
1 Introduction
The terahertz frequency band is recently usually consid-

ered as the interval 300 GHz–3 THz that corresponds to the
submillimeter wavelength range between 1 mm and 100 �m
or to photon energy within the range 1.2–12.4 meV. Despite
great scientific interest the terahertz frequency range remains
one of the least tapped regions of the electromagnetic spec-
trum. Below 300 GHz we cross into the millimeter-wave
bands. Beyond 3 THz is more or less unclaimed territory:
the border between far-infrared and submillimeter radiation
is still rather blurry.

Recent rapid progress in nanoelectronics and high fre-
quency technologies necessitates that heterojunctions, super-
lattices, low-dimensional semiconductor structures, quantum
wells and barriers are today standard building blocks of
modern electronic devices, which find their application in
the field of microwave and submillimeter technology or in
photonics. The existence of quantum wells and barriers re-
sults in the quantum-based mechanism of electron transport,
thermionic emission across the barrier and the tunnelling
(thermionic-field-emission) through the barrier. These effects
should be treated by means of appropriate methods of quan-
tum physics.

Although the frequency of 1 THz appears to be very high,
this is only an appearance. The frequency 1.8 GHz is at
present in general use in mobile telephones. It is clear that
1.8 GHz cannot be equal to the transient frequency fT of tran-
sistors in the integrated circuits of mobile telephones. The
frequency 1.8 GHz should be even lower than the frequency
f�, which is defined by the 3 dB drop of the current gain –
this means that the frequency fT should be of the order
(100�300) GHz. Even higher frequency bands are used in
radar systems. The resonant tunneling diode (and similar
structures with resonant tunneling) are recently typical de-
vices for the terahertz fequency band [1]. Moreover, nearly
the same theoretical approach that is used for investigat-
ing of the terahertz frequency band can also be applied
if the interaction of near-infrared radiation with photonic
structures is studied. Quantum cascade lasers may provide
terahertz bandwith for communications [2].

A typical situation in electronics is that a dc-bias together
with a small ac-signal are applied to the structure. The calcu-

lation of potential barrier transmittance with dc-bias only is
a classical and well-known problem of quantum mechanics
[3]. The application of a high-frequency signal to the barrier
has been studied only in the last decade. A general method
of solution is described in [4, 5] and developed in [6, 7].
However, papers concerning high-frequency phenomena are
usually devoted to resonant tunnelling diodes (RTD) and dif-
ferent types of potential barriers are rarely investigated, e.g.
in [8] (the high-frequency potential step with zero steady state
potential). The aim of this paper is to present results achieved
in a theoretical investigation of the high-frequency electron
transport across the rectangular, triangular, trapezoidal or
parabolic potential barriers that are most frequently used in
various nanoelectronic or photonic structures.

2 Steady-state transmittance of
a potential barrier
The term “steady-state” means that only dc-bias is applied

to the potential barrier. Although we have mentioned above
that the calculation of steady-state barrier transmittance is a
classical problem of quantum physics, we briefly summarise
and generalise these results.

We will consider a rectangular, triangular, trapezoidal or
parabolic potential barrier, see Fig. 1. We assume that there is
a significant voltage drop only at the barrier region, i.e. out-
side the voltage barrier there is no electric field and the elec-
trons can be described as free. The barrier height Umax, the
barrier width xB, and in fact the whole barrier profile, i.e. the
potential energy U(x), depend on the external applied bias.
The formulae for the potential energy U(x) are given in Fig. 1.

Consider that the electrons are incident on the barrier
from the left. In this case, in region A we have incident elec-
trons described by the wave function e ik x0 (k0 is the wave
vector related to the electron kinetic energy by E k m� �

2
0
2 2 )

and electrons reflected from the barrier with wave function
r e ik x
0

0� (r0 is the reflection amplitude). The electrons inside
the barrier region B are described by some specific wave
function that is dependent on the profile (shape) of the
potential barrier. In region C (after the barrier) are trans-
mitted only electrons with wave function t e iq x

