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Abstract
This paper deals with the new time-frequency Short-Time Approximated Discrete Zolotarev Transform (STADZT), which is
based on symmetrical Zolotarev polynomials. Due to the special properties of these polynomials, STADZT can be used for
spectral analysis of stationary and non-stationary signals with the better time and frequency resolution than the widely used
Short-Time Fourier Transform (STFT). This paper describes the parameters of STADZT that have the main influence on its
properties and behaviour. The selected parameters include the shape and length of the segmentation window, and the
segmentation overlap. Because STADZT is very similar to STFT, the paper includes a comparison of the spectral analysis of a
non-stationary signal created by STADZT and by STFT with various settings of the parameters.
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1 Introduction

Spectral analysis is a complex field of signal processing
which usually deals with transforming the signal between
the time domain and the frequency domain. One of the
main aims of this analysis is to detect and observe signal
information which is not easily analysed in the time
domain. Many methods are utilized for this purpose,
e.g. the Short-Time Fourier Transform (STFT), the
Wavelet Transform (WT), the Hilbert-Huang Transform
(HHT) and the novel Short-Time Approximated Discrete
Zolotarev Transform (STADZT). All of these methods
have certain advantages and disadvantages. STFT is
widely used because it is effectively evaluated by the
Fast Fourier Transform (FFT), and because of the
intuitive interpretation of the results in the form of
spectrograms, which give the signal energy in the time-
frequency domain [1]. WT is based on the correlation of
an analysed signal and wavelet function which is scaled
and time dilated [3]. The outcome of WT is a scalogram,
which represents the signal energy in the time-scale
domain. The interpretation of a scalogram is not as
clear as the interpretation of a spectrogram. HHT
exploits the decomposition of the signal into the sum
of the sub-signals called the Intrinsic Mode Function
(IMF) by the process of Empirical Mode Decomposition
(EMD). Due to EMD, the complex envelope of the
signal can be evaluated by the Hilbert transform (HT)
of IMF with higher accuracy than the application of HT
to the raw signal [4]. The main disadvantage of HHT
lies in the non-intuitive representation of its results.
The STADZT transform is very similar to STFT, the
difference between being that STADZT is based on
selective Zolotarev polynomials, which improve the time
and frequency resolution [9]. The result of STADZT

shows the signal energy in the time-frequency domain,
as well as the spectrogram created by STFT.

All methods have the same difficulty: the parameters
must be set and kept for the analysis of the whole
signal. This issue is not limiting for the analysis of a
stationary signal, because the signal parameters do not
change in time. Difficulties arise when the input signal
is non-stationary, because many methods must adapt
their parameters to obtain a result that can be used
for further analysis. These requirements have led to
the development of adaptive methods, e.g. STFT with
different length of the spectrograms based on various
principles, e.g. Minimum Energy of Spectral Leakage
(MESP) [6], or the Katkovnik algorithm, which utilizes
the actual frequency of the analysed signal [7].
This paper focuses on setting the parameters for

STADZT. This is a new method in the field of spectral
analysis, and no study has yet been performed that
systematically describes its parameters. The next part
of the paper briefly introduces the fundamental principle
of STADZT. The main part describes the parameters
and discusses their influence on the time and frequency
resolution of STADZT. The well-known STFT serves as
a benchmark for greater clarity of the examples that
are presented.

2 Approximated discrete
Zolotarev transform

The Approximated Discrete Zolotarev Transform
(ADZT) is a new time-frequency method that was
specially designed by Radim Špetík [9] for spectral
analysis of non-stationary signals. The transform is
based on symmetrical Zolotarev polynomials that create
its basis function. These polynomials can be expressed
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as a weighted sum of Chebyshev polynomials of the first
and second kind, and it can be written using cosine
and sine notation, respectively [13]. Thus, the basis
function can be defined as [9]

zexp(`, i2πt) = zcos(`, 2πt) + i zsin(`, 2πt)

=
∑̀
µ=−`

a′2µ(κ) cos (2πµt)

+ i
∑̀
µ=−`

b′2µ−1(κ) sin (2πµt)

=
∑̀
µ=−`

c′2µ(κ) exp (2πµt), (1)

where ` denotes the required degree of the polynomials
and κ signifies the selectivity, which is closely related
to the height of the central lobes. A stable recursive
algorithm for computing the coefficients a′2µ, b′2µ and
c′2µ is given in [13].

