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Abstract. In this work, we explore the influence of perturbative wavelengths, shorter than those usually
considered, on the growth rate γ of the tearing modes. Thus, we adopt an extended form of Ohm’s law,
which includes a finite relaxation time for the current density, due to inertial effects of charged species.
In the long wavelength limit, we observe the standard γ of the tearing modes. However, in the short
wavelength limit, we show that γ does not depend on the fluid resistivity any longer. Actually, we find
out that γ now scales with the electron number density ne as γ ∼ n−3/2

e . Therefore, through a suitable
combination of both limiting results, we show that the standard γ can be substantially amplificated, even
by moderate shortenings of perturbative wavelengths. Further developments of our theory may contribute
to the explanation of the fast magnetic reconnection of field lines, as observed in astrophysical plasmas.
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1. Introduction
The most violent instabilities in magnetically confined
plasmas are the so-called ideal hydromagnetic instabili-
ties, which are driven by current and pressure gradients
[1–3]. As a matter of fact, the condition of a vanishingly
small resistivity imposes a constraint on the allowed
perturbed motions in the fluid. Actually, the electric
field in a frame moving with an ideal plasma has to
vanish. Thus, the magnetic flux through any surface
moving with that fluid has to remain constant. There-
fore, the perturbed magnetic field lines cannot slip with
respect to the perturbed flow lines in an ideal plasma.
According to Faraday’s law, the magnetic field remains
frozen inside the ideal fluid or obeys the frozen-in law.
The frozen-in law and ideal instabilities are well-

known subjects in plasma physics. They are discussed
in many textbooks, from the introductory to the ad-
vanced levels [4–8]. The ideal instabilities are not only
violent in the sense that they can destroy a given equi-
librium configuration, which, in this case, is determined
by the balance of the pressure gradient with the Lorentz
force. Their growth rate in time can typically achieve
very large values as well. This feature has lead to a
great effort to achieve control of the relevant physi-
cal parameters, which characterize actual confinement
configurations, such that those structures can remain
stable to ideal modes [9–13].

It is true that a finite electric resistivity provokes a
decrease on the current gradient, which drives the ideal
modes. However, it should be noted that dissipative
effects can relax constraints in the ideal fluid as well.
Thus, states with lower potential energy can become ac-
cessible to the system and new instabilities can emerge.
In particular, a finite plasma resistivity relaxes the
frozen-in condition. Therefore, magnetic field lines can

break-up into thin filaments. These structures were
coined magnetic islands [14–18].

Magnetic islands play a central role in the physics
of magnetic confinement configurations. They usually
grow in a time scale much longer than the Alfvén time
scale and attain a saturated size when the linear free
energy, which was available to drive the change in the
topology of the magnetic field lines, vanishes. If the
saturated size of the magnetic islands is comparable
with the radius of the plasma column in a tokamak, then
heat flow across the field lines is essentially replaced
by the much faster flow along the lines. When the
saturated islands are sufficiently large to touch each
other or the material limiter inside the vacuum chamber,
a disruption of the plasma column can occur and the
chamber can become subjected to strong mechanical
stresses [19–23].

In astrophysical plasmas, magnetic islands play an
equally relevant role. Magnetic energy can be converted
into kinetic energy, thermal energy, and particle acceler-
ation due to the modification of the magnetic topology
in highly conducting plasmas. This phenomenon was
dubbed the magnetic reconnection. Quite interestingly,
the magnetic reconnection is observed to occur much
faster than theoretically predicted in most astrophysical
processes. For instance, solar flares eventuate several
orders of magnitude faster than predicted, even by
including kinetic, sthocastic, and turbulence effects into
the topological dynamics [24–29]. This issue suggests
the possibility that there is still enough room to ex-
plore the most basic mechanisms, which underly the
formation of magnetic islands. The resistive instability
that is responsible to form magnetic islands is known
as the tearing instability.

The linear theory of the tearing modes was originally
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discussed by Furth, Killeen, and Rosenbluth [30], and
further developed by many authors [31–35]. A linear
perturbation is effected on a given static state of equilib-
rium of an infinite ideal plasma, which contains a thin
plane slab, with a small resistivity η. Therefore, on the
assumption of the usual Ohm’s law, which establishes
that the electric field in a frame moving with the fluid
is equal to the product of the plasma resistivity with
the current density, one finds that the growth rate γ of
the tearing modes scales with η as γ ∼ η3/5. This is
the central result of the standard theory of the tearing
modes.