0
0 (t0 is the

transmission amplitude) with the wave vector q0 satisfying
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Let us turn our attention to the functions f x( ), g x( ) in
Eq. (1). These functions contain the information on the
potential barrier. In general the wave function �B( )x inside
the barrier region is the eigenfunction of the correspond-
ing hamiltonian, i.e. it is the solution of the stationary
Schrödinger equation

Hdc B B� �� E where Hdc � � �
�

2 2

22m
d
dx

U x( ) (2)

For a rectangular barrier we obtain

f x e g x e p m E Uip x ip x( ) , ( ) , ( )max� � � ��0 0
0 2 � (3)

where p0 is real for E U� max (this corresponds to the electron
emission over the barrier) and p0 is imaginary, p i0 0� � for
E U� max (electron tunneling through the barrier). The re-
sults for the potential barriers in Fig. 1 are summarized in
Table 1.

The electron wave functions for any type of barrier obey
the standard boundary conditions at the interfaces x xB� � ,
x �0 (to simplify the problem equal electron effective mass m
is considered throughout the structure):

� � � �

� � �

A B B B A B B B

B C B

( ) ( ), ( ) ( ),

( ) ( ), (

� � � � � � � �

� �

x x x x

0 0 0 0) ( ) .� ��C

(4)

Substituting the wave functions we obtain a system of four
linear equations for the unknown coefficients r t a b0 0 0 0, , ,
in (1). As the system is sufficiently simple, it can be solved ana-
lytically. If the wave functions are known, the single electron
quantum mechanical current densities of incident and trans-
mitted electrons can be calculate according to the well-known
formulae
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Fig. 1: Different types of potential barrier; E is the energy of the incident electron, U(x) is the potential energy in the barrier region B
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Table 1: Electron wave functions in the barrier region
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The steady state barrier transmittanceT Edc( ) is a function
of electron energy E and it is defined as the ratio j jtrans inc .
We introduce the following short notation:
A f x B g x

A f x B g x
C f x x

� � � �

� � � � � � � �

� �

( ), ( ),

( ), ( ),
( ),
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( ), ( )

, , /

B
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	 	1 2 0
�

�
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for the
rectangular / triangular / trapeziodal / parabolic barrier

(6)

The transmission amplitude t0 defined in (1) is then given
by

� �t e B i B C i C A i A D i Dikx
0 2 1 2 1

12
� � � � � � � � � �� �

�
	 	 	 	B ( )( ) ( )( )

(7)

and the transmittance reads

T E
q
k

tdc( ) � 0

0
0

2. (8)

Let us consider the N-Al1�xGaxAs/p�-GaAs abrupt hetero-
junction with the following parameters: aluminium mole
fraction 0.35, donor concentration in N-region 5×1017 cm�3,
acceptor concentration in p�-region 1×1019 cm�3, the
depletion layer extends in the N-region and its width is
xn nm�65 for zero bias, the heterojunction built-in voltage is
Vbi �18. V. The electron effective mass is considered to be
the same throughout the structure and equal to the effective
mass of an electron in GaAs, thus m �0067. mel. The energy
Umax is related to the built-in voltage Vbi and to the external
applied voltage as U e V Vamax ( )� �bi . The conduction band
profile for various forward bias and the barrier transmittance
are shown in Fig. 2.

3 Electron wave function in barrier
region with high frequency
modulation
We will now consider the case if the potential barrier is

modulated by a high frequency signal V tac cos( )� where the
angular frequency w � �( . )01 10 THz and the amplitude Vac is
small and constant; such modulation is called homogeneous.
The more general and more complicated case of non-homo-
geneous modulation V x tac( ) cos( )� is not considered in this
paper. The electron wave function �B( , )x t inside the barrier
region is the solution of the time-dependent Schrödinger
equation with the hamiltonian Hdc+Hac where Hdc according
to (2) represents the barrier profile (including the dc bias) and
Hac stands for the high frequency modulation
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It can be immediately proved that the wave function is
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where �B( )x is the solution of the stationary Schrödinger
equation (2). We can see that the problem of describing
electron wave functions in a uniform sinusoidally oscillating
potential (9) is identical to the problem of frequency modula-
tion in telecommunications or in signal theory. The wave
function (10) can be considered as the frequency modulated
wave with carrier frequency w E0 � � , see Fig. 3.

