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Solution of Nonlinear Coupled Heat and
Moisture Transport Using Finite

Element Method

T. Krejci

This paper deals with a numerical solution of coupled of heat and moisture transfer using the finite element method. The mathematical
model consists of balance equations of mass, energy and linear momentum and of the appropriate constitutive equations. The chosen
macroscopic field variables are temperature, capillary pressures, gas pressure and displacement. In contrast with pure mechanical problems,
there are several difficulties which require special attention. Systems of algebraic equations arising from coupled problems are generally
nonlinear, and the matrices of such systems are nonsymmetric and indefinite. The first experiences of solving complicated coupled problems

are mentioned in this paper.
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1 Introduction

Assessment of the durability and serviceability of nuclear
power plants is a topical problem in many countries. The
most critical part of a power plant is the reactor containment,
which is made from concrete with or without a steel lining.
There are several requirements on the reactor containment.
Basically, it must protect the reactor from external effects, and
also the external environment from possible accidents. Me-
chanical analysis is used for assessing the limit state, and
transport analysis is used for describing the leakage of pollut-
ants to the external environment. Possible accidents can lead
to great pressure inside the reactor containment, which can
cause damage to the concrete, and therefore there is an
impact on the transport processes of the pollutants. There-
fore coupled hydro-thermo-mechanical analysis is required
for a correct assessment of reactor containment properties.

Concrete is a heterogeneous and porous material, which
leads to relatively complicated material models. The aim
of the present study is to show in a condensed form the theo-
retical basis of the most widely used mathematical models
describing the coupled heat and moisture transport in de-
forming porous media, to provide a set of governing equa-
tions together with the finite element method. The theory
discussed below is based on porous media theories given
in[1].

2 Mass and heat transfer in deforming
porous media — a review of theory

2.1 Constitutive relations

Moisture in materials can be present as moist air, water
and ice or in some intermediate state as an adsorbed phase on
the pore walls. Since it is in general not possible to distinguish
the different aggregate states, water content w is defined as
the ratio of the total moisture weight (kg/kg) to the dry weight
of the material. The degree of saturation S is a function of
capillary pressure p© and temperature 7, which is determined
experimentally

Sw :Sw(PC’T)~ (h
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The capillary pressure p© is defined as
pe=pE-p", @)
where p"'> 0 is the pressure of the liquid phase (water).
The pressure of the moist air, p8> 0, in the pore system is

usually considered as the pressure in a perfect mixture of two
ideal gases - dry air, p3%, and water vapor, pS%, i.e.,

ga gw g
P =p8 4+ p =| 22y P” ITR=P TR, (3)
M, M, M,

In this relation p5?, p&¥and p® stand for the respective

intrinsic phase densities, 7'is the absolute temperature, and R
is the universal gas constant.

Identity (3) defining the molar mass of the moist air, M,
in terms of the molar masses of the individual constituents is
known as Dalton’s law. The greater the capillary pressure, the
smaller is the capillary radius. It is shown thermodynamically
that the capillary pressure can be expressed unambiguously
by the relative humidity RH using the Kelvin-Laplace law

gw C

RH = P =ex % . 4)

gws p w
P p"TR

The water vapor saturation pressure, p5"°, is a function
of the temperature only, and can be expressed by the
Clausius-Clapeyron equation

, M, (1 1
gYS(TY = H8WS(Th) = e Dwl 22|, 5
po (1) = p= (1) XP{R(T TOJ:| ®)
where 7 is a reference temperature and hvap is the specific
enthalpy of saturation.

Materials having heat capacities is the term deliberately
used to emphasize the similarity to the description of mois-
ture retention. It is simply expressed as

H =H(T), (6)
where H is the mass specific enthalpy (] -kg_l), T is the tem-
perature (K).

It is not common to write the enthalpy in an absolute way
as is done here. Instead, changes of enthalpy are described in
a differential way, which leads to the definition of the specific
heat capacity as the slope of the H-T curve, i.e.
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oH
o-(38) . )
’ or p=const.

The heat capacity varies insignificantly with temperature.
It is customary, however, to correct this term for the presence
of the fluid phases and to introduce the effective heat capac-
ity as
(pcp)eff = pscps + pwcpw + pgcpg . (8)

2.2 Transfer equations
The mass averaged relative velocities, 2% —v°, are ex-
pressed by the generalized form of Darcy’s law [1]

kraki"lt a a
T;(*gradﬁ +p7g), 9)

nS,(v* —v°) =
where a = w for the liquid phase and a =g for the gaseous
phase.

