . 19�7. Badanie zmian morfologii cząstek grzybni podczas hodowli wgłębnej. Przem. Ferm. i Owoc.-Warz. 9: 3–5. K o p i ń s k i L . 19��. Wgłębna hodowla grzybni pieczarki (Agaricus bisporus), boczniaka ostrygowatego (Pleurotus ostreatus) w podłożach zawierających odpady rolno-spożywcze. Przem. Ferm. i Owoc.- Warz. 5: 21–24. K o p i ń s k i L . 19�9. Poprawa właściwości aromatyzująco-smakowych grzybni boczniaka i twardzika rosnących w płynnych podłożach odpadowych. Przem. Ferm. i Owoc.-Warz. 1: 17–1�. K o r z e n i e w s k a A . , W o ź n i a k W. 2005. Produkcja i ocena biomasy grzybni czubajki kani Macro­ lepiota procera (Scop. ex Fr.) Sing. Materiały Konferencji Naukowej „Żywienie a zdrowie – interak- cje”. 9-10 czerwca 2005, Kraków: 56. L a e s s ø e T. , C o n t e A . 1997. �rzyby. Wielka Księga. Wiedza i Życie, Warszawa. L a w D. 2001. Fungi as a Platform for New Medicine. Mushrooms, Fungi and Medicine: www.gmush- rooms.com M a e k a w a T. , I n t a b o n K . 2002. United States Patent 6, 490, �24. Method for culturing a basidio- mycetous fungus in a liquid culture medium. M a j b a u m - K a t z e n e l l e n b o g e n W. , M o c h n a c k i I . 196�. Kurs praktyczny z biochemii. PWN, Warszawa. M c � w a n J . 1991. Statistical analysis of sensory data. Mat. Międzynar. Konf. Naukowej nt Analiza sensoryczna żywności – metody i zastosowania. Mądralin k/Otwocka: 319–320. O h t a A . , F u j i w a r a N . 2003. Fruit-body production of an ectomycorrhizal fungus in genus Boletus in pure culture. Mycoscience 44: 295–300. R y m k i e w i c z A . 199�. �odowla grzybów kapeluszowych in vitro. Biul. Pieczarki 4: 49–54. T h o m a s A . F. 1973. Analysis of the Flavour of the Dried Mushroom, Boletus edulis. J. Agricult. Food Chem. 21 (6): 955–95�. Ve l l i n g a � . C . 2003. Chlorophyllum and Macrolepiota (Agaricaceae) in Australia. Australian Syste- matic Botany 16: 361–370. Wa s s e r S . P. , We i s A . L . 1999. Therapeutic effects of substances occurring in higher Basidio- mycetes mushrooms: a modern perspective. Crit. Rev. Immunol. 19: 65–96. Wą s o w i c z � . , K a m i ń s k i � . 1974. Substancje zapachowe borowika szlachetnego (Boletus edulis). Przem. Spoż. 6: 269–270. W o ź n i a k W. , Wą s o w i c z � . 19�1. Volatile flavour components of mushrooms: Boletus edulis, Xerocomus badius and Tricholoma equestre. Int. Symp. Flavour Research Concepts and Method. Rydzyna. W o ź n i a k W. 19�3. Azotowe składniki pokarmowe grzybów. �rzyby 3: 19–22. 140 W. Woźniak W o ź n i a k W. , � a p i ń s k i M . , M u r a s U . , K o r z e n i e w s k a A . 2000. Ocena biomasy grzybni shiitake odmiany 37*37 z hodowli wgłębnej. Roczniki AR w Poznaniu, CCCXXIII. Ogrodnictwo 31 (1): 561–565. W o ź n i a k W. , M u r a s U . , K o r z e n i e w s k a A . , � a p i ń s k i M . 2001. �rowth of Agaricus bisporus (Lange) Sing. mycelium as influenced by production method. Vegetable Crops Res. Bull., Poland-Skierniewice 54 (2): �3–�6. W o ź n i a k W. 2002. Raport z badań nad produkcją grzybni wielkoowocnikowych grzybów w latach 1997- 2002. Materiały niepublikowane, do wglądu w ITŻPR AR w Poznaniu. W o ź n i a k W. , M u r a s U . , K o r z e n i e w s k a A . , � a p i ń s k i M . 2002. Opracowanie warunków produkcji grzybni pieczarki dwuzarodnikowej odmiany Polmycel 3201 metodą wgłębną. Materiały XXXIII Sesji Naukowej KTiChŻ PAN „Nauka o Żywność. Osiągnięcia i Perspektywy”. 