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Simulation of Scoliosis Treatment Using

a Brace
J. Culik

Tvo Mavik M.D. has treated many child patients with scoliosis at the “Centre for Locomotor Defects”, Olsanskd 7, 130 00 Prague 3. The
author has cooperated with him, and composed the computer program for the spine stress state under brace effects and for simulating scoliosis
treatment. The program simulates the spinal curve remodelling in time for a specific child patients, and the algorithm for stress state
calculation and treatment simulation is given.

Orthopaedists in the Czech Republic use Cheneau-type or Cerny-type corrective braces. The brace exerts force effects on the skeleton of a
child. The brace is made individually for each patient, in the following way: first, a negative plaster form of the child s trunk is made, and
then the positive plaster form is created. The orthopaedist determines the places where brace has to load the patient 's trunk, and the plaster
Sform deepened in these places on the basis of his advice. The laminate brace made according to this plaster form constricts the child s trunk
(like a tight shoe).

This paper shows how the stress state is determined in vertebrae and in inter-vertebral discs, and the solution of spinal curvature correction
under brace force effects for a specific child patient. The project aims to find the dependence of the activation and velocity of spinal curvature
correction in the spinal stress state for many patients. The paper shows the computing algorithms for spinal deformations and the stress state
under brace force effects, and a simulation of spinal curvature correction.

Spinal curvature is determined according to measured values on an X-ray of a patient before a brace is applied. The stress state in the spine
and the spinal deformation are investigated by the finite element method as beam (spine) in an elastic ground (soft tissue). Two algorithms
are used. The furst algorithm deals with the spine above and below the soft tissues, and it is loaded by given displacements of the trunk
surface. The second algorithm determines from the X-ray of a patient with and without a brace the spine deformation and the spine stress
state, and the necessary trunk surface displacement is determined from this deformation.

The calculation algorithm and parameters were compared with contest of treatment. The trunk surface load was checked by sensor that plates
were placed into the braces to measure the load values between the brace and the swrface of the child. The simulation program assesses the
spinal curvature correction according to the spinal curvature type, the spinal stress state and the period of time for which the brace will be
applied.

Keywords: biomechanics, simulation of treatment, scoliosis, spine stress state, spine remodelling.

1 Introduction with a brace is shown in Fig. 2. Cheneau-type dynamic correc-

Spinal corrective braces (see Fig. 1) are used for treating ~ tive braces or according to Cerny’s patent No. 281800CZ
spine scoliosis in children (pathologic at deformation of chest ~ (see Fig. 1) are usually used in the Czech Republic. The breast
curvature). The X-ray of the patient from Fig. 1 without and ~ curvature can be classified according to King. A Chenau-type

Fig. 1: Patient without and with the dynamic corrective brace according to Cerny’s patent No. 281800CZ
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brace of is recommended for spinal curves of type King I, II,
and IV types, a Cerny-type brace for spinal curves of King II,
III and V types.

The brace constricts the child”s trunk and makes a stress
state in the patient’s spine. The brace changes the spinal cur-
vature, which means that the pathological spinal form is
corrected. After long-term use of the brace, the spinal cor-
rection is permanent. The brace is made in the following
manner: first, a plaster negative form and then a positive
form of the child’s trunk are made. According to his experi-
ence and the orthopedist’s recommendation, the orthopedic
assistant deepens the positive form of the plaster’s in the
place where the brace is to push on the child’s trunk. The
plastic brace is then made according to this plaster form.
After it has been applicated to child’s trunk, the brace con-
stricts the places where the form has been deepened (the
tight shoe principle).

If no computer search is used, the brace force effect is
the result of the orthopaedist and his assistant’s experience
only, and it does not ensure that the form of the designed
brace and the manner of treatment are optimal. This paper
shows computer algorithms that are able to determine the
stress state in vertebra and inter-vertebral discs, and spinal
curve changes for specific brace applications. The theoretical
conclusions are based on many causes of treatment. The
remodelling of a pathological spine curvature depends on
the spine stress state, and the time and manner in which the
brace is applied. The course of treatment is simulated on

the computer. The aim of this study is to determine the ideal
brace form and a course of treatment course with the help of
computer simulation. The computer program calculates the
spine stress state and its curvature changes at each time point.
The treatment simulation is now being provided simulta-
neously with the patient’s treatment, and the computer model
is being verified. If the computer model and the actual treat-
ment have the same behaviour, then the model can be used
for treatment prognosis in orthopaedic practice. Since the
course of treatment takes a long time, the simulation model is
still being verified so that its prognoses can become as precise
as possible.