Dimensionless relative permeabilities £ € <O, 1> are func-

tions of the degree of saturation
kra — kra ( Sw)

In Equation (9), kg, (m2) is the square (3x3) intrinsi? pelr-
meability matrix and u“ is the dynamic viscosity (kg-m™"-s7").
The intrinsic mass densities p* are related to the volume
averaged mass densities p,, through the relation

(m-s7). (10)

Po =1 Sep”. (11)

The relative permeability ™ goes to zero, when water sat-
uration S, approaches S, ,, which is the limiting value of S, as
the suction stress approaches infinity [2].

The diffusive-dispersive mass flux (kg-m_g-s_l) of the wa-
ter vapor (gw) in the gas (g) is the second driving mechanism.
It is governed by Fick’s law

gw
gw _ 8W _ 8y = _ P
Jé —nSgng(v"‘ v8) = pnggrad( e }, (12)

where D, (m%s7!) is the effective dispersion tensor. It can be
shown [1] that

: M M p8Y
SW—_p8ltatw p orad| £ — | =
]g P M; gg pg

M M g
=pS AW o Dggrad(p ]:_]ga.

Mg e

(13)

Here, | ga is the diffusive-dispersive mass flux of the dry

air in the gas.

Conduction of heat in the normal sense comprises radia-
tion as well as convective heat transfer on a microscopic level.
The generalized version of Fourier’s law is used to describe
the conduction heat transfer

q=—Yefr grad T, (14)

where q is the heat flux (W -m~2), and y . is the effective ther-
mal conductivity matrix (W m LK.
The thermal conductivity increases with increasing tem-

perature due to the non-linear behavior of the microscopic
radiation, which depends on the difference of temperatures
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raised to the 41 power. The presence of water also increases
the thermal conductivity. A suitable formula reflecting this ef-
fect can be found in [1].

3 Deformation of a solid skeleton

3.1 Concept of effective stress

The stresses in the grains, o°, can be expressed using a
standard averaging technique in terms of the stresses in the

liquid phase, oV, the stresses in the gas, o8, and the effective
stresses between the grains, o<t The equivalence conditions

for the internal stresses and for the total stress o lead to the
expression [3].

o =nS,o" +nSg0'g+(1—7z)crS + AT. (15)

The assumption that the shear stress in fluids is negligible
converts the latter equation into the form

o=c - p°m, (16)

where
T
a:{ox, Oy Oy Ty Togs Ty s m={L110,0,0" (17)

and
p*=Syp™ +Sep®. (18)

Deformation of a porous skeleton associated with the
grain rearrangement can be expressed using the constitutive
equation written in the rate form

6" =Dy (& - &). (19)
The dots denote differentiation with respect to time,

Dy =Dy (e, o, T) is the tangential matrix of the porous

skeleton and & represents the strains that are not directly
associated with stress changes (e.g., temperature effects,
shrinkage, swelling, creep). It also comprises the strains of the
bulk material due to changes of the pore pressure

E - —m[;;{ ] (20)

where K is the bulk modulus of the solid material (matrix).

When admitting only this effect and combining Egs. (16),
(19) and (20), we get

6 =6~ p’m=Dyé -amp® =¢" —amp®, (1)
where
a=Lm| - Pk | B (22)
?) ?)K,n KS

and K = mTDSkm 9 is the bulk modulus of the porous
skeleton. For a material without any pores, Ky =K. For
cohesive soils, K <K and a =1. The above formulas are
also applicable to long-term deformation of rocks, for which
a <0.5, and this fact strongly affects Equation (21) [4].
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Changes of the effective stress along with temperature and
pore pressure changes produce a change in the solid density
ps- To derive the respective material relation for this quantity,
we start from the mass conservation equation for the solid
phase. In the second step we introduce the constitutive rela-
tionship for the mean effective stress expressed in terms of
quantities describing the deformation of the porous skeleton.
After some manipulations we arrive at the searched formula

. LS
G-l —a- n){f’— :
p°

N

j+(a—1) div »°*, (2%)

where S, is the thermal expansion coefficient of the solid
phase.

A similar approach applied to the mass conservation
equation of the liquid phase leads to the following constitutive
equation

W ;W .
p_P BT,
P I{w

(24)

where K, is the bulk modulus of water and 8, is the thermal
expansion coefficient of this phase.

3.2 Set of governing equations

The complete set of equations describing the coupled
moisture and heat transport in deforming porous media com-
prises the linear balance (equilibrium) equation formulated
for a multi-phase body, the energy balance equation and the
continuity equations for the liquid water and gas.