In this work, we investigate the influence of perturba-
tive wavelengths, shorter than those usually considered,
on the growth rate of the tearing modes. Thus, we
adopt an extended form of Ohm’s law, which includes
a finite relaxation time for the current density, due to
inertial effects of charged species. In the long wave-
length limit, we observe the standard growth rate of
the tearing modes. However, in the short wavelength
limit, we can see that the growth rate does not depend
on the fluid resistivity any longer. Actually, we can
find out that γ now scales with the electron number
density ne as γ ∼ n−3/2

e . Therefore, through a suitable
combination of both limiting results, we show that the
standard growth rate of the tearing modes can be sub-
stantially amplificated, even by moderate shortenings
of perturbative wavelengths. Further developments of
our theory may contribute to the explanation of the
fast magnetic reconnection of field lines, as observed in
astrophysical plasmas.

2. Basic equations and linear
analysis

Let us start by considering an infinite plasma, in the
presence of a magnetic field ~B, flowing with a velocity
~V . By adopting Cartesian coordinates (x, y, z), we
assume that

~B = ẑB‖0 − ẑ ×∇Ψ, ~V = −ẑ ×∇Φ, (1)

where the flux functions Ψ and Φ depend only on x and
y (of course, they are allowed to depend on the time t
as well), and B‖0 is a constant. While writing (1), it
should be noted that the conditions on the absence of
magnetic monopoles, ∇ · ~B = 0, and incompressibility,
∇ · ~V = 0, are automatically satisfied.
In this work, we aim to explore the influence of

perturbative wavelengths, shorter than those usually
considered, on the growth rate of tearing modes. There-
fore, we adopt an extended form of Ohm’s law (a still
more general formula should include ion and electron
pressure gradients, as well as the Hall effect [7, 36–40],
however, those terms are not relevant for our purposes),

~E + ~V × ~B = η
(

1 + τC
∂

∂t

)
~J, (2)

where ~E, ~J , and η are the electric field, current den-
sity, and electric resistivity, respectively. For singly

ionized, approximately neutral, resistive plasmas, τC =
me(nee

2η)−1, with me, ne, and e standing for the elec-
tron mass, number density and charge, respectively.
As a matter of fact, τC must be interpreted as the
finite relaxation time for the current density, due to
inertial effects of charged species. Actually, if the elec-
tromagnetic field is suddenly removed from the presence
of the fluid, then (2) shows that ~J(t) = ~J(0)e−τ

−1
C t.

This means that the initial current ~J(0) damps off in
the fluid, in a time interval of the order of the scale
τC. At sufficiently long wavelengths, characterizing
the fields, inertial effects are negligible, τC → 0, and
the initial current damps off instantaneously. In this
case, (2) recovers the more usual form of Ohm’s law,
~E + ~V × ~B = η ~J .
Equations (1) imply ~V × ~B = −ẑ ~V ·∇Ψ− ẑ× ~V B‖0.

Now, by combining the first of (1) with the Faraday
and Ampère laws (the displacement current is neglected
in the Ampère-Maxwell law: the hydromagnetic ap-
proximation), we obtain

~E = −∇χ− ẑ ∂Ψ
∂t
, ~J = −ẑ∇

2Ψ
µ0

, (3)

where χ and µ0 are the electric potential and vacuum
magnetic permeability (a diamagnetic plasma is as-
sumed), respectively.

By substituting the expanded ~V × ~B and (3) in (2),
the z-component of the latter provides an expression
for the time evolution of the magnetic flux,

ẑ · ∇χ+
( ∂
∂t

+ ~V · ∇
)

Ψ = η

µ0

(
1 + τC

∂

∂t

)
∇2Ψ. (4)

We seek an expression for the time evolution of the
flow flux. Therefore, we consider Euler’s equation (an
inviscid fluid is assumed),( ∂

∂t
+ ~V · ∇

)
~V = −∇P + ~J × ~B

ρ0
, (5)

where P and ρ0 are the hydrodynamic pressure and
(constant and uniform) mass density, respectively. By
taking the curl of the relevant terms in (5) (of course,
∇×∇P = 0), we obtain

∇×
( ∂
∂t

+ ~V · ∇
)
~V = −ẑ

( ∂
∂t

+ ~V · ∇
)
∇2Φ,

∇× ( ~J × ~B) = −∇(∇2Ψ)×∇Ψ
µ0

, (6)

where, again, we use (1) and Ampère’s law. Finally, by
combining the z-components of (5) and (6), we arrive
at the sought expression,( ∂

∂t
+ ~V · ∇

)
∇2Φ = ẑ · ∇(∇2Ψ)×∇Ψ

µ0ρ0
. (7)

Equations (4) and (7) are the basic equations to be
explored in this work.