We apply the Bessel function expansion to the second
term of (10)

exp sin( ) exp( )��
	



�
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 �

�
	



�
�

 �i

eV
t J

eV
ip tp

p

ac ac
� ��

�
�

�

���

��

� . (11)

This expansion enables us to consider the wave func-
tion (10) as the superposition of harmonics exp( )�ip t� ,
p � � �0 1 2, , ,�, see Fig. 4. Thus, passing the barrier region,
the electron is able to absorb or emit one or more energy
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transmittance Tdc(E)



quantum p��. Its energy can be E p p� � � �� �� , , , ,0 1 2 ,
the � sign corresponds to the absorption/emission of energy
quantum; p � 0 means no emission or absorption.

As the electron energy can be E p p� � � �� �� , , , ,0 1 2 ,
the full electron wave function in regions A, B, C (see Fig. 1)
should be the superposition of waves corresponding to these
values of energy
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The function �A is the superposition of the incident wave
and the reflected waves with the reflectance amplitudes rn,
positive and negative values of n correspond to the absorp-
tion and emission of energy quanta. The function �C is the

superposition of transmitted waves with the transmittance
amplitudes tn. The function �B describes the electron mo-
tion across the barrier region (both the emission and the
tunnelling).

The boundary conditions (4) should be now applied to the
wave functions (12). Evaluating these relations and equating
the terms at harmonics exp( )�in t� we obtain a system of
linear equations for the unknown coefficients an, bn, rn, tn,
n � � �0 1 2, , ,� . To calculate all these coefficients it would be
necessary to solve an infinite set of linear algebraic equations.
It is clear that the probability of emission or absorption of en-
ergy n�� decreases with increasing number n, thus the system
could be terminated at some finite value of the indices n, s in
(12). The series expansion in (11) that results in the double
summation in (12) is well known in the theory of frequency
modulated signals in telecommunications and we can apply
the result of signal theory: in the series expansion (11) it is suf-
ficient to consider only the terms n N� �0, ,� , where N is ap-
proximately equal to eVac ��. If the high frequency signal is
small it is sufficient to consider only N � 1 or N � 2,
i.e. the generation of the first or the second harmonics or,
in other words, the absorption or emission of one energy
quantum �� or two energy quanta 2��. If the energy of
the incident electron is E, the energy of the reflected or
transmitted electron could be E (unchanged, no absorption
or emission), E � ��, E � 2�� (absorption of one or two
quanta), E � ��, E �2�� (emission of one or two quanta). For
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Fig. 3: The real part of the electron wave function according to Eq. (10) for a rectangular barrier (height 200 meV, width 20 nm), inci-
dent electron energy 50 meV, microwave signal frequency 1.2 THz
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N � 1 (or 2) we obtain from Eq. (21) the system of 12 (or 20)
linear equations for 12 (or 20) unknown coefficients; in gen-
eral 8N � 4 linear equations for 8N � 4 unknown coefficients.
Such system can be solved analytically in principle, but in
practice numerical solution is used.

For the purpose of illustrating the above sketched theory it
is useful to obtain some analytical results. We will consider the
rectangular potential barrier in Fig. 1. If the amplitude of
high frequency signal Vac is small and the absorption or
emission of only one quantum �� is considered the trans-
mission amplitudes t�1 (absorption, the electron energy in
region C is E � ��) and t�1 (emission, the electron energy
in region C is E � ��)
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The transmission amplitude t0 in (13) is given by the gen-
eral formula (7), k0, q0, p0 are the electron wave vectors
defined in (1) and (3) and p m E U� � � �1 2 ( )max� �� . Sim-
ilarly as in (3) the quantities p0, p�1 are real for the electron
emission over the barrier, and imaginary, thus p i0 0� � ,
p i� ��1 1� , for electron tunneling through the barrier. It can
be seen in Fig. 3 that the modules t�1 exhibit a strong
resonant character at electron energy that corresponds to
the barrier height.

