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Abstract.
This article makes an effort to present a comparative study on the performance of a Shliomis

model-based ferrofluid (FF) lubrication of a porous squeeze film in curved annular plates taking slip
velocity into account. The modified Darcy’s law has been adopted to find the impact of the double-
layered porosity, while the slip velocity effect has been calculated according to Beavers and Joseph’s slip
conditions. The modified Reynolds equation for the double-layered bearing system is solved to compute
a dimensionless pressure profile and load-bearing capacity (LBC). The graphical results of the study
reveal that the LBC increases in the case of magnetization, volume concentration and upper plate’s
curvature parameter while it decreases with other parameters for both the film thickness profile. A
comparative study suggests that the exponential film thickness profile is more suitable to enhance LBC
for the annular plates lubricated by ferrofluid, including the presence of a slip. The study shows that
the slip model performed quite well and there is a potential for improving the performance efficiency.
Besides, multiple methods have been presented to enhance the performance of the above mentioned
bearing system by selecting various combinations of parameters governing the system.

Keywords: Shliomis model, curved annular plates, double-layered porous, slip velocity, exponential
and hyperbolic film profile, ferrofluid.

1. Introduction
Porous materials seem to be ubiquitous and play a
notable role in many aspects of day-to-day life. They
are extensively used in various areas, such as energy
management, vibration automotive, heat insulation,
processes of sound, turbine industries and fluid filtra-
tion.

Due to the phenomenon known as self-lubrication,
the porous bearing has a porous film filled with some
amount of lubricants so that it does not require more
lubrication throughout the life period of the bearing.
The lubricant comes out of the porous layer and is
deposited between the annular plates to inhibit fric-
tion and wear, as well as withstanding the original
load applied to the annular plates. Therefore, the
impact of lubrication due to the double porous layer
is better than that of the single porous layer. Due to
the remarkable mechanical properties and wide appli-
cations of the annular plates, many researchers have
been focused on analysing annular bearing systems,
such as Lin [1], Shah and Bhat [2], Bujurke et al. [3],
Deheri et al. [4], Fatima et al. [5] and Hanumangowda
et al. [6].

Also, numerous studies (Ting [7], Gupta et al. [8],
Bhat and Deheri [9], Shah et al. [10], Shimpi and De-
heri [11], Patel and Deheri [12], Rao and Agarwal [13],
Vasanth et al. [14] and Shah et al. [15]) have been

carried out to examine the impact of porosity on the
effectivity of annular plates.

A synthetic fluid, namely “ferrofluid”, is a mixture
of colloidal dispersions containing ferromagnetic par-
ticles in a liquid carrier. Besides being used in elastic
dampers to reduce noise, FFs are used in cooling and
heating cycles, long-term sealing of rotating shafts,
and reducing unwanted resonances in loudspeakers.
In the last four decades, several investigators (Kumar
et al. [16], Sinha et al. [17], Shah and Bhat [18], Patel
and Deheri [19], Shah and Shah [20] and Munshi et
al. [21]) have worked on a FF lubrication theory to
examine the behaviour of various bearing systems.

Alternative physical boundary conditions were
proposed in the advanced study of Beavers and
Joseph [22] that allowed a non-zero tangential velocity
(called slip velocity) at the surfaces and uncovered
that slip velocity had a broad effect on the bearing per-
formance. Several studies have been documented in
the literature about slip velocities for different condi-
tions in bearing systems (Chattopadhyay and Majum-
dar [23], Shah and Parsania [24], Shah and Patel [25],
Venkata et al. [26], Deheri and Patel [27], Patel and
Deheri [28], Shah et al. [29], and Mishra et al. [30]).

In their studies, Fragassa et al. [31], Janevski et
al. [32] and Geike [33] analysed the theory of static-
dynamic load and lubricated contacts, respectively.
These investigations confirm that the load profile re-

488

https://doi.org/10.14311/AP.2022.62.0488
https://creativecommons.org/licenses/by/4.0/
https://www.cvut.cz/en


vol. 62 no. 4/2022 A comparative study of ferrofluid lubrication . . .

mains crucial for the bearing design. Patel and De-
heri [34] examined the influence of variations of viscos-
ity of the ferrofluid on long bearings. It was noticed
that the viscosity variation does not help to increase
the LBC in the case of long bearings. Patel and
Deheri [35] presented a comparison of a porous struc-
ture on shliomis-model-based ferrofluid lubrication of
a squeeze film between rotating rough-curved circu-
lar plates. It has been ascertained that the Kozeny-
Carman model has an edge over the Irmay’s model in
improving the LBC. A study of thin film lubrication
at nanoscale appears in Patel and Deheri [36], where
a ferrofluid-based infinitely long rough porous slider
bearing has been considered. It has been found that
the magnetic fluid induced a higher load and showed
a further improvement when the thin film lubrication
at nanoscale took place.