Continuity equation for dry air

%(Wl ~S,) pga) bl =, p¥liv it -

k'S
—div| p% %“gradpg + (25)
gw
+div| p® MaMW D, grad[p ] =0,
M? : A
where & (& =v°) is the velocity of a solid.
Continuity equation for the water species
i((p(l -Sy) pgwj +a(l =S,,)p®diva -
rg
~div (pgw UL gradpg]
us
8w
+div| p& AW MMy D, grad i (26)
M2 . P8

= %((pSwpw) +aS,pdiva —
E™Y R
~div| p" TW(gradPg —gradp. —p"g) |.
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Energy balance equation

(pCp)eff —div(d g gradT) -

—div {prpw kﬂw‘“ (gradpg —gradp. —p" g) +

rs

+ Cpgp®” ksatgradnggradT = (27)

=Ah Vap‘: (<PSW,DW) + aSwp divu —

—div [ p"

The equilibrium equation (the linear balance equation) must
still be introduced to complete a set of governing equations

krw ksat W
T(gradpg —gradp. —p" g) ||

div(a— m(pg—Spr))+pg:0 (28)
with the density of the multi-phase medium defined as
p=01-n)p> +nSyp" +nSep8 =ps + py + pg. (29)

Initial and boundary conditions

The initial conditions specify the full fields of gas pressure,
capillary or water pressure, temperature and displacement
and velocities:

pgng,pc=p5,T=TO,u=u0,andit=i40,att=0. (30)

The boundary conditions can be imposed values on I’}t or

2 _rl 2
fluxes on Fn, where the boundary I' = l“Tc + I’7t ,

pE=p5onTl, pS=pSon T}, T =T onD}

anduzﬁonl",}t. (31)

The volume averaged flux boundary conditions for wa-
ter species and dry air conservation equations and energy
equation to be imposed at the interface between the porous
medium and the surrounding fluid are as follows

ga yga _ S Z 8wy, o, 2
(p ] 14 J ) n =qga on Fg
(PB" J &+ " "+ pEJEY) - m = (32)
=B(p® = pL) + g + 4y onT¢
_(pw]wAhvap —Aergrad?) -n=a (T -T,) on F%,

where n is the unit normal vector of the surface of the porous
medium, p?ow and T® are the mass concentration of water va-

por and temperature in the undisturbed gas phase far away
from the interface, and g, g4y ¢y and g7 are the imposed
air flux, the imposed vapor flux, the imposed liquid flux and
the imposed heat flux, respectively.

The traction boundary conditions for the displacement
field are:

o-n=ton 2, (33)

where ¢ is the imposed traction.
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4 Discretization of governing
equations

A weak formulation of the governing equations (25) to
(28) is obtained by applying Galerkin’s method of weighted
residuals. For the numerical solution, the governing equa-
tions are discretized in space by means of the finite element
method, yielding a non-symmetric and non-linear system of
partial differential equations:

Kuu+Kyepe + Kugpg +KyT =F,,

Cutt + Cecpe + Ceghyg + C,T +

+Kou +Kope + chpg +K, T =F,

Cguit + Cyepe + Cogpy + CyT + (34)
+Kguu + Kchc + Kggpg + thT = Fg,

Cptt + Cepe + Cygpg + c,T +

+Ku + Ko pe + thpg +K,T =F,.

The Egs. (34) can be rewritten in concise form as
K(X)X + C(X)X =F(X), (35)

where X! = { j)g , PC, T, u}, C(X) is “the general capacity ma-

trix”, K(X) is “the general conductivity matrix” and they are
obtained together with F(X) by assembling the sub-matrices
indicated in Egs. (34). The dot denotes the time derivative.

5 Method of solution

Coupled mechanical and transport processes after discret-
ization by the finite element method are described by a system
of ordinary differential equations which can be written in the
form

K+ CoF (36)
dt

where K is the stiffness-conductivity matrix, C is the capacity
matrix, r is the vector of nodal values and F is the vector of
prescribed forces and fluxes. Numerical solution of the sys-
tem of ordinary differential Eqs. (36) is based on expressions
for unknown values collected in vector r at time n + 1

Tutl =T + Atvnﬂz (87)

where the vector v has the form

n+a
Vy4q =(I—Q)v, +av, 4. (38)

The vector v contains time derivatives of unknown vari-

ables (time derivatives of the vector r). Eq. (36) is expressed in

time 7 + 1 and with the help of the previously defined vectors
we can find

(C+aAiK)v, g =F ) -K(x, + At(1-a)vy,) . (39)

This formulation is suitable because an explicit or implicit
computational scheme can be set by parameter a. The advan-
tage of the explicit algorithm is based on possible efficient so-
lution of the system of equations, because parameter o can be
equal to zero and capacity matrix C can be diagonal. There-
fore the solution of the system is extremely easy. The disad-
vantage of such a method is its conditional stability. This
means that the time step must satisfy the stability condition,
which usually leads to a very short time step.