Let us assume that the plasma is ideal throughout
the whole space, except in a thin slab, whose electric
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resistivity η is a very small, although finite, number.
The plasma slab extends infinitely parallel to the yz-
plane, and from x = −a/2 to x = +a/2, with a > 0.
We also assume that the plasma is in a static state
of equilibrium, characterized by Ψ = Ψ(x) and Φ =
0. Then, the first of (1) shows that the equilibrium
magnetic field ~B = ẑB‖0 + ŷB⊥, where B⊥ = −Ψ′,
with the prime standing for the derivative with respect
to x. Since the current density is expected to become
vanishingly small far away from the plasma slab, the
second of (3) shows that |Ψ′| = B⊥0, a constant, for
|x| � a. Thus, we define the Alfvén speed VA =
B⊥0(µ0ρ0)−1/2 and time τA = aV −1

A scales. Hence,
we introduce the normalization t→ τAt, ∇ → a−1∇,
Ψ→ aB⊥0Ψ, Φ→ aVAΦ, and χ→ aVAB⊥0χ. Given
the above considerations, we obtain the dimensionless
version of (4) and (7),

ẑ · ∇χ+
( ∂
∂t

+ ~V · ∇
)

Ψ = τA

τD

(
1 + τC

τA

∂

∂t

)
∇2Ψ,( ∂

∂t
+ ~V · ∇

)
∇2Φ = ẑ · ∇

(
∇2Ψ

)
×∇Ψ, (8)

respectively, where we have included the resistive dif-
fusion time scale τD = a2µ0η

−1. Equations (8) show
that the equilibrium condition for the static state can
be read as ẑ · ∇χ = τAτ

−1
D Ψ′′.

About the static state of equilibrium, we assume that
the magnetic and flow fluxes are slightly perturbed in
the form Ψ(x, y; t) = Ψ(x)+ψ(x, y)eγt and Φ(x, y; t) =
φ(x, y)eγt, respectively, where γ is a (dimensionless)
time rate. By "slightly perturbed", we mean that |φ| ∼
|ψ| � |Ψ| (recall that the equilibrium Φ = 0). Then,
by retaining only terms proportional to ψ and φ, and
to their derivatives, (8) lead to the linear perturbed
equations (of course, any possible perturbation on χ is
also assumed to depend only on x, y, and t)

γψ + Ψ′ ∂φ
∂y

= τA

τD

(
1 + γ

τC

τA

)
∇2ψ,

γ∇2φ = (Ψ′′′ −Ψ′∇2)∂ψ
∂y

, (9)

respectively.
Since the equilibrium magnetic flux depends only

on the x-coordinate, the perturbative functions can
be Fourier decomposed in the y-coordinate. A careful
inspection of (9) reveals that ψ and φ exhibit opposite
parities with respect to y. Thus, we choose to Fourier
decompose the perturbative functions in the form
ψ(x, y) = ψ(x) cos(ky) and φ(x, y) = φ(x) sin(ky),
where k is a (dimensionless) wavenumber. With this
choice, (9) become

γψ + kΨ′φ = τA

τD

(
1 + γ

τC

τA

)
(ψ′′ − k2ψ),

γ(φ′′ − k2φ) = −k
(
Ψ′′′ψ −Ψ′(ψ′′ − k2ψ)

)
, (10)

respectively.

