The occurrence of, and economic losses caused by Armillaria in the Western Carpathian Mts 1ADAM KALISZEWSKI, 2PAWEŁ LECH and 2TOMASZ OSZAKO 1Department of Forest Economics, Forest Research Institute Sękocin Stary, Braci Leśnej 3, PL-05-090 Raszyn, A.Kaliszewski@ibles.waw.pl 2Department of Forest Phytopathology, Forest Research Institute Sękocin Stary, Braci Leśnej 3, PL-05-090 Raszyn K a l i s z e w s k i A., L e c h P., O s z a k o T.: The occurrence of, and economic losses caused by Armillaria in the Western Carpathian Mts. Acta Mycol. 42 (2): 219-233, 2007. An investigation carried out in the Western Carpathian Mountains (Ujsoły, Węgierska Górka, Ustroń and Wisła Forest Districts) demonstrated a strong relationship between dieback in Norway spruce stands and the intensity of occurrence of Armillaria ostoyae. For the most endangered site types – mountain deciduous forest (LG) and mountain mixed forest (LMG), analyses of losses of annual volume increment and of stand productivity were performed, and their financial dimensions determined. The greatest losses – of about 8 m3/ha/year for tree stands of the age of 100 years, and 400 m3/ha for the rotation period – were found for LG (Mountain broadleaved forest) site type. Key words: Armillaria occurrence, economic losses, spruce root rot, Carpathian Mountains INTRODUCTION Root rots caused by fungi of the genus Armillaria represent one of the most im- portant problems for Polish forestry. The most serious losses due to them are to be noted in coniferous stands (S i e r o t a et al. 2003). According to data from the State Forests administration, damage due to Armillaria extended over a total of 144,000 ha in 1999, cf. more than 200,000 ha in 2003. Five species of the genus Armillaria have been recorded in Poland, namely A. borealis, A. gallica, A. ostoyae, A. cepistipes and A. mellea (Ż ó ł c i a k 1991, 1999a). While A. ostoyae, A. cepistipes and A. gallica are present across the country, A. borealis is a species of northern and central parts, and A. mellea is confined to just a small area near Gubin by the German border (Ż ó ł c i a k 2003). A. ostoyae has been reported from coniferous, broadleaved and mixed stands, and in a wide range of forest habitats from fresh coniferous forest, through to moist broadleaved forest, alder-ash woodland and fertile broadleaved forest habitat in ACTA MYCOLOGICA Vol. 42 (2): 219-233 2007 Dedicated to Professor Alina Skirgiełło on the occasion of her ninety-fifth birthday 220 A. Kaliszewski et al. the mountains (LMG, LG, LŁG) – including to an altitude of some 1100 m a.s.l. (Ż ó ł c i a k 1999b). However, its preference is for coniferous species, especially spruce, Scots pine and fir. In Poland A. ostoyae displays a decided dominance in managed forests. It has been noted on the greatest variety of shrubs and trees (23 species), including all the tree species native to Poland that form forests, i.e. Scots pine, Norway spruce, fir, oaks, beech and birch (Ż ó ł c i a k 2003). In the pine stands of the Polish lowlands, and most notably in the spruce forests of the Western Carpathians, Armillaria root rot is present as an epiphytosis (C a p e c k i 1994, 1997; L e c h 2003). Furthermore, recent years have seen it appear in stands that had been considered resistant – in the beech forests of the Bieszczady Moun- tains and Pomerania, as well as on oaks throughout the country (Ż ó ł c i a k 1999b; Ł a k o m y , S i w e c k i 2000). It may thus serve a useful indicator of the state of health of a forest, inter alia on account of the constancy of colonisation of the substratum (tree boles and roots), as well as the length of the disease process. Its presence de- picts areas with a greater predisposition to other stress and injurious factors, being an indicator of the pathological state of the stand, as well as pointing to changes of an ecosystemic nature. It not only does economic damage, but also brings about changes in the functioning of a biocoenosis, leading to degradation of stands, a re- duction in the productivity of the habitat, and even