10-11 wrzesień 2002, Lublin: 270. W o ź n i a k W. , � a p i ń s k i M . , M u r a s U . , K o r z e n i e w s k a A . 2003a. Ocena jakości grzybni shiitake odmiany S� 21 wyprodukowanej metodą wgłębną. Materiały II Krajowego Kongresu Bio- technologii, 23-27 czerwiec 2003, Łódź: 21. W o ź n i a k W. , � a p i ń s k i M . , K o r z e n i e w s k a A . , M u r a s U . 2003b. Wzrost i charakterystyka biomasy grzybni soplówki. Folia �orti., 1: 142–145. W o ź n i a k W. , K o r z e n i e w s k a A . 2003. Produkcja biomasy i ocena grzybni borowika szlachetnego. Folia �orti. 1: 349–351. W o ź n i a k W. , M u r a s U . , K o r z e n i e w s k a A . 2004. Wpływ przechowywania grzybni borowika szla- chetnego Boletus edulis (Fries) na jej żywotność. Folia Univ. Agric. Stetin., Agricultura 95: 425–429. Ya n g J . � . , L i n � . C h . , M a u J . L . 2002. Antioxidant properties of several commercial mush- rooms. Food Chem. 77: 229–235. PN-76 R-7�505 – �rzyby świeże. PN-93 A-�6034/02 – Badania mikrobiologiczne – ogólne zasady badań. PN-90 A-75052/04 – Metody badań mikrobiologicznych. Sposób pobierania i przygotowanie próbek do badań mikrobiologicznych. PN-90 A-75052/05 – Metody badań mikrobiologicznych. Oznaczanie obecności i liczby drobnoustrojów tlenowych mezofilnych i psychrofilnych. PN-90 A-75052/0� – Metody badań mikrobiologicznych. Oznaczanie liczby drożdży i pleśni. PN-�N-ISO 6���-2 – Mikrobiologia żywności i pasz – �oryzontalna metoda oznaczania liczby gronkowców koagulazo-dodatnich (Staphylococcus aureus i innych gatunków) Charakterystyka biomasy grzybni borowika szlachetnego S t r e s z c z e n i e Wykorzystując osiągnięcia inżynierii biochemicznej i biotechnologii, rozpoczęto w ostat- nich latach badania nad otrzymaniem grzybni grzybów wielkoowocnikowych w warunkach kontrolowanych, którą można byłoby wykorzystać jako zamienniki owocników grzybów w produktach spożywczych. W ten sposób ograniczyć można byłoby zbiór grzybów ze środowisk naturalnych dla przetwórstwa. Publikacja przedstawia wyniki badań nad oceną grzybni dla celów spożywczych z wybranych odmian atrakcyjnego gatunku Boletus edulis. W tym opraco- waniu przedstawiono badania dotyczące otrzymania grzybni matecznej i spożywczej owocni- ków następujących grzybów: borowik szlachetny ‘sosnowy’ Boletus edulis var. pinicolus Vitt., borowik szlachetny ‘świerkowy’ Boletus edulis var. piceicolus Vasilkov, borowik szlachetny ‘usiatkowany’ Boletus edulis var. reticulatus (Schaff ex. Boud) Bat. �rzybnię wyprodukowano w warunkach laboratoryjnych metodą wgłębną na wytrząsarce Shaker typ 35�S, na pożywce pszennej i ziemniaczanej. Ocena jakości grzybni obejmowała współczynniki: fizykochemiczne, sensoryczne oraz mikrobiologiczne. W przeprowadzonych badaniach stwierdzono, że pozy- skiwane grzybnie były wysokiej jakości. Wyróżniki fizykochemiczne: zawartość białka i sucha substancja oraz substancje lotne aromatu; sensoryczne: wygląd, smak i zapach oraz mikrobio- logiczne, wskazują na wysoką jakość otrzymywanych grzybni. Skład fizykochemiczny grzybni zależał w sposób istotny od odmiany borowika i zastosowanej pożywki. Fig. 1. Biomass of matrix mycelium transmitted on grain. Fig. 2. Mycelium of Boletus obtained in submerged liquid culture. Fig. 3. Dried biomass of mycelium for food. 2014-01-01T11:45:46+0100 Polish Botanical Society