2.1. Solutions in the ideal and resistive
regions

In the ideal region, η → 0 and, according to the first of
(10), φ is given by

φ = γ

kΨ′

((δe

a

)2
(ψ′′ − k2ψ)− ψ

)
, (11)

where δ2
e = me

(
nee

2µ0

)−1
, with δe standing for the

electron skin depth. Since γ is expected to become
vanishingly small in the limit η → 0 (this is true
for tearing modes but not for kink modes, which can
become unstable even in the ideal limit [33]), by subs-
tituting (11) in the second of (10), we see that ψ satisfies
the differential equation

ψ′′ =
(
k2 + Ψ′′′

Ψ′
)
ψ, (12)

in the limit γ → 0.
Except for much simplified equilibrium models, (12)

must be treated numerically. However, the asymptotic
behavior of its solution in the limit x→ 0 can be easily
found by making use of the Frobenius method. To see
this, we first expand the equilibrium magnetic field in
a Taylor series about the origin, by noting that Ψ′ = 0
at x = 0. Therefore, (12) can be approximated to

ψ′′ = κ

x
ψ, (13)

where the number κ satisfies the relation

κ = Ψ′′′(0)
Ψ′′(0) . (14)

The general solution of (13) reads as [41]

ψ(x) = ψ̂û(κx) + ψ̄ū(κx), (15)

where ψ̂ and ψ̄ are constants, and

û(κx) = κx+ 1
2(κx)2 + 1

12(κx)3 + . . . ,

ū(κx) = 1− κx− 5
4(κx)2 − . . .+ û ln|κx| (16)

provide the regular and irregular parts, respectively, of
ψ in the limit x→ 0. As it appears, about the origin,
the dominant behavior of ψ is given by

ψ(x) = ψ̄
(
1 + κx ln|κx|

)
. (17)

Equation (17) shows that ψ is actually a constant, while
its first and higher order derivatives diverge in the limit
x→ 0. Such asymptotic behavior is the source of the
so-called constant-ψ approximation in the analytical
theory of tearing modes.

Given the functional form (17) of the asymptotic
solution of (12) about the origin, (13) shows that the
logarithmic derivative of ψ exhibits a jump,

∆′ = 1
ψ̄

∫ 0+

0−

ψ′′dx, (18)
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across the resistive layer. The asymptotic solution (17)
of (12) in the ideal region suggests that the perturbative
function ψ is, to the lowest order, also a constant inside
the resistive layer. However, the varying parts of ψ
and φ inside the resistive layer are not yet known.
Actually, the characteristic length scale of the variation
of the fields is not the same for both ideal and resistive
phenomena. When resistivity is neglected, the magnetic
field is frozen inside the plasma, and the perturbed fluid
motions can cause substantial distortions in the field
lines. Therefore, significant gradients of perturbed fields
can ensue in the resistive layer. This is the motivation
for making use of the boundary layer technique in the
analytical theory of tearing modes [42].
In order to apply the boundary layer technique to

solve (10) inside the resistive layer, first we need to
identify a small scaling parameter among the relevant
physical quantities. For fully ionized plasmas, it is
well-known that η ∼ T−3/2

e , with Te standing for the
electron temperature [7]. For typically high values of
the electron temperature, the upper-limit of the ratio of
the Alfvén to the diffusion time scales is quite a small
number, τAτ

−1
D < 10−5 [6]. Hence, we introduce the

scaling

γ =
(τA

τD

)q
ω,

τC

τA
=
(τA

τD

)−q
θ,

x =
(τA

τD

)r
ξ, Ψ′ = −

(τA

τD

)r
ξ,

ψ(x) = ψ̄ +
(τA

τD

)r
ψ̃(ξ), φ(x) =

(τA

τD

)s γ
k
ϕ(ξ),

(19)

where we see that ωθ = γτCτ
−1
A , since inertial effects

should be actually important at very short length scales,
Ψ′ vanishes linearly with ξ inside the resistive layer,
ψ̄ and ψ̃ provide the constant and varying parts, re-
spectively, of ψ inside the resistive layer, and γk−1

is included in the definition of ϕ to simplify further
calculations.