deforestation. This impact has been registered in the spiral disease model (M a n i o n 1981), wherein it features as a predisposing factor, an initiating factor and a factor co-participating in the tree- dieback process. Research has not so far been carried out in Poland with a view to discovering the level of the damage sustained by forestry through the reduced productivity of stands colonized by pathogenic fungi. As a consequence of the harmful impact of fungi from the economic point of view, damage is done to single trees and to whole groups of them, a possible result being the dieoff of whole patches of forest, necessitating premature felling. The consequent loss of growing stock may play a major role in limiting the productive potential of forest habitats. The means of calculating losses due to damage arising in forests are as set out in the Agricultural and Forest Land Protection Act 1995 (Ustawa 1995). The level of one-off compensation for the premature felling of a stand is set as the difference between the expected value of the stand at rotation age, as detailed in the forest management plan, simplified forest management plan or forest inventory, and the value at the moment of felling (P o d g ó r s k i et al. 2001). The principles for the valuation of stands and level of damage in the case of their premature felling are in turn laid down in the 2002 Regulation of the Minister of the Environment on one-off damages for the premature felling of a stand (Rozporządzenie 2002). The work presented here had as its aim the determination of the environmental conditioning behind the occurrence of Armillaria root rot in stands of the Western Carpathians. In addition, the work sought to determine the size of losses as expressed in terms of reduced stand volume increment, and the current value of lost timber expressed per hectare and per year. In this, no account was taken of the losses result- ing from the impact on growth of other stress factors like insect pests, air pollution and weather anomalies (droughts). Within Poland, the western part of the Carpathi- ans encompasses the chain of mountains comprising the Beskid Śląski, Żywiecki, Mały, Wyspowy and Sądecki ranges, as well as the Gorce and Tatra Mountains. The Armillaria in the Western Carpathian Mts 221 forests in this region are dominated by spruce, whose average volume share in the stand structure at present exceeds 62% (S z a b l a 2003), locally even attaining 95% (C a p e c k i 1994). The shares taken by other species are thus markedly lower – on average beech accounts for 19% of volume, Scots pine and fir for 6% each, oak for 3%, birch for 2% and other species also for 2%. Average annual increment in these stands exceeds 4.5 m3/ha (S z a b l a 2003). Forests in this western part of the Carpathians are subject to the impact of many biotic, abiotic and anthropogenic stress factors, including primary and secondary insect pests (most especially bark beetles), infectious fungal diseases (first and fore- most those giving rise to root rot), weather anomalies (drought, wind and snow), and air pollution (Z w o l i ń s k i 2003). Root pathogens are of particular significance in this area – fungi of the genus Armillaria (mainly A. ostoyae), and Heterobasidion annosum, which occurs more frequently here than anywhere else in Poland’s forests (L e c h 2003). MATERIAL AND METHODS The area chosen for study was the Ujsoła Forest District, located in the bound- ary zone between the Beskid Żywiecki and Beskid Śląski ranges and typical of the region in terms of its stand structure and the threats posed to it. It is characterised by a high (and in recent years increasing) level of damage posed to stands by Armillaria root rot, as well as by differences in the degree of damage from place to place. This fact made possible the establishment in 2001 and 2002, within the District (and spe- cifically its Ujsoła sub-district), of a total of 26 2-are observation plots so selected as to take account of both the differences in the level of threat and different stand and habitat parameters (altitude above sea level and the stand structure in terms of age and species). The plots were arranged in groups of between 3 and 10 along 4 transects 700 m to 4 km long. These were found in uniform spruce forest and mixed stands (spruce-beech or spruce-beech-fir), in high-mountain coniferous forest habi- tat (BWG), mountain mixed coniferous forest (BMG), mountain mixed broadleaved forest (LMG) and mountain broadleaved forest (LG), at altitudes of between c. 600 and c. 1350 m a.s.l. Observation plots were subjected to assessments of the occur- rence of Armillaria, including that on dead stumps as well on trees. The results of this assessment were compiled, together with information on the volume of deadwood removed in the years 1987-2001, by reference to stand areas in which observation plots were located (use was made of volume expressed per year and per hectare). They were then the subject of analysis of variance taking account of forest type and stand species structure as sources of variability. Also the potential economic losses incurred as a result of the lowering of stand values on account of root-rot attacks were assessed. Estimation of damage was done for spruce stands, i.e. those most threatened by Armillaria and also prevalent in the Western Carpathians, occurring on the two habitat types LG and LMG. The small number of plots in the BMG and BWG habitats did not allow for any analysis in these forest habitats. Calculations also made use of data on the amount of dead- wood generated in the years 1985-2001. In determining the value of the damage, use was made of the formula be- low [1], this being a modification of that proposed in the Regulation of the 222 A. Kaliszewski et al. Minister of the Environment on one-off compensation for premature felling of a stand (Rozporządzenie 2002). This formula serves in detailing losses due to the re- duced volume increment resulting from the partial damage to the stand (Z a j ą c et al. 1998). The formula is as follows: S = (Wu – Wi) × (Zi – Zs) × P [1] Where: S is the loss due to the reduction in increment caused by the partial damaging of the stand; Wu is the expected value of 1ha of standing trees in a stand, in line with the expenditure necessary for its development to age u; Wi is the expected value of 1 ha of standing trees in a stand in line with the expenditure necessary for its de- velopment to age i;u is the rotation age of the stand subject to estimation; Zi is the stock density prior to the damage; i is the current age of the stand; Zs is the expected stock density of the stand following the thinning out of damaged trees, P is the area of the stand in ha. The index of expected stand value allows for a determination of the value of a stand during each year of its existence (from establishment of the plantation to fell- ing at the rotation age). The method rests on the assumption that the whole period of life of the stand includes only two times at which direct estimates of its value can be made, i.e. 1) the age of establishment of the plantation (i=1), at which time the value equals the cost of establishment, and 2) the rotation age u (i=u), at which time the value is given by the combined value of the harvested wood assortments. The value of a stand at age i (Wi) is calculated by reducing its value at the rotation age using a coefficient that differs in line with stand age (P a r t y k a , P a r z u c h o w s k a 1993; P a r z u c h o w s k a et al. 1997; Z a j ą c et al. 1998). Indices of expected values of stands at ages i and u (with account being taken of species and stand quality classes) are set out in the tables of stand value indices con- stituting an annex to the aforementioned Regulation. These tables contain values in conversion units, i.e. ones expressed in m3 of raw timber. The values obtained from the valuation, expressed in terms of conversion units, are multiplied by the average wood selling price published annually by the Central Statistical Office for the pur- poses of calculation of the forest tax. The assessment of the expected (potential) value