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Abstract. The paper advances Odake and Sasaki’s idea to re-write eigenfunctions of rationally
deformed Morse potentials in terms of Wronskians of Laguerre polynomials in the reciprocal argument.
It is shown that the constructed quasi-rational seed solutions of the Schrödinger equation with the Morse
potential are formed by generalized Bessel polynomials with degree-independent indexes. As a new
achievement we can point to the construction of the Darboux-Crum net of isospectral rational potentials
using Wronskians of generalized Bessel polynomials with no positive zeros. One can extend this
isospectral family of solvable rational potentials by including ‘juxtaposed’ pairs of Romanovski-Bessel
polynomials into the aforementioned polynomial Wronskians which results in deleting the corresponding
pairs of bound energy states.
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1. Introduction
In recent publication [1] Alhaidari pointed to a new form of ‘quasi-rational’ [2] solutions (q-RSs) of the
Schrödinger equation with the Morse potential in terms of generalized Bessel polynomials [3–6], instead of using
the conventional q-RSs composed of weighted Laguerre polynomials [7–11]; though, to be more accurate, the
possibility to quantize the Morse potential by Romanovski-Bessel (R-Bessel) polynomials [12, 13] has been
already recognized by Quesne [14], with reference to Cotfas’ papers [15, 16] (see also [17]). It should be also
emphasized that Odake and Sasaki in their in-depth study [18, 19] on rational Darboux-Crum [20, 21] transforms
(RDCT s) of translationally shape-invariant (TSI) potentials did implicitly express eigenfunctions of the Morse
potential in terms of R-Bessel polynomials with degree-independent indexes as a substitute for commonly used
classical Laguerre polynomials [22]. (Though the Bochner-type differential equation for generalized Bessel
polynomials was also listed in Table 1 in [7] on the line linked to the Morse potential the authors used the
conventional representation for eigenfunctions [22] to construct rationally deformed Morse potentials.)

The remarkable feature of the new rational realization for the Morse oscillator is that the resultant rational
canonical Sturm-Liouville equation (RCSLE) can be converted by an energy-independent gauge transformation
to the Bochner-type eigenequation with a linear coefficient function of the first derivative independent of degrees
of sought-for polynomial solutions. Using terminology of our recent study [23] on translationally form-invariant
(TFI) CSLEs this implies that the given RCSLE belongs to TFI Group A and we should give full credit to
Odake and Sasaki[18, 19] who initially came up with this breakthrough idea to treat the Morse oscillator as
a rational TSI potential of Group A.

Keeping in mind that the TFI equation under consideration has only two basic solutions the net of its
RDCT s is uniquely specified by a single series of Maya diagrams [24] and therefore any rationally deformed
Morse potential can be re-expressed in terms the Wronskian of generalized Bessel polynomials with a common
degree-independent index, as it has been done in [19] though in slightly different terms. The novel representation
of seed eigenfunctions [19] is in a sharp contrast with their conventional representation in terms of classical
Laguerre polynomials with degree-dependent indexes [10, 11].

The main purpose of this work is to present new simplified expressions for eigenfunctions of the Schrödinger
equation with a rationally deformed Morse potential by re-writing them in terms of finite exceptional orthogonal
polynomial (EOP) sequences formed by Wronskian transforms of R-Bessel polynomials.
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2. TFI Sturm-Liouville equations
2.1. Liouville-Darboux transformations
Let ϕτ [ξ;Q] be a solution of the generic CSLE

{
d2

dξ2 + I0[ξ;Q] + ετ (Q)ρ[ξ]
}
ϕτ [ξ;Q] = 0 (1)

at an energy ετ (Q), where the index τ specifies the factorization function (FF) in question. In the problems
of our current interest I0[ξ;Q] is a rational function of ξ termed ‘reference polynomial fraction’ (RefPF). We
prefer to keep this notation in the general case when I0[ξ;Q] is an arbitrarily chosen real function of ξ also
dependent on some parameters Q. We will replace Q by ⇀

a , b after restricting the analysis solely to TFI CSLEs.
In [23] we identified four families of RefPFs associated with rational TSI potentials termed ‘Jacobi’, ‘Laguerre’,
‘Routh’ and ‘Bessel’ (or J Ref, L Ref, RRef, and BRef for briefness) so the corresponding q-RSs are composed
of polynomials (with degree-dependent indexes in general) from one of four conventional differential polynomial
systems (DPSs) [25, 26]. The density function ρ[ξ] plays a crucial role in our analysis because, as indicated by
Eq. (4) below, it determines the change of variable converting CSLE (1) to the Schrödinger equation [27, 28].