Very few studies have been made regarding the fer-
rofluid lubrication in multi-layered porous plates in
the presence of slip velocity. And even lesser amount
of studies has been done concerning the comparative
studies on the performance of ferrofluid lubricated
porous squeeze film in the multi-layered bearing sys-
tem considering slip velocity. Thus, it was thought
proper to put forward a comparative study regard-
ing the performance of a ferrofluid-based squeeze film
in two-layered porous annular plates when the slip
velocity is taken into account. To what extent can
the ferrofluid lubrication counter the adverse effect of
porosity and slip velocity? This fundamental question
has been addressed while presenting the comparison.

2. Analysis
Figure 1 involves two annular disks (inner and outer
radius b and a, respectively (b < a)) with curved
(exponential and hyperbolic film) upper surface and
flat lower surface.

Figure 1. Diagram of the porous annular bearing

In view of Murti [37], Shah and Bhat [2] and Patel
and Deheri [38], the thickness profile h of the film is

assumed as

h(r) = h0e
−βr2

, b ≤ r ≤ a

for the exponential and

h(r) = h0

1 + βr
, b ≤ r ≤ a (1)

for the hyperbolic profile.
As per the discussions of Shliomis [39] and Ku-

mar [40], and neglecting the assumptions of Shukla
and Kumar [41], the governing equations for the flow
of FF as suggested by Shliomis [39] are

−∇p+η∇2q+µ0(M ·∇)H+ 1
2τs

∇×(S−IΩ) = 0 (2)

S = IΩ + µ0τs(M ×H), (3)

M = M0
H

H
+ τB

I
(S ×M), (4)

with the continuity equation (∇ · q = 0), equations of
Maxwell ∇×H = 0, ∇· (H+M) = 0 and Ω = 1

2 ∇×q
(Bhat [42]).

Above mentioned equation(2) reduces to

−∇p+η∇2q+µ0(M ·∇)H+ 1
2µ0∇×(M×H) = 0 (5)

and
M = M0

H

[
H + τ(Ω ×H)

]
,

where
τ = τB

1 + µ0τBτs

I
M0H

with the help of equations (3) and (4), as given in
Shliomis [39].

Equation(5) takes the following form, as discussed
in Bhat [42] and Patel and Patel [43] with u, H =
(0, 0, H0) and an axially symmetric flow,

∂2u

∂x2 = 1
η(1 + τ)

dp
dr (6)

where
τ = 3

2ϕ
ξ − tan hξ
ξ + tan hξ .

Because of Beavers and Joseph’s [22] slip boundary
conditions

u(z = 0) = 0,

u(z = h) = −1
s

∂u

∂z
,

ηa = η(1 + τ),

the solution of equation (6) can be transformed to

u = − 1
ηa

z2 − zsh(z − h)
2(1 + sh)

dp
dr . (7)
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With the help of the above expression (7), one can find
the continuity equation

( 1
r

d
dr

∫ h

0 ru dz+wh −w0 = 0
)
,

as

1
r

d
dr

(
h3r(2 + sh)

1 + sh

dp
dr

)
= 12ηa(wh − w0). (8)

Assuming the upper surface having a double layered
porous facing and the lower flat surface being solid in
the annular plate bearing.

In the present study, P1 and P2 of the porous
region satisfy the following equations, respectively
(Bhat [42]),

1
r

∂

∂r

(
∂P1

∂r

)
+ ∂2P1

∂z2 = 0 and

1
r

∂

∂r

(
∂P2

∂r

)
+ ∂2P2

∂z2 = 0. (9)

Using the Morgan-Cameron approximation, one gets(
∂P1

∂z

)
z=h1

= H1

r

d
dr

(
r

dp
dr

)
,(

∂P2

∂z

)
z=h2

= H2

r

d
dr

(
r

dp
dr

)
. (10)

Since the lower surface is solid and the upper sur-
face has a double layer porous facing, the velocity
component along z-direction is

w0 = 0

wh = ḣ0 −

[
k1

ηa

(
∂P1

∂z

)
z=h1

+ k2

ηa

(
∂P2

∂z

)
z=h2

]
.

(11)

Incorporating equation (9) and (10), equation (11)
turns into

w0 = 0

wh = ḣ0 −

[
k1

ηa

(
H1

r

d
dr

(
r

dp
dr

))

+ k2

ηa

(
H2

r

d
dr

(
r

dp
dr

))]
.