of losses is made in three stages: 1. determination of the potential loss in the capacity to generate stand incre- ment, 2. estimation of the potential decline in stock density of stands colonized by Armillaria, 3. estimation of the potential economic losses in the stand as Armillaria-induced disease progresses. The starting point for completion of the first stage of the research was provided by data on the mean annual volume removed in the period 1985-1997 through the clearing of deadwood from variously-aged spruce stands or stands with a consider- able share of spruce. Information on stands in the LG habitat was available for 16 research plots taking in stands aged 6 to 100 years. In the case of stands of the LMG habitat, the information came from 5 plots established in stands of ages 75 to 125 (Tab. 1). 224 A. Kaliszewski et al. The functional relationships obtained made it possible to determine potential losses in terms of stand increment. The potential increment of spruce stands was established on the basis of the tables of stand yield and increment (S z y m k i e w i c z 2001), accepting that the further calculations would make use of data for current increment of wood with diameter of at least 7 cm overbark, with a stock density equal to 1.0. It was assumed that stands of habitat LG were of quality class I, while those of habitat LMG were of class II (Tr a m p l e r 1990). Losses to stand increment were defined as the difference between their potential current increment overbark and the volume of deadwood removed. The results were presented in absolute terms (in m3/ha/year), as well as relatively – by reference to the percentage reduction in potential increment (Tabs 2 and 3). The second stage involved determination of the scale of the reduction in the po- tential stock density of those stands subject to the unfavourable impact of Armillaria fungi. To this end, tables of stand yield and increment (S z y m k i e w i c z 2001) were used to determine the reduction in the total productivity overbark of stands, as well as – for comparison – the growing stock. The use of total productivity overbark in this case proceeds from an assump- tion that the process of dieback takes in, not only those trees potentially capable of surviving through to the rotation age (i.e. the main stand), but also those that would be harvested through pre-final felling (i.e. the subordinate stand). It was thereby as- sumed that data on the quantities of deadwood being removed encompassed both information on the volume of trees that would have been removed by thinning ir- respective of the presence or absence of disease, and those that would have formed the mature stand were disease not present. Comparison of the volume of deadwood removed throughout the life of the stand with data on total potential productivity overbark in a stand not attacked by disease supplies reliable information as to the theoretical reduction in stock density. Ta b l e 2 Potential losses of increment in spruce stands of the LG habitat Age (y) Potential losses of increment overbark (m3/ha/yr) Potential current annual increment overbark (m3/ha/yr) Reduced increment overbark (m3/ha/yr) Reduction in potential increment overbark (%) 25 2.1 9.5 7.4 22 30 2.5 13.3 10.8 19 35 2.9 16.5 13.6 18 40 3.4 18.7 15.3 18 45 3.8 20.4 16.6 19 50 4.2 21.0 16.8 20 55 4.6 20.5 15.9 23 60 5.0 19.5 14.5 26 65 5.5 18.5 13.0 30 70 5.9 17.5 11.6 34 75 6.3 16.6 10.3 38 80 6.7 15.8 9.1 43 85 7.2 15.0 7.8 48 90 7.6 14.2 6.6 53 95 8.0 13.6 5.6 59 100 8.4 12.8 4.4 66 Armillaria in the Western Carpathian Mts 225 Ta b l e 3 Potential losses of increment in spruce stands of the LMG habitat Age (y) Potential losses of increment overbark (m3/ha/yr) Potential current annual increment overbark (m3/ha/yr) Reduced increment overbark (m3/ha/yr) % reduction in potential increment overbark 30 8.8 8.8 0 35 11.7 11.7 0 40 14.1 14.1 0 45 15.8 15.8 0 50 16.9 16.9 0 55 17.1 17.1 0 60 16.7 16.7 0 65 15.8 15.8 0 70 15.0 15.0 0 75 0.1 14.3 14.2 0 80 0.2 13.6 13.4 1 85 0.3 12.8 12.5 2 90 0.4 12.1 11.7 3 95 0.5 