© Czech Technical University Publishing House
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Table 1
Initial vectors o, ¥
(defined by initialconditions)
do until 1<n
(n 1s number of time steps)
predictor Ta=n+1-a)Atv;

right hand side vector Y1 =firn — K7

A =C +aAtK

matrix of the system

solution of the system v = Ay

new approximation =7, +alAtv;,

The previously described algorithm is valid for linear
problems, and one system of linear algebraic equations must
be solved in every time step. The situation is more compli-
cated for nonlinear problems, where a nonlinear system of al-
gebraic equations must be solved in every time step. The high
complexity of the problems leads to the application of the
Newton-Raphson method as the most popular method for
such cases.

There are several ways to apply and implement the solver
of nonlinear algebraic equations. We prefer equilibrium of
forces and fluxes (computed and prescribed) in the nodes.
This strategy is based on the equation

fint +fext -0 (40)

where vectors f™" and f*' contain internal values and pre-
scribed values. Due to the nonlinear feature of the material
laws used in the analysis, the Eq. (40) is not valid after compu-
tation of new values from the equations summarized in Ta-
ble 1. There are nonequilibriated forces and fluxes which
must be suppressed.

When new values in the nodes are computed, the strains
and gradients of the approximated functions can be estab-
lished. This is done with the help of matrices B, and Bg where
particular partial derivatives are collected. Concise expres-
sions of strains and gradients are written as

g=B,r, e=B.r. (41)
New stresses and fluxes are obtained from the constitutive
relations

o=Dse, q=Dgg, (42)
where D, is the stiffness matrix of the material and D, is
the matrix of conductivity coefficients. The real nodal forces
and the discrete fluxes on an element are computed from the

relations
feim ZIBSTG de,, eim :fngdQe : (43)
Q Q

These are compared with the prescribed nodal forces
and discrete fluxes and their differences create the vector of
residuals R. Increments of vector v are computed from the
equation

(C+aAtK)v,, 1 =R (44)

If matrices C and K are updated after every computation

of the new increment from Eq. (44), the full Newton-Raphson
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sealed

Side 1 Side 2 2cm

| Scm N
N ~1
Finite elements: 50 quadrilateral with linear approximation functions
Initial conditions: Ty=298.15 K, po=9.0e7 Pa(50 % RH), poo= 101325 Pa
Boundary conditions: Sidel Side2
T — heat flux: qr=1 K-min™! (up to 475 K), ac=20 W-m2-K! (both sides)
p¢ — Cauchy’s RH =10 %, fc=0.02 ms~!; RH=5 %, fc=0.01 m-s~!
$8 — Dirichlet’s p5=101325 Pa; $5=101325 Pa

Fig. 1: Problem description
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Fig. 2: Temperature profile
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Fig. 3: Water vapour pressure profile
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method is used. If the matrices are updated only once after
every time step, the modified Newton-Raphson method is
used.

6 Numerical example

A simple benchmark test is used to show the differences
between a linear and a nonlinear solution. We have a concrete
sealed specimen under high temperature conditions, Fig. 1.
For this example, concrete is considered as a non-deforming
medium (without a displacement field). The material model
for ordinary concrete presented by Baroghel-Bouny et al. [8]
extended to high temperatures is used. The results are com-
pared after 1, 2 and 4 hours.

1.1E+08

7 Conclusion

Hydro-thermo-mechanical problems are extremely com-
plicated due to many nonlinearities, and therefore only nu-
merical methods are used for two and three-dimensional
problems. A suitable method is the finite element method,
where each node has 6 degrees of freedom in three-dimen-
sional problems (3 displacements, temperature and 2 pore
pressures). The system of linear algebraic equations (after
discretization and linearization) contains many unknowns,
and an appropriate solver must be used. Sequential computer
codes have severe difficulties with memory and CPU time in
connection with such systems. Therefore parallel computers
are more often used in complicated analysis. Probably the
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most powerful tool for solving of large systems of equations
with the help of parallel computers is the family of domain
decomposition methods.

Transport processes lead to nonsymmetric indefinite sys-
tems. This means that usual methods, such as LDLT decom-
position, do not work for such problems, and a more general
LU decomposition must be used. It seems to us that there are
problems where pivoting is necessary.
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