It was Rudjak and Zakhariev [29] who extended the intertwining technique [30] from the Schrödinger equation
to the CSLE. Here we however use a slightly different definition of the socalled [31, 32] ‘generalized’ Darboux
transformations introducing them via the requirement that the function

∗ϕτ [ξ;Q] ∝ ρ−1/2[ξ]/ϕτ [ξ;Q] (2)

is a solution of the transformed CSLE at the same energy ετ (Q), i.e.,{
d2

dξ2 + I0[ξ;Q | τ ] + ετ (Q)ρ[ξ]
}

∗ϕτ [ξ;Q] = 0. (3)

Rudjak and Zakhariev’s reciprocal formula (2) thus plays a crucial role in our approach to the theory of TFI
CSLEs.

Since various authors give the term ‘generalized Darboux transformation’ completely different meanings it
seems preferable to refer to these operations as ‘Liouville-Darboux’ transformations keeping in mind that they
can be performed in three sequential steps:

(1.) The Liouville transformation ξ(x):
ξ′(x) = ρ−1/2[ξ(x)] (4)

from the CSLE {
d2

dξ2 + I0[ξ;Q] + ερ[ξ]
}

Φ[ξ;Q; ε] = 0 (5)

to the stationary 1D Schrödinger equation with the potential [27, 28]

V [ξ(x);Q] = −ρ−1[ξ(x)]I0[ξ(x);Q] − 1/2 {ξ, x} (6)

where {ξ, x} stands for the ‘Schwarzian derivative’;
(2.) the Darboux deformation of Liouville potential (6) using the FF

ψτ (x;Q) = ρ1/4[ξ(x)]ϕτ [ξ(x);Q]; (7)

(3.) reverse Liouville transformation from the Schrödinger equation to the new CSLE{
d2

dξ2 + I0[ξ;Q | τ ] + ερ[ξ]
}

Φ[ξ;Q; ε | τ ] = 0. (8)

Obviously any TFI theorem proven for Liouville-Darboux transformations of CSLE (5) can be directly
applied to the resultant Liouville potential thus linking the new technique to the conventional Darboux-Crum
theory of TSI potentials [11, 19, 33].
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2.2. Translational from-invariance of Sturm-Liouville equation
We call a CSLE ‘translationally form-invariant’ if it has two ‘basic’ solutions ϕ+,0[ξ,⇀

a , b] and ϕ−,0[ξ,⇀
a , b]{

d2

dξ2 + I0[ξ; ⇀
a , b] + ε±,0(⇀

a , b)ρ[ξ]
}
ϕ±,0[ξ; ⇀

a , b] = 0 (9)

related via the following reciprocal formulas:

ϕ±,0[ξ; ⇀
a ±

⇀
1 , b] = ρ−1/2[ξ]/ϕ±,0[ξ; ⇀

a , b]. (10)

It has been proven [23] that

I0[ξ; ⇀
a , b | ±, 0] = I0[ξ; ⇀

a ±
⇀
1 , b] + E±1(⇀

a , b)ρ[ξ], (11)

where
E±1(⇀

a , b) ≡ ε∓,0(⇀
a ±

⇀
1 , b) − ε±,0(⇀

a , b). (12)

The Liouville transformations of the CSLEs with zero-energy free terms I0[ξ; a, b] and I0[ξ; a, b | ±, 0] then
brings us to Gendenshtein’s conventional definition of a TSI potential [34]

V [ξ; ⇀
a , b | +, 0] = V [ξ; ⇀

a +
⇀
1 , b] − E+1(⇀

a , b) (13)

or
V [ξ; ⇀

a , b | −, 0] = V [ξ; ⇀
a −

⇀
1 , b] − E−1(⇀

a , b) (14)

depending on which basic solution ϕ+,0[ξ; ⇀
a , b] or ϕ−,0[ξ; ⇀

a , b] represents the lowest energy eigenfunction.
Note that the Russian word ‘форма’ used by Gendenshtein [34] has two meanings ‘form’ and ‘shape’. The term

‘form invariant’ with reference to CSLEs was adopted by us from the English translation of Gendenshtein’s joint
paper with Kreve [35] while the commonly accepted term ‘shape-invariance’ is preserved for the corresponding
Liouville potentials. The shift of the translational parameters ⇀

a by 1 thus retains the analytical form of the
TFI CSLE while preserving the ‘shape’ of its Liouville potential. It is true that the Liouville transformation of
the TFI CSLE results in a ’translationally shape-invariant (TSI) potential. However the Class of TFI SLEs is
defined via (10) with no reference to the associated Schrödinger equation.