Given the considerations above, we obtain the scaled
version of (10),

ψ̄ +
(τA

τD

)r
ψ̃ −

(τA

τD

)r+s
ξϕ

= 1+ωθ
ω

(τA

τD

)1−q−r
(
d2ψ̃

dξ2 −
(τA

τD

)r
k2
(
ψ̄+
(τA

τD

)r
ψ̃

))
,

d2ϕ

dξ2 −
(τA

τD

)2r
k2ϕ

= −
(τA

τD

)−2q+2r−s( k
ω

)2
ξ

(
d2ψ̃

dξ2

−
(τA

τD

)r
k2
(
ψ̄ +

(τA

τD

)r
ψ̃

))
, (20)

respectively.
The powers q, r, and s must be chosen by requi-

ring that the terms proportional to ξ and to the se-
cond derivative of ψ̃ become of the same order of ψ̄

(the constant-ψ approximation). This is achieved by
choosing r+ s = 0, 1− q− r = 0, and −2q+ 2r− s = 0.
Then, q = 3/5, r = 2/5, and s = −2/5. Thus, (20)
become

ψ̄ +
(τA

τD

)2/5
ψ̃ − ξϕ

= 1 + ωθ

ω

(
d2ψ̃

dξ2 −
(τA

τD

)2/5
k2
(
ψ̄ +

(τA

τD

)2/5
ψ̃

))
,

d2ϕ

dξ2 −
(τA

τD

)4/5
k2ϕ

= −
( k
ω

)2
ξ

(
d2ψ̃

dξ2 −
(τA

τD

)2/5
k2
(
ψ̄ +

(τA

τD

)2/5
ψ̃

))
,

(21)

respectively.
By retaining only terms proportional to the small

scaling parameter τAτ
−1
D , (21) approach

ψ̄ − ξϕ = 1 + ωθ

ω

d2ψ̃

dξ2 ,

d2ϕ

dξ2 = −
( k
ω

)2
ξ
d2ψ̃

dξ2 , (22)

respectively. By combining (22), we obtain

d2ϕ

dξ2 = − k2

(1 + ωθ)ωξ(ψ̄ − ξϕ). (23)

In order to solve (23), it proves useful to introduce the
transformations

ξ =
( (1 + ωθ)ω

k2

)1/4
ζ,

ϕ(ξ) = −
( k2

(1 + ωθ)ω

)1/4
ψ̄f(ζ). (24)

By substituting (24) in (23), we obtain

d2f

dζ2 = ζ(1 + ζf). (25)

The solution of (25) can be written in terms of the
integral representation [43, 44]

f(ζ) = −ζ
∫ 1/2

0

1
(1− 4β2)1/4 e−ζ

2βdβ, (26)

which implies the asymptotic behavior

f(ζ) = −1
ζ
− 2
ζ5 − . . . (27)

in the limit |ζ| � 1.

2.2. Asymptotic matching and growth
rate

In order to asymptotically match the solutions of (10)
in the ideal region and inside the resistive layer, it is
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sufficient to identify (18) with the jump in the logarith-
mic derivative of the scaled ψ across the resistive layer,
to the lowest order. Thus, given the scaling (19), we
identify

∆′ = 1
ψ̄

∫ +w/2

−w/2

d2ψ̃

dξ2 dξ, (28)

where w > 0 is the (scaled, dimensionless) width of the
resistive layer. By combining the second of (22) with
(28), we obtain

∆′ = −
(ω
k

)2 1
ψ̄

∫ +w/2

−w/2

d2ϕ

dξ2
dξ

ξ
. (29)

By substituting (24) in (29), we obtain

∆′ = ω5/4

k1/2(1 + ωθ)3/4

∫ +∞

−∞

d2f

dζ2
dζ

ζ
, (30)

where we have extended the limits of the integral to
±∞ because the integrand ∼ −ζ−4 inside the resistive
layer, according to the asymptotic behavior of f in the
limit |ζ| � 1, as given by (27). Actually, in accordance
with (26), the integral in (30) can be written as∫ ζ=+∞

ζ=−∞

d2f

dζ2
dζ

ζ

= 2
∫ ζ=+∞

ζ=−∞
dζ

∫ β=1/2

β=0

3β − 2ζ2β2

(1− 4β2)1/4 e−ζ
2βdβ. (31)

Since the integral (31) can be expressed in terms of
Gamma functions [41], (30) finally yields the sought
identification,

∆′ = 2πΓ(3/4)
k1/2Γ(1/4)

ω5/4

(1 + ωθ)3/4 . (32)

On the assumption that ∆′ is known, (32) implies

ω5/4

(1 + ωθ)3/4 = ∆′Γ(1/4)
2πΓ(3/4)k

1/2. (33)

Therefore, according to the scaling (19), (33) can be
written as

γ5/4

(1 + γτCτ
−1
A )3/4 = ∆′Γ(1/4)