2 Spinal curvature

The task is solved using Cartesian coordinates (x — spine
axis direction, y, z — frontal and saggital plane). The spinal
curvature is stored in the computer as the following three
functions

y=y(x) z=z2(x) p=¢(x), M
where ¢ is the turning based on the x-axis. The spinal curva-
ture can be described if the extreme values of y and/or z are
measured from X-ray (the extremes of the white curvature in
the X-ray on the left in Fig. 2). The method is also applied for
the frontal and sagittal plane. The spinal curvature has 3 ex-
tremes of coordinate maxima. The curvature is divided into n
sectors between the beginning, the extremes and the end
point of the coordinates, respectively (max. n is 4). The ex-

Fig. 2: Frontal X-ray of the patient from Fig. 1 without and with the corrective brace

© Czech Technical University Publishing House

http://ctn.cvut.cz/ap/

63



Acta Polytechnica Vol. 44 No. 2/2004

treme coordinates x;, y;, t=1, ..., n— 1 and the coordinate x,,
of the spine end (spine length where x, = 0) are measured by
X-ray (see Fig. 2). The length of segment ¢ is

Zi =X — X -

The local coordinate § is considered from the beginning of
segment 7. Function y is considered as a polynomial. For
the first segment (quadratic polynomial function) it is

Ji §
—2iglo 5|,
a 5( li]

for the inner segments (cubic polynomial function)

oy )EZ
NG %4E [g_gfj

1

and for the last segment (quadratic polynomial function)

2
y= yi-{l - fz} :

3 Deformation of the spine

The inertia moment has to be determined for an inter-
-vertebral disc and a lignum cross-section area (see Fig. 3).
The calculation procedure is as follows: the cross-section area
is divided into triangles, and one third of triangular areas are
concentrated to their side centres.

The spine is treated like a beam in an elastic basis, and the
finite element method (deformation variant according to the
Lagrange principle) is used for calculating the stress state. It is
assumed that the vertebrae have no deformation. The poten-
tial energy is calculated for the inter-vertebral disc volume
and for the compressed soft tissue region of a child’s trunk.
For simplification, the soft tissue is considered constant (rect-
angular cross-section of the trunk). The displacements and
the turning at the vertebral centres are kinematic unknowns:

n
T:{T } rf =[<Px,z" ‘px,i+l]’ W o=[w,pnwinpia]. (2
5

where ¢, are turnings based on the spine axis. The following
algorithm 1is valid for the frontal and sagittal planes, and
planes will not be indicated by the plane index.

The stiffness matrix for the part of the spine between
the centres of neighbouring vertebra is (torsion and beam
influences)

1
K 0
K= . 3)
0 K?

The sub-matrices will be determined separately for defor-
mation of the spine and for soft tissue.

4 Deformation of inter-vertebral discs

The beam and torsion stiffness is

EI 1
k= 27 , 1= GiT

l l
where E, I are the modulus of elasticity and the moment
of inertia of a cross-section of the inter-vertebral disc and
lignums (see Fig. 3), and [ is the thickness of the disc. The

influence of torsion is:

I% 1 t @)
RE2AE
The influence for R- forces (moments) and 7- movements
(turns) on inter-vertebral disc boundaries are

R =K%R, (5)

>

The stiffness matrix K 2 will be searched for inter-vertebral
disc and kinematic value at the inter-vertebral borders. Be-
cause the vertebra are stiff, they have no potential energy. The
inter-vertebral stiffness matrix will be recalculated on matrix
K? for kinematic unknowns at the vertebra centres.
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Fig. 3: Inter-vertebral disc and lignums
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Fig. 4: Spine deformation is linear in the vertebra parts and
curvilinear in the inter-vertebral part of the disc