(12)

Using equation (12), and ηa = η0

(
1 + 5

2ϕ
)

(1 + τ),
equation (8) yields

1
r

d
dr

({
h3(2 + sh)

1 + sh
+ 12k1H1 + 12k2H2

}
r

dp
dr

)

= 12η0

(
1 + 5

2ϕ
)

(1 + τ)ḣ0. (13)

Upon introduction of the non-dimensional measures:

R = r

b
,

h = h

h0
,

β = βb2 (exponential),
β = βb (hyperbolic),

P = − h0
3p

η0b2ḣ0
,

s = sh0,

ψ1 = k1H1

h0
3 ,

ψ2 = k2H2

h0
3 , (14)

and using above equation (14), equation (13) trans-
forms to

1
R

d
dR

{[
h

3(2 + sh)
1 + sh

+ 12(ψ1 + ψ2)
]
R

dP
dR

}

= −12
(

1 + 5
2ϕ
)

(1 + τ). (15)

Considering boundary conditions of annular plates,

P (1) = P (k) = 0, (16)

one can find the dimensionless P as

P =
∫ R

1

(
− 6ER

G

)
dR+ C1

∫ R

1

(
1
GR

)
dR, (17)

where

C1 =
∫ k

1
( 6ER

G

)
dR∫ k

1
( 1

GR

)
dR

,

G = h
3(2 + sh)
1 + sh

+ 12(ψ1 + ψ2),

E =
(

1 + 5
2ϕ
)

(1 + τ),

while the non-dimensional LBC of the annular plates
can be found as,

W = − h0
3W

2πη0b4ḣ0
=
∫ k

1
RP dR

= −1
2

(∫ k

1
−6ER3

G
dR+ C1

∫ k

1

R

G
dR

)
(18)

3. Result and discussion
The results for the double-layered porous medium
and slip velocity on exponential and hyperbolic film
profiles of the annular bearing are discussed in this sec-
tion. Equation (17) establishes the non-dimensional
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pressure, while equation (18) represents a dimension-
less LBC. In addition, expression (18) is linear in
terms of the magnetization parameter, which indi-
cates an improvement of the LBC of annular plates
mathematically.

As far as LBC is concerned, a comparison of the
film profile is exhibited graphically in Figures 2–13
with double-porous facing in the occurrence of a slip.
The first figure demonstrates the exponential film
shape and the second figure depicts the impact of the
hyperbolic profile. The performance of appearance of
the Shliomis’ FF lubricated double porous medium
annular plates is based on the foundation of several
non-dimensional parameters like magnetization, upper
plate’s curvature, porosity, volume concentration and
slip velocity. It can be observed that the exponential
film fares better.

It is noticed that equation (18) suggests the LBC
of a single layer porous medium when ψ2 → 0. With
ψ1 → 0 and ψ2 → 0, this investigation transfers to
the non-porous FF based annular bearing system with
the slip velocity. Also, this study reduces to a study
of a traditional annular bearing by removing the effect
of magnetization in the absence of the slip.

For the range of the parameters, one can refer below:
τ : 0.1–0.5, ϕ: 0.01–0.05, β: 1.5–1.9, 1/s: 0.02–0.1, ψ1:
0.001–0.005 and ψ2: 0.001–0.005.

The dispensation of LBC about the τ , for numerous
values of ϕ, β, ψ1, ψ2 and 1/s shown in Figures 2–5,
recommends that the LBC rises strictly due to the
FF lubricant. A closer examination of the figures
emphasizes that the functionality of bearing systems
as well as the increase in load is connected with all
the parameters for both the film profiles. Exponential
film profile registers a higher load as compared to the
hyperbolic shape in Figures 2–5.

The behaviour of the volume concentration parame-
ter concerning various parameters of LBC is illustrated
in Figures 6–8, respectively. Due to the rise of the
volume concentration parameter, the effect of LBC de-
creases with porosity (in Figure 7) and slip velocity (in
Figure 8), while the effect of β (in Figure 6) increases
the LBC. Moreover, Figure 8 suggests a marginally
improved effect of the slip velocity in an exponen-
tial film bearing, which indicates an enhancement of
the overall annular bearing’s performance up to some
extent.