4 High frequency barrier
transmittance
If the transmission and reflection amplitudes are known,

the wave functions (12) can be substituted to the general
formulae (5) and the single electron quantum mechanical
current densities of incident and transmitted electrons can be
calculated. The high frequency barrier transmittance is de-
fined as the ratio j jtrans inc and can be found for each
harmonic. If we adopt the approximation k kn � 0 , q qn � 0 (as

the electron energy is high compared with ��) and restrict the
calculation to the first harmonics, i.e. to the absorption or
emission of one energy quantum, we obtain

j e
k
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We can see that jtrans in (14) includes the dc component
proportional to t t0 0

* (it is related to those electrons that pass
the barrier region without absorption or emission of energy)
and the ac component exp( )� i t� related to electrons that
emit or absorb one energy quantum in the barrier region. It is
clear that the transmittance of the dc component is again
given by (8), and it is not affected by the high frequency
modulation. As usual in electronics, we use the goniometric
functions sin( )�t , cos( )�t in (14) instead of complex functions
exp( )� i t� and denote �� � ��arg( )* *t t t t0 1 1 0 ; the ac component
then reads
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and the corresponding transmittances are
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More generally, if the N-quantum approximation is con-
sidered, the transmitted single electron quantum mechanical
current density reads

j j

j
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and the transmittances Tn in (17) for N � 3 are given by
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5 Electrical parameters of quantum
structure
If the high frequency transmittances are known the elec-

tric current density J n( )� for each harmonic can be calculated
by means of the well-known Tsu-Esaki formula [1, 4]. We
denote as f ( )� the Fermi-Dirac function integrated over the
parallel-to-interface wave vector components
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with the dimensionless energy � � E k TB . The high frequency
electric current harmonics can be written in the following way
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Observe that the origin of the higher order harmonics is
related to the quantum character of electron transport in the
barrier region rather than to the nonlinearity of current-
-voltage or capacitance-voltage characteristics. Thus, their
existence is an intrinsic property of the quantum structure.

As our aim was to obtain the electrical parameters of the
quantum structures, the relations (20) represent in fact the

final result of the calculation. Using these formulae it is pos-
sible to find, e.g., the module of the higher order current
harmonics and their phase shift with respect to the modulat-
ing signal (9) or the complex admittance and its real and
imaginary part. All these quantities can be investigated as
functions of the potential barrier profile (it is included in the
barrier transmittanceTn ( )� ), dc bias (included inTn ( )� and in
f ( )� ) or the angular frequency of the high frequency modulat-
ing signal (included again in Tn ( )� ). The real and imaginary
part of the complex admittance of the rectangular barrier
for the first three harmonics as a function of frequency is
shown in Fig. 6. The slope of the imaginary part of the admit-
tance � �Im ( )y C� �� implies that the capacitance is frequency
independent.

6 Conclusions
The theory related to the transmittance of different types

of potential barriers with dc bias and small high frequency ac
signal in the terahertz frequency band was presented in this
paper. We have followed the way from the hamiltonian and
the time dependent Schrödinger equation to the electric cur-
rent densities and complex admittance that can be measured
in experiments. At such a high frequency the following effects
could play an important role: the electron inside the barrier
region can emit or absorb one or even more energy quanta ��
where � is the signal angular frequency. The electron wave
function outside the barrier and consequently the electric
current is a superposition of different harmonics exp( )�in t� .
As we know from classical electronics, the generation of
higher-order harmonics is due to the non-linearity of the
current-voltage or capacitance-voltage characteristics, and it
occurs only if the amplitude of the signal is sufficiently large.
The origin of the higher-order harmonics at potential barri-
ers is different: it is caused by the emission or absorption of
one or more energy quantum and occurs even for a small
signal; thus their generation is an intrinsic property of the sin-
gle-barrier structure. The high frequency quantum effect on
potential barriers represents an additional conductivity chan-
nel and contributes with a small parallel admittance to the
electronic parameters of the structure.
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Fig. 6: The real and imaginary part of the complex admittance as functions of the modulation signal angular frequency for a rectangular
potential barrier of height 300 meV and width 16 nm. The admittance is normalized by the quantity:
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