Let the boundary forces Z;, M;, Z; 1, M;,, and the kine-
matic unknowns w;, ¢;, wi,1, @i+ be transformed from verte-
bra centres to values Z;, M;, Z;,1, M;,1, W, Pi» W41, Pjy) at the
disc boundary points (see Fig. 4). As there is no deformation
between the vertebral centre and the inter-vertebral disc
boundary, the central spinal line is straight in this part, the
spine movement w has a linear course in the part of length «,

and the torsion moment M, and turning ¢, ¢, are invariable.
Wi =w; = P; @y W] =Wig) + Pis1 s P =Pjs Pir1 =Pis1>  (7)
M; =M; +Za, My =M+ Ziga, 2;=2;, Zigy=Ziyy. (8)

Let us put (7), (8) to (5)

0 —ap;
aZi | —o 0
Rovq b =K ol | 9)
—aZi 0
Formula (9) can be written
Ry =K%, (10)
where K? is the stiffness matrix for vertebra centres
6k 3k (2a 6k 3k ( 2a
Z S ) B )
o) e ()] P ) o2 T (T
o B Gt B Gl
—3—}{(%+1J k 2+ﬁ(2i+1ﬂ %Tk(%Jrl) i{2+3{l(2—a+lﬂ
(11)

Analogous formulas are valid for the y axis direction.

4.1 Compressed Soft Tissue (Elastic Ground)

The compressed soft tissue of a child’s trunk round the
spine is considered as an elastic ground according to [1]
p- 86-113, and the final formulas will be used here. The width
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of the ground is considered constant. Let us calculate the
parameters

C ==L, cy="E2,
1 h 2 6
. 1 ] 1 |G
Cl :CI+Z,/C1C2, CQ :C2 +% C ,
1

. . 3
Cs =éclb2 +Co + b JCICy, Cy =éC2b2 +§ /%2
1

where Ep, h, b are the modulus of elasticity, thickness and
width of the compressed soft tissue. The torsion stiffness
sub-matrix is:

bl +2 1 9 « 1 4
K'="¢ “c . 1
3 8|:1 2:|+l 44 (12)
The beam stiffness sub-matrix is:
(18w 9 18]
25 %10 70 420
BRGNS T
2 _ #0210 105 420 140
K —leCI g _LSZ E 1711 +
70 420 35 210
LT b o
| 420 140 210 105 | (13)
6 1 6 I
510 5 10
oo 1 B
L2G 110 15 100 30
1|6 L 6 1
5 10 5 10
AN ;
L 10 30 10 15

5 The first algorithm

The brace constricts the trunk in the place where the plas-
ter positive form of the child s trunk has been deepened,; this
means that the trunk surface (soft tissue surface) has non-zero
prescribed displacements in these places. Let us assume that
the prescribed displacement acts from above for a lying pa-
tient, and the z-axis direction is from below. The compression
of the soft tissue up the spine is wy—w and below it is w, where
w is the spine displacement and wy is the prescribed trunk
surface displacement. Let matrices K pove» Kpelow b€ calcu-
lated according to formulas (12), (13) for the part of the trunk
above and below the spine. The potential energy of the soft
tissue part is

OEp = or’ [_Kabove(ro -1+ Kbelowr] = (14)

T
=or [_Kab()ver() + (Kbel()w + K'(lb()Vt‘)T] .

The term K,p.79 can be calculated, and its negative
form can be considered as a load vector (the right side of lin-
ear algebraic equations of the finite element method). In this
way, the potential energy can be considered in the compres-
sed parts of the soft tissue only; this means that the terms
Kabove (rg—7) and/or Kje1oy? are taken into cosideration only
if they are positive. An iteration calculation is necessary for
correct results; this means that the load vector is calculated for
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the compressed soft tissue part above and/or below the spine
according to the results from the last iteration step.