From the spectral point of view, the basis functions
can be separated to the stationary S(k) and non-
stationary N(k) parts

SZ(k) = vkS(k)− (1− vk)N (k), (2)

where vk is a weighted factor [5]. Because the evaluation
of the coefficients of Zolotarev polynomials a′2m, b′2m
is rather tedious, work [9] suggested an algorithm
based on the minimization of the non-stationary part of
Zolotarev polynomials. It can be construed as a filtering
or rearrangement of the Fourier spectra according to

SZ = Z · S, (3)

where SZ and S correspond to the coefficients of the
Zolotarev and Fourier spectra, respectively. The matrix
Z contains coefficients of selective Zolotarev polynomials
c′2µ which are optimally chosen in compliance with an
analysed signal [9].

The time-frequency analysis of the signal is realized
by the STADZT, which is evaluated in the similar
way as the STFT. However, instead of the exponential
function the Zolotarev basis zexp 1 is used. Thus, the
zologram can be defined as [10]

SZ(`, n) =
∞∑

m=−∞
s(m)w(m− n) zexp(`, i2πn), (4)

where w(m) must be the final length window resulting
in signal segmentation. Thus all parameters of STADZT
are the same as the parameters of STFT. The following
part of paper deals with the impact of parameter settings
on the time and frequency resolution of STADZT.
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Figure 1: Analysed signal is composed of the sum of
two harmonic waves and an unit impulse.

3 Transform parameters
The right choice of parameters has the main impact on
the time and frequency resolution of the transforms
that is used — STFT or STADZT. There are three
parameters which closely relate to this issue — window
shape, window length and segment overlap. The
following part of paper provides a short description of
these selected parameters and shows their influence on
the spectral analysis of a non-stationary signal. The
analysed signal is composed of the sum of two harmonic
waves s1 = cos

(
2πnk1

N

)
and s2 = cos

(
2πnk2

N

)
, where

parameter n ∈ (1, N), N = 1200, k1 = 75 and k2 = 190,
and unit impulse which is situated at the center of
signal (see Fig. 1).

3.1 Window shape
The main difficulty with the widely used Discrete
Fourier Transform (DFT) is the presence of spectral
leakage, which limits the frequency resolution of STFT.
The spectral leakage arises when the orthogonality
between the analysed signal and the basis function (the
complex exponential in this case) is violated. From
another point of view, the leakage originates from the
shortening signal to the finite length by the weighting
function or segmentation window, respectively. As a
consequence of shortening, the spectrum of the analysed
signal is given as the result of the convolution of the
spectral coefficients of the signal and the weighting
function [11], [2]. The measure of leakage depends on
the following factors:

• the shape of the segmentation window;

• the rate of segment length and the period of the
signal.

The first parameter of interest is the shape of the
segmentation window, because it has a direct influence
on the frequency resolution of STFT. A segmentation
window with a smoothly rising and falling edge sup-
presses the spectral leakage more effectively than a
window with sharp edges. When a smooth window is
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Figure 2: STADZT zolograms created by the various window shape: a) Rectangular, b) Hamming, c) Hann, and d)
Blackman. STFT spectrograms created by the various window shape: e) Rectangular, f) Hamming, g) Hann, and h)
Blackman.

applied to the analysed signal, the discontinuities at
the boundary of the periodic extension are reduced.
Thus the frequency information of the main signal com-
ponents is more distinguishable from each other signal
component. The most frequent windows are Hamming,
Hann and Blackman windows. More information about
the application of segmentation windows can be found
in [11], [2].

Fig. 2 contains a comparison of the STFT transform
and the STADZT transform with various shapes of the
segmentation window. The other parameters are the
same for both transforms: the window length is 256
samples and the segment overlap is 255 samples. As
is shown in Figs. 2e–h, the spectral leakage of STFT
is suppressed by using a smooth window — the best
suppression is achieved by the Blackman window because
the side lobe level is 58 dB down [2]. However, the best
frequency resolution for STADZT is obtained for a
rectangular window (see Figire 2a). When some other
window shape is applied, the interference between the
window and the ADZT time selective basis deteriorates
the performance of ADZT algorithm, which evaluates
the optimal coefficients of the Zolotarev basis according
to the actual segment of the signal (see Figures 2a–d).