2.3. Equivalence theorem for Darboux-Crum transforms of a TFI CSLE with two
basic solutions

It has been proven [23] that any TFI CSLE has at least two infinite sets of solutions

ϕ±,m+1[ξ; ⇀
a , b] = ρ−1/2[ξ]W [ξ; ⇀

a ±
⇀
1 , b | ∓, 0; ±,m]/ϕ±,0[ξ; ⇀

a ±
⇀
1 , b], (15)

where
W [ξ; ⇀

a , b | ±,m; ∓,m′] ≡ W
{
ϕ±,m[ξ; ⇀

a , b]ϕ∓,m′ [ξ; ⇀
a , b]

}
. (16)

The cited ‘raising’ recurrence relations can be conveniently re-written as

f±,m+1[ξ; ⇀
a ±

⇀
1 ; b] = ḟ±,m[ξ; ⇀

a , b], (17)

where
f±,m+1[ξ; ⇀

a , b] ≡ ϕ±,m[ξ; ⇀
a , b]/ϕ∓,0[ξ; ⇀

a , b] (18)

and dot denotes the first derivative with respect to ξ.
The solutions ϕ±,m[ξ; ⇀

a , b] also obey the ´lovering´ recurrence relations:

ϕ±,m[ξ; ⇀
a , b] ≡ ρ−1/2[ξ]w[ξ; a, b | ±

...0,m]/ϕ±,0[ξ; ⇀
a , b] =

= −E±,m−1(⇀
a ±

⇀
1 , b)ϕ±,m−1[ξ; ⇀

a ±
⇀
1 ;

⇀

b ] for m ≥ 1,
(19)

where
E±,m(⇀

a , b) ≡ ε±,m(⇀
a , b) − ε∓,0(⇀

a , b). (20)

Solutions from both infinite sets can be then used as seed functions for Darboux-Crum transformations (DCTs)
of the given TFI CSLE which results in an infinite net of solvable SLEs specified by a single series of Maya
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diagrams [24]. Following the arguments presented in [33] for rationally deformed TSI potentials we [23] proved
that any CSLE in this net can obtained using only seed solutions of the same type.

Let us parametrize a set of seed functions of the same type,

M(∆1→L) = m1, . . . ,m|δ1→L|, (21)

by two partitions of an equal size L:
∆1→L ≡ δ1→L; δ′1→L (22)

such that
mk = δ′

1 + k − 1 for 1 < k ≤ δ1, (23)

m|δ1→l−1|+1 = m|δ1→l−1| + δ′
l + 1 = | ∆1→l−1 | +δ′

l + 1 for 1 < l ≤ L, (24)

m|δ1→l−1|+k = m|δ1→l−1|+1 + k − 1 for 1 < l ≤ L, 1 < k ≤ δl, (25)

One can easily verify that the largest element in partition (21) coincides with the sum of the partition lengths
| δ1→L | and | δ′1→L |, i.e.,

m|δ1→L| =| ∆1→L |≡| δ1→L | + | δ′1→L | . (26)

It has been proved in [23] that use of the conjugated set of seed solutions of opposite type,

∆′
L→1 ≡ δ′

L→1; δL→1 ≡ δ′
L, δ

′
L−1, . . . , δ

′
1; δL, δL−1, . . . , δ1, (27)

results in an equivalent CSLE so the corresponding Liouville potential V [ξ; ⇀
a (δ), b | ∓,M(∆′

L→1)] computed at
shifted values of the translational parameters,

⇀
a (δ) ≡ ⇀

a + δ
⇀
1 , (28)

where δ is a nonzero integer, differs from the Liouville potential V [ξ; ⇀
a , b | ±,M(∆′1→L)] only by a zero-point

energy.
In [23] we have derived the following relation between the Wronskians of two equivalent sets of seed solutions

of the same type

w[ξ; ⇀
a , b | +

...M(∆1→L)]