The oblique load will be searched. Let y, z be coordinates
of the point of the center where the positive plaster form was
deepened, and let A be the depth to which the plaster positive
form has been deepened in the perpendicular direction to
the child’s trunk surface. Now, A is a prescribed trunk surface
displacement and vy, z are its coordinates (positive displace-
ment is in the direction from the trunk surface to the spine).
Let us consider that the transversal cross-section of the trunk
has a half elliptic form with radiuses a, b for z > 0 and a, b for
z < 0. The following formulas can be written for the ellipse

2

y
2=by1- 2 (15)
aQ

If formula (13) is derived, angle ¢ of the tangent with axis
9y can be calculated; the negative value of angle ¢ is the angle
of the normal with the z axis.

, by
gp=2 =——F———.
u /a2_y2

The prescribed surface displacements v, w( in y, z direc-
tions are

vy =—Asing, wy=Acosgp.

The problem can be solved in the x, y or x, z plane with
prescribed displacements v, or w, or more correctly as a
space problem with a space spine and soft tissue elements.
The stiftness matrix for the space spine element can be con-
sidered in the same way as formulas (4), (5) and (11), but the
matrix K2 (see (11)) also has the elements for the direction of
the axis y. As the vertebra have no deformations, the kine-
matic variables at the vertebra surface can be calculated from
the kinematic variables of the centre of gravity of the vertebra
(see (3)). The normal and tangential stresses on the boundary
between a vertebral and an inter-vertebral disc are then calcu-

&

14.5 years

" oa
S

15 years

lated from the resulting joint forces and moments. The nor-
mal force of the x-axis load has to be taken into account in the
normal stress calculation, too, and the influence of shear and
torsion should be taken into account in the tangent stress
calculation.

The parameters and calculation algorithm are being veri-
fied with values observed in the X-ray of a child with and with-
out a brace, i.e., the calculated function values y, z and y + v,
z+w and their extremes are compared with the patient’s
X-ray.

6 The second algorithm

The spinal curvature extremes are measured on X-rays
taken without and with a brace. The spinal curvature coordi-
nates are determined for the X-rays, and the spine deforma-
tion function 7y is the difference of the two curvature coordi-
nates. The joint force (moment) vector Ry can be calculated
from (10) and beam theory can be used to calculate the spine
stress state. If displacement vector w is known, we can calcu-
late from (14) vector w — the necessary displacement of the
trunk surface and the most suitable place for deepening the
brace.

7 Simulation of treatment

If the brace is removed from the child’s trunk after being
applied for some time, then the spine does not return to its
previous position, but the pathological spine form is partly
corrected. An example of the result of scoliosis treatment of
a King I type spinal defect is shown in Fig. 5. The maximum of
the angles between the spine axis has been measured at the
thoracic and lumbar parts of spine. The measured angles
were 27 grads and 34 grads before treatment; 2 and 5 grads
with the brace; 9 and 12 grads after treatment. Statistical data
for various spinal curve types according to King-Moe are
given in Table 1.

17 years

Fig. 5: X-rays of a patient with King I type spinal curvature, before treatment, with a brace, and after 2.5 years
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Table 1: Statistical data for spinal angle correction after scoliosis
treatment with braces

King-Moe| Th % o) | L % (No)
| 52(s7) / 59(a7)
[l
[ 47 (a6) / 49s8)
v o] 4710 /A7¢5)
Y 11(2) / 302 |

CHENEATE 49(177)/ 49(131) @(177)/ 49(131)

The second column is for the thoracic part of the spine,
and the third column is for the lumbar part of the spine. The
first set of data is for Ch neau and the second set of data for
Cerny brace types. The percentages of angle correction are
given first, followed by the number of patients treated, in
parenthesses. The prognosis prognosis and speed of the treat-
ment effect are made according to the statistical data and the
spine stress state. The condition for succesful treatment is pe-
riodical use of the brace in accordance with orthopaedic
advice.

8 Conclusion

Many child patients have been observed within this pro-
ject, and the dependence between spinal curvature correc-
tion, the spine stress state and the time interval of applying
the brace have been studied. Theoretical conclusions about
spine remodelling have been sought. The computer simula-
tion model and its parameters are being verified to ensure
that the behaviour of the model is the same as the child’s
course of treatment. Since the treatment takes a long time, the
theoretical conclusions can only be determined after a suffi-
cient number of comparison have been made between ob-
served treatment courses and their computer simulations.
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