The profile of a non-dimensional LBC with respect
to the β is described in Figures 9–11. If we increase
the β, then the capacity of the load is growing sharply
in the case of the hyperbolic function, while a re-
verse behaviour is observed with porosity and slip
velocity. However, the LBC increases slightly for the
exponential profile and follows the same trends for the
parameters mentioned above. One can visualize an
identical scenario for the curvature of exponential and
hyperbolic functions, which is shown in Figures 9–11.
The effect of the porosity on the load distribution

of the bearing is shown in Figures 12 and 13. In Fig-

ure 12, the effect of slip velocity is negligible for the
exponential profile. However, Figure 13 suggests that
the trends of both the porosity parameters are almost
the same. Both layers help to improve the lifespan
of the system by creating a film layer between the
surfaces.

The graphical representation makes it clear that
the following takes place.
(1.) The nature of both porous facings is almost the

same with the same values (ψ1 = ψ2), however,
that does not apply when the porosity values differ.
(meaning ψ1 > ψ2 or ψ1 < ψ2 ).

(2.) Figure 13 displays the maximum load among all
the figures, which means the double porous layer
improves the LBC in annular plates bearing sys-
tems.

(3.) Higher values of curvature parameter have a negli-
gible effect on the LBC in the case of the exponential
profile, but it does reflect on the LBC in the case
of the hyperbolic film profile.

(4.) The effect of slip velocity is satisfactory for the
exponential surface profile as compared to the hy-
perbolic surface.

(5.) Finally, this study helps to improve the LBC by
considering the proper selection of all parameters
and film shapes while designing the bearing system
of annular plates.

4. Conclusion
The effect of the double-porous layered on MF lubri-
cated curved annular bearing is investigated theoreti-
cally with the theory of Shliomis’ flow model of FF,
modified Darcy’s law for double layer, and Beavers
and Joseph’s more realistic slip conditions. In view
of the bearing’s life period, it is evident that some of
the parameters appear to have an opposite effect on
the performance of the bearing system. Hence, this
investigation clarifies that while designing the bearing
system, the porosity in two layers, and the slip velocity
must be considered. Interestingly, numerous factors
(like porosity and slip velocity) disturb the system
adversely even though the bearing can support a load
without flow, this does not apply in the case of tradi-
tional lubricants. Even the upper plate’s curvature,
either exponential or hyperbolic, may significantly
impact the performance of this bearing system, con-
sidering the moderate values of volume concentration,
slip velocity, and porosity. Lastly, the exponential
film profile exhibits a higher load-bearing capacity, in
the case of the double-layered porosity with Shliomis’
magnetic fluid flow when slip is in place. A pertinent
question is to elevate this analysis by incorporating
the effect of surface roughness and deformation. An
immediate concern is to carry out this analysis for
some other types of bearing systems including the
circular ones with slip velocity.
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Figure 2. Variation of LBC as regards of τ and ϕ.

Figure 3. Variation of LBC as regards of τ and β.

Figure 4. Variation of LBC as regards of τ and ψ1.

Figure 5. Variation of LBC as regards of τ and 1/s.
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Figure 6. Variation of LBC as regards of ϕ and β.

Figure 7. Variation of LBC as regards of ϕ and ψ2.

Figure 8. Variation of LBC as regards of ϕ and 1/s.

Figure 9. Variation of LBC as regards of β and ψ1.
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Figure 10. Variation of LBC as regards of β and ψ2.

Figure 11. Variation of LBC as regards of β and 1/s.

Figure 12. Variation of LBC as regards of ψ1 and 1/s.

Figure 13. Variation of LBC as regards of ψ1 and ψ2.
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List of symbols
a Outer radius of annular plates
b Inner radius of annular plates
h Film thickness
r Radial coordinates
p Pressure of fluid
u x – component of q
w z – component of q
H Magnitude of H
I A sum of moments of inertia of the particles per unit

volume
s Slip velocity
q Fluid velocity in the film region
M Magnetization vector
H An identical magnetic field
S Internal angular momentum
h0 Central film thickness
w0, wh Values of w at z = 0, h respectively
h1 Thickness of lubricant in the inner layer
h2 Thickness of lubricant in the outer layer
k1 Permeability of inner layer of the porous region
k2 Permeability of outer layer of the porous region
M0 Equilibrium magnetization
H0 Constant magnetic field
H1 Thickness of the inner layer adjacent to lubricant

layer
H2 Thickness of the outer layer adjacent to solid wall
P1 Pressure of inside layer in the porous region
P2 Pressure of outside layer in the porous region
η Viscosity of suspension
β Curvature of the upper plate
ξ Langevin’s parameter
τ Magnetization parameter
ϕ Volume concentration
τB Brownian relaxation time parameter
τS Relaxation time parameter
µ0 Permeability of free space
η0 Carrier fluid viscosity
ψ1 Inner layer porous structure parameter
ψ2 Outer layer porous structure parameter
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