ρ1/4|δ1→L|(|δ1→L|−1)[ξ]
L∏

l=1
χ−δl

[ξ; ⇀
a

(|∆′
l→1|−δl)

, b]

∝ w[ξ; ⇀
a

(|∆′
L→1|)

, b | −
...M(∆′

L→1)]

ρ1/4|δ′
L→1|(|δ′

L→1|−1)[ξ]
L∏

l=1
χδl

[ξ; ⇀
a

(|∆′
l−1→1|+δ′

l)
, b]
,

(29)

where

χ∓|N |[ξ;
⇀

a, b] ≡
|N |−1∏
k=0

ϕ±,0[ξ; ⇀

a
(±k)

, b]. (30)

For any CSLE from Group A the derived relation turns into the equivalence relations between the Wronskians
of the corresponding seed polynomials discovered in the breakthrough paper by Odake and Sasaki [19]. We
illuminate these relations in more details in subsection 3.4 below using Wronskians of generalized Bessel
polynomials as an example.

If the given rational TSI potential has only a finite number of eigenfunctions then the set of seed functions
+,m or −,m which starts from these eigenfunctions (−,m in case of our current interest) also contains infinitely
many q-RSs vanishing at only one quantization end (virtual state wavefunctions in Odake and Sasaki’s terms
[18, 19]), with the Gendenshtein (Scarf II) potential [34] as the sole exception (including its symmetric limit
represented by the sech-squared potential well). The DCTs using nodeless q-RSs of the selected type results
in a net of isospectral potentials. Therefore, except for the Gendenshtein potential, we don’t need to include
‘state-inserting‘ solutions (’pseudo-virtual state wave functions’ in Odake and Sasaki’s terms) into the given set
of seed functions– a remarkable corollary of the ‘extended’ Krein-Adler theorem [11].

If the given partition ∆1→L is composed of alternating even and odd integers staring from an even integer
δ′

1 then all the integers
δ′

l = m|δ1→1|+1 −m|δ1→1| − 1 > 0 for any l < L (31)
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must be also even which implies that the set of seed solutions ±,M(∆′
L→1) is composed of L segments of even

lengths [11, 19] or in other words is formed by ‘juxtaposed’ [36–38] pairs of seed solutions ±,m′,±,m′ + 1.
Similarly if the set of seed solutions, ±,M(∆′)L→1 is formed by ‘juxtaposed’ pairs of seed solutions ±,m,±,m+1
then the conjugated set is formed by seed solutions ∓,m′ with only even gap lengths, again starting from an
even number. We refer the reader to subsection 3.4 below for a scrupulous analysis of this issue in connection
with juxtaposed pairs of eigenfunctions of the Schrödinger equation with the Morse potential in the BRef
representation [19].

3. Quantization of rationally deformed Morse potentials by Wronskian
transforms of R-Bessel polynomials

3.1. Schrödinger equation with Morse potential in Bessel form
In this paper we focus solely on the TFI CSLE{

d2

dy2 + I0[y; a] + ε∞ρ⋄[y]
}

∞
Φ[y; a; ε] = 0 (32)

with the RefPF
I0[y; a] = 2ay−3 − y−4 + 1/4y−2 (33)

and the density function
∞ρ⋄[y] ≡ ∞σ

−1[y] = y−2 (34)
One can directly verify that CSLE (32) has a pair of ’basic’ solutions

∞ϕ±,0(y; a) = y1±ae±1/y (y > 0) (35)

at the energies
∞ε±,0(a) = −(a± 1/2)2. (36)

Examination of solutions (35) shows that they obey the following symmetry relations

∞ϕ±,0[y; a+ k] = y±k
∞ϕ±,0[y; a] (37)

for any integer k and
∞ϕ+,0(y; a)∞ϕ−,0(y; a) = y2 (38)

whereas the function
f±,0[ξ; ⇀

a , b] ≡ ϕ∓,0[ξ; ⇀
a , b]/ϕ±,0[ξ; ⇀

a , b] (39)
takes form

∞f±,0[ξ; a] ≡ y∓2ae∓2/y. (40)
We thus proved that the pair of basic solutions in question satisfy the TFI condition [23]

∞ϕ∓,0[y; a± 1] = ∞ρ
−1/2
⋄ [y]/∞ϕ±,0(y; a). (41)