2πΓ(3/4)k
1/2τ

3/4
A τ

−3/4
D , (34)

in terms of dimensionless quantities. By plugging back
the actual physical quantities in (34), we finally read

γ5/4

(1 + γτC)3/4 = ∆′aΓ(1/4)
2πΓ(3/4) (ka)1/2τ

−1/2
A τ

−3/4
D . (35)

Equation (35) shows that if ∆′ > 0, then γ > 0, and
the aforementioned static state of equilibrium becomes
unstable to the linear perturbation. In particular, for
sufficiently long perturbative wavelengths, inertial ef-
fects due to charged species are negligible, γτC � 1,
and (35) simplifies to

γ =
(

∆′aΓ(1/4)
2πΓ(3/4)

)4/5
(ka)2/5τ

−2/5
A τ

−3/5
D . (36)

Equation (36) shows the standard result of the analyti-
cal theory of tearing modes, which establishes that the
growth rate γ scales with the plasma resistivity η as
γ ∼ η3/5 [30].

3. Growth rate amplification
Now we get to the main result of this work. For suffi-
ciently short wavelengths, inertial effects can become
important. Then, in the limit γτC � 1, from (35), we
find that

γ =
(

∆′aΓ(1/4)
2πΓ(3/4)

)2
(ka)τ−1

A

(δe

a

)3
. (37)

Equation (37) shows that inertial effects can provoke
quite a significant change on the scaling of the growth
rate with the relevant plasma parameters. As a matter
of fact, we see that γ does not depend on the plasma
resistivity any longer. Actually, it scales now with the
electron number density as γ ∼ n−3/2

e .
Beyond the above mentioned qualitative result, can

we quantify the change of the growth rate due to a
change on the perturbative wavelength? To answer this
question, first we observe that the product ∆′a, in the
general equation (35), is a function of the product ka
[45–49]. Perhaps, the most illustrative example of this
issue is provided by the so-called Harris model, which
assumes the profile [50]

~J = ẑ
B⊥0

aµ0
sech2 x

a
(38)

for the equilibrium current density. By substituting (38)
in the second of (3), one can calculate the equilibrium
magnetic flux. Next, by substituting the latter in
(12), one can compute the perturbative magnetic flux.
Finally, (18) yields the well-known result

∆′a = 2
( 1
ka
− ka

)
. (39)

Given the above considerations, let us assume that
two plane resistive slabs are formed in an infinite ideal
plasma. The two slabs have the same electric resistivity
and are subjected to the same equilibrium magnetic field.
The only difference between them is their thicknesses.
Thus, we can explore the situation for which the product
ka is the same for both slabs. This means that the
thicker slab can accommodate a longer perturbative
wavelength, which we call Λ, and the thinner slab can
accommodate a shorter perturbative wavelength, which
we call λ. Therefore, from (35), we find that

(ΓτC)1/2

(γτC)5/4 =
( λ

Λ

)−2
, (40)

where the growth rates γ and Γ are assumed to satisfy
the conditions γτC � 1 and ΓτC � 1, respectively.
To see the consequences of result (40), suppose that
γτC ∼ 10−2 for the unstable mode with the longer
perturbative wavelength Λ. Hence, if the latter is mod-
erately shortened, for instance, to λ ∼ 10−2Λ, then
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(40) shows that ΓτC ∼ 103. This means that the stan-
dard growth rate γ of the tearing mode is amplificated
to Γ ∼ 105γ, quite a significant amplification due to
inertial effects of charged species in the plasma.

4. Conclusion
In this work, we have explored the influence of perturba-
tive wavelengths, shorter than those usually considered,
on the growth rate γ of the tearing modes. Thus, we
have adopted an extended form of Ohm’s law, which
includes a finite relaxation time for the current density,
due to inertial effects of charged species. In the long
wavelength limit, we have observed the standard γ of
the tearing modes. However, in the short wavelength
limit, we have shown that γ does not depend on the
fluid resistivity any longer. Actually, we have found
out that γ now scales with the electron number density
ne as γ ∼ n

−3/2
e . Therefore, through a suitable com-

bination of both limiting results, we have shown that
the standard γ can be substantially amplificated, even
by moderate shortenings of perturbative wavelengths.
Further developments of our theory may contribute to
the explanation of the fast magnetic reconnection of
field lines, as observed in astrophysical plasmas.
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