3.2 Window length
The next parameter that has a notable effect on fre-
quency and time resolution is the length of the seg-
mentation window. The spectral resolution of DFT is
defined as

∆f = β
fs
N
, (5)

where fs is the sampling frequency, N is the length of
the signal, and β reflects the equivalent noise bandwidth
of the window shape that is used [2]. It is apparent that
the frequency resolution increases with the prolonged
segment. However, it is limited by the Heisenberg-
Gabor uncertainty principle, which states that it is not
possible to get the best frequency resolution without
losing the time resolution, and vice versa [1]. For this
reason, the compromise between time and frequency
resolution must be set for STFT. This property is
demonstrated by the spectrograms created by STFT
with increasing window length (see Figures 3e–h). The
best time resolution is obtained for the shortest window
length - all sudden changes of signal are located with
high accuracy in time, but the frequency resolution is
rather poor (see Figure 3e). When the longest window
is applied, the frequency resolution is increased but
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Figure 3: STADZT zolograms created by the various window length a) 64 samples, b) 128 samples, c) 256 samples,
and d) 512 samples. STFT spectrograms created by the various window shape: e) 64 samples, f) 128 samples, g) 256
samples, and h) 512 samples.

the time localization of the signal deteriorates (see
Figure 3f).
The frequency resolution of STADZT is given by

the window length as well as STFT, but the time
resolution is not constant for all frequencies. The
reason for this behaviour is that high frequencies can
be better analysed than low frequencies by high-order
Zolotarev polynomials [10]. One advantage of STADZT
is that the time resolution and the frequency resolution
are independent from each other in a certain manner,
because optimal coefficients of the symmetrical Zolotarev
polynomials are set by the ADZT algorithm. Figures 3a–
d illustrate the good time resolution of STADZT, which
is not significantly corrupted by increasing window
length. Only the frequency resolution is ameliorated.

It is worth noting that all spectrograms in Figures
3 and 4 are created by STFT using a rectangular
window. The first reason for this choice is that ADZT
achieves the best results for a rectangular window (see
Figure 3.1). The second reason is that the principle
of ADZT can be understood as filtering of Fourier
spectra. So when we use a rectangular window, we get
an original spectrogram which is processed by STADZT.

3.3 Segment overlap

The last described parameter is the overlap of the signal
segments. If non-overlap segments are used, STFT will
lose information about the signal near the boundaries
because of the window shape that is applied [2]. STFT
therefore usually uses an overlap of 50% or 75%,
which enables the whole signal to be analysed without
significant loss of information. Another advantage
is that it reduces the extra effort for computing the
Fourier spectra for segments with an overlap of 99%.

The evaluation of the optimal Zolotarev coefficients
Z is based on minimizing the non-stationary part of
Zolotarev polynomials represented by the spectral
coefficients of complex Fourier spectra (2) [5]. As a
consequence, the ADZT algorithm is very sensitive to
the phase of the input signal. The best time resolution
is obtained for overlap 99%, which approximately relates
to a segmentation step of 1 sample in this case (see
Figure 4). This property is shown in Figures 4a–d),
which illustrate the zolograms created by STADZT with
decreasing overlap. The worst case for time resolution
is achieved for an overlap of 50%, when the depicted
zologram does not contain information about the unit
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Figure 4: STADZT zolograms created by window length 128 samples and various overlap a) 127 samples ∼ 99 %
overlap, b) 120 samples ∼ 93 % overlap, c) 96 samples ∼ 75 % overlap, and d) 64 samples ∼ 50 % overlap. STFT
spectrograms created by window length 128 samples and various window shape: e) 127 samples ∼ 99 percent overlap,
f) 120 samples ∼ 99 % overlap, g) 96 samples ∼ 75 % overlap, and h) 64 samples ∼ 99 % overlap.

impulse (see Figure 4d).

4 Conclusion
This paper has presented a study of the parameters
which affect the time-frequency analysis created by the
new STADZT transform. The parameters discussed here
include the shape and the length of the segmentation
window, and the segment overlap. These parameters
are crucial for STFT, where the compromise between
time resolution and the frequency resolution must
be set. However, STADZT is not so sensitive to
these parameters, because the coefficients of the basis
function created by the selective Zolotarev polynomials
are adjusted for the analysed signal. Due to these basis
functions, the best frequency resolution is acquired for
a rectangular window, which is not good for analysis by
STFT. In the case of spectral leakage reduction by using
the window function, the resulting STFT spectrogram
contains less information that can be used for adjusting
the ADZT basis functions. As a consequence, the
STADZT zologram (see Figures 2b–d) is worse than the
zologram using a rectangular window (see Figire 2a).

The next benefit of the Zolotarev basis is that the time
resolution of STADZT does not depend strictly on the
window length. Greater window length means more
information in the STFT spectrogram, which can be
used for optimal adjustment of the Zolotarev basis
function. Hence, STADZT is able to obtain good time
and frequency resolution simultaneously (see Figure 3d).
A substantial feature of STADZT is that the time
resolution is not constant for the whole frequency range.
Thus the time instants of signal changes are localized
with higher accuracy for high frequencies than for low
frequencies.

More information about Zolotarev polynomials and
their application can be found on the website [12].
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Novel selective transforms for non-stationary signal
processing.
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