One can directly verify that
∞ε∓,0(a± 1) = ∞ε±,0(a) (42)

and thereby
∞E±1(a) ≡ ∞ε∓,0(a± 1) − ∞ε±,0(a) = 0 (43)

so the symmetry condition [23]
E∓1(a± 1) = −E±1(a). (44)

trivially holds.
The gauge transformations

∞Φ[y; a; ε] = εϕ±[y; a]∞F±[y; a; ε] (45)
convert CSLE (32) to a pair of Bochner-type eigenequations{

y2 d
2

dy2 + ∞τ±[y; a] d
dy

+ [ε−∞ ε±,0(a)]
}

∞F±[y; a; ε] = 0, (46)

with
∞τ

±[y; a] = 2(1 ± a)y ∓ 2. (47)
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We define generalized Bessel polynomials as

Y (α,β)
n (y) ≡ Y (α)

n (y/β), (48)

where the polynomial Y (α)
n (x) is given by (2) in [4] and thereby coincides with polynomial (9.13.1) in [6]

Y (α)
n (x) ≡ yn(x;α). (49)

Note that Chihara’s relation (4.3) in [5] is apparently based on Brafman’s definition [39] for the polynomial
yn(x;α, β) such that yn(x;α + 2, 2) = yn(x;α). Adding the second index to the conventional notation [4, 5]
allows us to avoid uncertainties in the definition of the variable used to differentiate a polynomial in the reflected
argument, keeping in mind that

Y (α)
n (−y) ≡ Y (α,−2)

n (y). (50)

Eq. (37) for the Bessel DPS in [40] thus corresponds to the polynomials Y (α−2,β)
n (y) in our terms. (We prefer to

preserve symbol ‘B’ for their orthogonal subset composed of R-Bessel polynomials [12, 13].) It is also worth
mentioning that Alhaidari [1] introduced a slightly modified notation for generalized Bessel polynomials:

Ja
n(1/2y) ≡ Y (2a)

n (y) = (2n+ 2a)n(y/2)n
1F1(−n; −2a− n; 2/y), (51)

with the Pochhammer symbol (a)n standing for the falling factorial. And indeed it would be possibly more
convenient to use the parameter a as the polynomial index keeping in mind that the forward and backward shift
relations change the polynomial index by 1. However we prefer to stick to the more conventional notation.

The basic solution ∞ϕ±,0[y; a] is thus nothing but a constant solution of eigenequation (46) converted back
by gauge transformation (45). Similarly the reverse gauge transformation of each of the DPSs composed of
polynomials Y (±2a,∓2)

m (y) results in pairs of infinite sequences of q-RSs of CSLE (32):

∞ϕ±,m[y; a] = ∞C±,m(a)∞ϕ±,0[y; a]Y (±2a,∓2)
m (y). (52)

The multiplier lC±,m will be chosen below in such a way that q-RSs (52) satisfy recurrence relations (15).
The crucial advantage of expressing q-RSs in terms of generalized Bessel polynomials, instead of Laguerre
polynomials [7–11], is that the weight function ∞ϕ±,0[y; a] in the right-hand side of (52) does not depend on the
polynomial degree – the direct consequence of the fact that the given TFI CSLE belongs to Group A [18, 19, 23],
in contrast with the conventional representation of eigenfunctions of the Schrödinger equation with the Morse
potential in terms of classical Laguerre polynomials [22].

According to the general theory of Bochner-type eigenequations [41] differential equation (46) has a polynomial
solution of degree m at

ε = ∞ε±,m(a) = ∞ε±,0(a) −m[2(1 ± a) +m− 1], (53)
which, coupled with (36), gives

∞ε±,m(a) = −(m+ 1/2 ± a)2. (54)
This brings us to the simplified version of the raising ladder relations [23] for the energies of q-RSs (15):

∞ε±,m+1(a) = ∞ε±,m(a± 1) (55)

with E±1(a) ≡ 0 .
To be historically accurate, it is worth mentioning that Cotfas’ Eq. (10) in [16] with the leading coefficient

σ(s) = s2 does list Al-Salam’s [4] formula

Y (α)
n (y) = n! (−y/2)nL(−α−2n−1)

n (2/y) (56)

for the generalized Bessel polynomials in terms of Laguerre polynomials in the reciprocal argument 2/y (though
without mentioning the former polynomials by name). Actually Cotfas discusses only eigenfunctions of the
corresponding Sturm-Liouville problem so the cited formula specifies R-Bessel polynomials expressed in terms of
classical Laguerre polynomials in 2/y:

B(A)
n (y) ≡ Y (−2A−1)

n (y) = n! (−y/2)nL(2A−2n)
n (2/y) for n < A, (57)

with Cotfas’ parameter α standing for 1 − 2A here. The remarkable feature of this finite subsequence of
generalized Bessel polynomials is that the polynomials in question are orthogonal on the positive semi-axis as
prescribed by orthonormality relations (9.13.2) in [6]:∫ ∞

0
∞ρ⋄[y]∞ϕ2

−,0[y;A+ 1/2]B(A)
n (y)B(A)

˜
n (y)dy ≡

∫ ∞

0
y−2A−1e−2/yB(A)

n (y)B(A)

˜
n (y)dy =

n! Γ(2A+ 1 − n)
2A− 2n− 1 δn

˜
n.

(58)
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Making use of (39) we can represent backward shift relation (9.13.8) in [6] as

d

dy

î
∞f+,0[ ξ; a] Y (−2a,2)

m (y)
ó

= 2∞f+,0[ξ; a+ 1]Y (−2a−2,2)
m+1 (y) (59)

so the functions
∞f+,m[ξ; a] = ∞C−,m(a)∞f∞,0[ξ; a]Y (−2a)

m (y) (60)

satisfy raising relation (17) provided we choose

∞C−,m+1(a) = 2∞C−,m(a− 1) ≡ 2m+1 (61)

keeping in mind that ∞C−,0(a) ≡ 1.
Substituting (54) into (20) gives

∞E−,m−1(a− 1) = −m(m+ 1 − 2a) (62)

so recurrence relation (19) can be re-written as

2myẎ (−2a,2)
m (y) = m(m+ 1 − 2a)∞ϕ−,m−1[y; a− 1]/∞ϕ−,0[y; a]. (63)

Combining (52), (61), and (37) with k = 1 brings us to ’forward shift operator’ (9.13.6) in (6)

Ẏ (−2a,2)
m (y) = 0.5m(m+ 1 − 2a)Y (2−2a,2)

m−1 (y). (64)

To formulate the Sturm-Liouville problem of our interest it is worthy to convert CSLE (32) to its ‘prime’ [42]
form at ∞ using the gauge transformation

∞ ̸Ψ [y; a; ε] = y−1/2
∞Φ[y; a; ε] (65)

and then to solve the resultant RSLE{
d

dy
y
d

dy
− y−3 + 2ay−2 + εy−1

}
∞ ̸Ψ [y; a; ε] = 0 (66)

under the Dirichlet boundary conditions (DBCs):

lim
y→0 ∞ ̸Ψ [y; a; εn] = lim

y→∞ ∞ ̸Ψ [y; a; εn] = 0. (67)

The main advantage of converting CSLE (32) to its prime form with respect to the regular singular point at
infinity comes from our observation [42] that the characteristic exponents for this singular end have opposite
signs and therefore the corresponding principal Frobenius solution is unambiguously selected by the DBC. Prime
RSLE (66) can be also re-written in the form of the ‘algebraic’ [42] Schrödinger equation{

y
d

dy
y
d

dy
− y−2 + 2ay−1 + ε

}
∞ ̸Ψ [y; a; ε] = 0. (68)

(As discussed in the following subsections this is the common remarkable feature of RCSLEs with density
function (34) assuming that the singular point at infinity is regular.) Reformulating the given spectral problem
in such a way allows us to take advantage of powerful theorems proven in [43] for zeros of principal solutions of
SLEs solved under the DBCs at singular ends.

The eigenfunctions of RSLE (66) thus take form

∞ ̸ψ−,n [y; a] = y−1/2
∞ϕ−,n[y; a] = 2ny1/2−ae−1/yB(a−1/2)

n (y) for n = 0, . . . , N(a). (69)

One can then directly verify that each eigenfunction obeys the DBC at both singular ends. Since R-Bessel
polynomials (57) form an orthogonal sequence the eigenfunction ∞ ̸ψ−,n [y; a] must have exactly n nodes and
therefore [43] the sequence of eigenfunctions (69) corresponds to ⌈A⌉ = N(a) + 1 lowest eigenvalues of RSLE
(66) with

N(a) = ⌊a− 1/2⌋ ≡ ⌊A⌋. (70)

Note also that eigenfunctions (69) are orthogonal with the weight y−1 and that any solution normalizable with
this weight must vanish at infinity.
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The presented argumentation does not exclude existence of eigenfunctions with the number of nodes larger
than N(a) − 1. To confirm that the problem in question is indeed exactly solvable one can simply take advantage
of the conventional analysis of the Schrödinger equation with the Morse potential [22] in the L Ref representation.