11.6 11.1 4 100 0.6 10.6 10.0 5 Ta b l e 4 Potential losses of total productivity overbark in spruce stands of the LG habitat Age (y) Size of losses overbark (m3/ha) Growing stock (m3/ha) Total pro- ductivity overbark (m3/ha) Reduced volume overbark (m3/ha) Level of loss in volume overbark (%) Reduced total pro- ductivity overbark (m3/ha) Size of losses to total pro- ductivity overbark (%) 25 2 70 71 68 3 69 3 30 14 125 134 111 11 120 10 35 28 189 212 161 15 184 13 40 43 262 305 219 17 262 14 45 61 338 407 277 18 346 15 50 82 410 510 328 20 428 16 55 104 475 611 371 22 507 17 60 128 530 707 402 24 579 18 65 155 574 797 419 27 642 19 70 183 610 883 427 30 700 21 75 214 640 966 426 33 752 22 80 247 666 1047 419 37 800 24 85 282 689 1126 407 41 844 25 90 319 708 1200 389 45 881 27 95 358 723 1269 365 50 911 28 100 400 734 1333 334 54 933 30 230 A. Kaliszewski et al. loss borne and the rotation age adopted (there is a shorter period over which the costs incurred prior to the obtainment of income is prolonged, i.e. the stand rotation age achieved). As the figures under discussion and appended tables make clear, the greatest losses were borne in stands of ages 30-40, in the LG habitat, where the rotation age exceeds 100 years – here the abandonment of prophylactic action might mean a loss of around 4600 PLN (1 euro ≈ 4 PLN) per ha per year. Where stands are of rotation ages up to 100 years the value is smaller – up to 900 euro/ha/year. However, there Ta b l e 5 Potential losses of total, productivity overbark in spruce stands of the LMG habitat Age (y) Size of losses overbark (m3/ha) Growing stock (m3/ha) Total pro- ductivity overbark (m3/ha) Reduced volume overbark (m3/ha) Level of loss in volume overbark (%) Reduced total pro- ductivity overbark (m3/ha) Size of losses to total pro- ductivity overbark (%) 30 0 71 74 71 0 74 0 35 0 121 130 121 0 130 0 40 0 175 195 175 0 195 0 45 0 234 271 234 0 271 0 50 0 295 354 295 0 354 0 55 0 355 441 355 0 441 0 60 0 407 525 407 0 525 0 65 0 451 605 451 0 605 0 70 0 488 681 488 0 681 0 75 0 519 753 519 0 753 0 80 1 545 821 544 0 820 0 85 2 566 885 564 0 883 0 90 3 583 946 580 1 943 0 95 5 596 1004 591 1 999 1 100 8 606 1059 598 1 1051 1 105 11 614 1111 603 2 1100 1 110 15 620 1160 605 2 1145 1 115 19 624 1205 605 3 1186 2 120 23 627 1247 604 4 1224 2 Ta b l e 6 Level of potential loss of value in spruce stands of the LG habitat with rotation ages of up to 100 years Age sub- class Age (yr) Average age (yr) Wu Wi Wu - Wi Zi Zs Zi - Zs Loss (m3 of wood) Loss (zł) II a 21-30 25 742.2 348.0 394.2 1.00 0.97 0.03 11.8 1274 II b 31-40 35 742.2 456.5 285.7 1.00 0.87 0.13 37.1 4000 III a 41-50 45 742.2 544.1 198.1 1.00 0.85 0.15 29.7 3200 III b 51-60 55 742.2 611.0 131.2 1.00 0.83 0.17 22.3 2402 IV a 61-70 65 742.2 659.9 82.3 1.00 0.81 0.19 15.6 1684 IV b 71-80 75 742.2 694.7 47.5 1.00 0.78 0.22 10.5 1125 V a 81-90 85 742.2 719.0 23.2 1.00 0.75 0.25 5.8 625 V b 91-100 95 742.2 735.9 6.3 1.00 0.72 0.28 1.8 190 232 A. Kaliszewski et al. Ł a k o m y P., S i w e c k i R. 2000. Gatunki z rodzaju Armillaria występujące w Nadleśnictwie Smolarz. Sylwan 4: 115–121. M a n i o n P.D. 1981. Tree disease concepts. Prentice Hall Inc., New Jersey. P o d g ó r s k i M., B e k e r C., B i c z k o w s k i Z., N a j g r a k o w s k i T., Tu r s k i M. 2001. Podstawy wyceny lasów. Zachodnie Centrum Organizacji, Zielona Góra. 254 pp. Rozporządzenie Ministra Środowiska z dnia 20 czerwca 2002 r. w sprawie jednorazowego odszkodowania za przedwczesny wyrąb drzewostanu, Dz.U. 2002 r. Nr 99, poz. 905. S i e r o t a Z., L e c h P. 1996. Monitoring fitopatologiczny w lasach gospodarczych. I. Założenia i zakres oceny. Sylwan 3: 5–16. S i e r o t a Z., M a ł e c k a M., S t o c k a T. 2003. Choroby infekcyjne. (In:): Krótkoterminowa prognoza występowania ważniejszych szkodników i chorób infekcyjnych drzew leśnych w Polsce w 2002 roku. Warszawa: 94–95. S z a b l a K. 2003. Historia, problemy, uwarunkowania i perspektywy rozwojowe leśnictwa na terenie Regionalnej Dyrekcji Lasów Państwowych Katowice. (In:) A. G r z y w a c z (ed.). Drzewostany świerkowe – stan, problemy, perspektywy rozwojowe, PTL, Ustroń-Jaszowiec: 160–195. S z y m k i e w i c z B. 2001. Tablice zasobności i przyrostu drzewostanów ważniejszych gatunków drzew leśnych. Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa. Tr a m p l e r T. 1990. Siedliskowe podstawy hodowli lasu. Dodatek do 5 wydania „Zasad hodowli lasu”. Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa. Tr a m p l e r T., K l i c z k o w s k a A., D m y t e r k o E., S i e r p i ń s k a A. 1990. Regionalizacja przyrodniczo- leśna na podstawach ekologiczno-fitosocjologicznych. PWRiL, Warszawa. Ustawa z dnia 3 lutego 1995 r. o ochronie gruntów rolnych i leśnych (z późniejszymi zmianami). Dz.U. 1995 r. Nr 16, poz. 78. Z a j ą c S., G ł o w a c k a B., J a b ł o ń s k i T., J a n e c z k o K., J a r o s z K., K l o c e k A., K o l k A., P i e k u - t i n J., S t o c k i J. 1998. Ocena ekonomiczna zwalczania szkodników w aspekcie zachowania trwałości lasów. Dokumentacja Instytutu Badawczego Leśnictwa. Warszawa. Z w o l i ń s k i J. 2003. Ocena zagrożenia lasów świerkowych w Beskidzie Śląskim przez zanieczyszczenia powietrza atmosferycznego. Prace Inst. Bad. Leśn. 1 (951): 53–68 Ż ó ł c i a k A. 1991. Zmienność wewnątrz gatunkowa grzybów z rodzaju Armillaria – identyfikacja polskich izolatów z rodzaju Armillaria. Sylwan 11: 27–40. Ż ó ł c i a k A. 1999a. Identyfikacja gatunków grzybów z rodzaju Armillaria (Fr.:Fr.) Staude w Polsce. Prace Inst. Bad. Leśn. 888: 3–19. Żółciak A. 1999b. Występowanie grzybów z rodzaju Armillaria (Fr.:Fr.) Staude w kompleksach leśnych w Polsce. Prace Inst. Bad. Leśn. A 890: 29–40. Żółciak A. 2003. Rozmieszczenie grzybów z rodzaju Armillaria w Polsce oraz ich rośliny żywicielskie. Prace Inst. Bad. Leśn. A 956: 7–22. Występowanie i ekonomiczne straty powodowane przez grzyby z rodzaju Armillaria we Wschodnich Karpatach S t r e s z c z e n i e Opieńkowa zgnilizna korzeni powodowana przez grzyby rodzaju Armillaria stanowi, obok huby korzeni, jeden z najbardziej istotnych problemów ochrony lasu. Największe straty po- noszone są przez jednostki alp w drzewostanach iglastych: według danych RDLP powierzch- nia drzewostanów w Polsce, gdzie stwierdzono szkody spowodowane przez opieńki wyniosła w 1999 roku 144 tys. ha, a już w 2003 roku szacowano ją na ponad 200 tys. ha. Choroba występuje w drzewostanach wszystkich klasach wieku zarówno iglastych, jak i liściastych. Najbardziej zagrożone są drzewostany w regionach południowych kraju (RDLP Katowice i Wrocław), w Polsce północno-wschodniej (RDLP Olsztyn i Białystok) oraz w części północ- no-zachodniej (RDLP Szczecin i RDLP Toruń). W niektórych rejonach dochodzi do gwał- townego nasilenia wydzielania się posuszu świerkowego, przyjmującego w wielu wypadkach postać rozpadu drzewostanów. Dotyczy to w sposób szczególny obszaru Beskidu Śląskiego Armillaria in the Western Carpathian Mts 233 i Żywieckiego, gdzie w niżej położonych drzewostanach sytuacja jest katastrofalna. Wymuszo- ne tempem zamierania drzew intensywne cięcia sanitarne skutkują postępującym przerzedze- niem drzewostanów, co zwiększa ich podatność na dalsze szkody powodowane przez czynniki abiotyczne (wiatr, śnieg) oraz biotyczne (patogeny, owady kambiofagiczne). W pracy zaprezentowano i przedyskutowano wyniki badań dotyczące analizy ekonomicz- nej kosztów zabiegów ochronnych i ograniczania strat spowodowanych przez opieńkową zgni- liznę korzeni, które mogą dochodzić nawet do 1000 euro z ha. Analiza ekonomiczna kosztów związanych z ograniczaniem rozwoju patogenicznych opieniek w drzewostanach uszkodzo- nych i zagrożonych dostarcza informacji niezbędnych do podejmowania decyzji o koniecz- ności wykonywania zabiegów lub ich zaniechania. Pozwolą one na opracowanie strategii po- lityki ochrony na różnych szczeblach decyzyjnych oraz będą pomocne przy podejmowaniu decyzji odnośnie pilności przebudowy drzewostanów (dostosowania składu gatunkowego do siedliska) lub minimalizacji szkód w nadleśnictwach o dużym zagrożeniu (np. Ujsoły, Ustroń, Wisła). 2014-01-01T11:46:24+0100 Polish Botanical Society