The reader can argue that the problem must be exactly solvable since the Morse potential is TSI. However
the author [44] has an issue with this assertion. Though the Gendenshtein’s claim [34] concerning the exact
solvability of shape-invariant potentials is most likely correct it has been never accurately proven to our knowledge.
The catch is that Gendenshtein’s arguments decreasing the translational parameter a one by one bring us to the
Sturm-Liouville problem with | a |< 1/2 and then we still need to prove that the resultant SLE has no discrete
energy spectrum.

The change of variable y(x) = ex converts BRef CSLE (32) into the Schrödinger equation with the Morse
potential ∞V [y(x); a], where

∞V [y; a] = −y2I0[y; a] + 1/4 (71)

= −2ay−1 + y−2. (72)

Comparing (72) with (1) in [10] shows that ∞V [y(x);A+ 1/2] = VA,1(x) in Quesne’s notation.
According to the general theorem presented in [43] for singular SLEs solved under the DBCs any principal

solution ∞ ̸ψ−,m [y; a] near the singular end point y = 0 has nodes at the positive semi-axis iff it lies above the
ground energy level. Examination of the inequality

∞ε−,m(a) < ∞ε−,0(a) (73)

thus shows that the q-RS ∞ ̸ψ−,m [y; a] with m ̸= 0 preserves its sign on the positive semi-axis iff

m > 2a− 1 = 2A (74)

(cf.(12) in [10]). It will be proven in next subsection that one can use any combination of admissible q-RSs
∞ ̸ψ−,m [y; a] as seed functions to construct an exactly solvable RDCT of the BRef CSLE.

According to (9.13.1) in [6]

Y (−2a,+2)
m (y) = 2−m(2m− 2a)mŶ

(−2a,+2)
m (y) (75)

where, in following [5], we use hut to indicate that the polynomial in question is written in its monic form. It is
essential that the multiplier

(2m− 2a)m =
m−1∏
l=0

(2m− 2a− l) =
m∏

l′=1
(m− 2a+ l′) (76)

necessarily differs from 0 if either 2m− 2a < −1 (R-Bessel polynomials) or m = m > 2a− 1 (generalized Bessel
polynomials with no positive zeros) so the polynomial degree is equal to m in both cases of our primary interest.

3.2. RDCT s of principal solutions near singular end points
Using an arbitrary set Mp = m1, . . . ,mp of seed functions ∞ϕ±,mk

[y; a] of the same type (0 < mk < mk+1 for k =
1, . . . , p− 1) we can represent the corresponding RDCT of BRef CSLE (32) as{

d2

dy2 + ∞I
0[y; a | ±

...Mp] + εy−2
}

∞Φ[y; a; ε | ±
...Mp] = 0, (77)

where

∞I
0[y; a |

...Mp] = ∞I
0[y; a] + 2

y

d

dy
(y ld∞w[y; a | ±

...Mp]) (78)

with

∞w[y; a | ±
...M1] ≡ ∞ϕ±,m1 [y; a], (79)

∞w[y; a | ±
...Mp] ≡ W

{
∞ϕ±,m1 [y; a], . . . ,∞ϕ±,mp

[y; a]
}

for p > 1, (80)

and the symbolic expression ld standing for the logarithmic derivative. When deriving (78) we also took into
account that the so-called [42] ‘universal correction’

∆I {ρ(y)} ≡ 0.5
»
ρ(y) d

dy

ld ρ(y)√
ρ(y)

(81)
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in Schulze-Halberg’s [45] generic formula for zero-energy free term of the transformed CSLE vanishes in the case
of our current interest: ρ(y) = y−2.

The common remarkable feature of Wronskians (80) for TFI CSLEs from group A (originally noticed by
Odake and Sasaki [19] in their scrupulous study on RDCT s of the corresponding TSI potentials) is that each
can be represented as the weighted polynomial Wronskian

∞w[y; a | ±
...Mp] = ∞ϕ

p
±,0[y; a]∞WNMp

[y; a | ±
...Mp], (82)

where the Wronskian

∞WNMp
[y; a | ±

...Mp] ≡ W
{
Y (±2a,∓2)

m1
(y), . . . , Y (±2a,∓2)

mp
(y)

}
(83)

is a polynomial of degree
NMp

=| Mp | −0.5p(p− 1) (84)

(see (61) in [19]). When it seems appropriate we will drop the index specifying the degree of polynomial
Wronskians in question. Substituting (82) into (78), coupled with (33) and (35), one finds

∞I
0[ y; a | ±

...Mp] = 2(a± p)y−3 − y−4 + 1/4y−2 + 2
y

d

dy

Å
y ld∞W[y; a | ±

...Mp]
ã
. (85)

Each RCSLE under consideration can be alternatively obtained via sequential RDTs with the FFs

∞Φ±,m
˜
p [y; a | ±

...M
˜
p−1] = yp−1 ∞w[y; a | ±

...M
˜
p]

∞w[y; a | ±
...M

˜
p−1]

(
˜
p = 1, . . . , p) (86)

so RefPFs (85) can be determined via the following sequence of recurrence relations

∞I
0[y; a | ±

...Mp] = ∞I
0[y; a | ±

...Mp−1] + 2
y

d

dy

Å
y ld∞Φ±,mp [y; a | ±

...Mp−1]
ã

(87)

(a natural extension of the renown Crum formulas [21] to the CSLEs).
For an arbitrary choice of the partition Mp RefPF (85) generally has poles on the positive semi-axis and

therefore RCSLE (77) cannot be quantized analytically. So let us choose a set M±
p = m±

1 , . . . ,m±
p of seed

solutions of the sane type, ∞ϕ±,mk
[y; a] (0 < mk = m±

k < mk+1 = m±
k+1 for k = 1, . . . , p− 1), in such a way

that the seed function ∞ϕ±,m1 [y; a] and all Wronskians ∞w[y; a | ±
...M±

p ] for
˜
p = 2, . . . , p preserve their sign on

the positive semi-axis. In particular Odake and Sasaki [19] and nearly the same time Gomez-Ullate et al [11]
constructed the subnet of rationally deformed Morse potentials

∞V [y; a | +
...M+

p ] = ∞V [y; a] + y2
{

∞I
0[y; a] − ∞I

0[y; a | +
...M+

p ]
}

(88)

using seed solutions infinite at both quantization ends. In next subsection we will introduce another subnet of
rationally deformed Morse potentials

∞V [y; a | −
...M_

p ] = ∞V [y; a] + y2
{

∞I
0[y; a] − ∞I

0[y; a | −
...M_

p ]
}

(89)

constructed by means of FFs vanishing at the origin. The subnet starts from the potential ∞V [y; a | −
...m] with

a positive integer m > 2a− 1 – potential function (16) in [10] with A = a− 1/2, B = 1.
Substituting (82) into (86) and also making use of (37) with k = p, shows that RCSLE (77) has an infinite

set of q-RSs

∞Φ±,m[y; a | ±
...Mp] = ∞ϕ±,0[y; a± p] ∞W[y; a | ±

...Mp,m]

∞W[y; a | ±
...Mp]

. (90)

Apparently q-RS (90) with the label ‘−’ represents the principal solution approaching 0 as yδ−(Mp)e−1/y in the
limit y → +0. On other hand q-RS (90) labelled by ‘+’ infinitely grows as yδ+(Mp)e1/y in this limit. In both
cases

ld∞Φ±,m[y; a | ±
...Mp] ≈ ∓y−2 (91)
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and consequently

ld ∗Φ±,m[y; a | ±
...Mp] ≡ ld y − ld∞Φ±,m[y; a | ±

...Mp] ≈ ±y−2 (92)
for 0 < y << 1, where we dropped subscript ∞ in the notation of the FF for the reverse RDT:

∗Φ±,m[y; a | ±
...Mp] ≡ y/∞Φ±,m[y; a | ±

...Mp] . (93)

Note that the last summand in sum (85) has a simple pole at y = 0 so an arbitrary principal solution of RCSLE
(77) near its irregular singular point at y = 0 can be approximated as

∞Φ0[y; a; ε | ±
...Mp] ∝ y∆±(a;Mp)e−1/y for y << 1, (94)

where ∆±(a;Mp) stands for a finite power exponent which particular value is non-essential for our discussion.
Examination of the quasi-rational function

∞Φ0[y; a; ε | ±
...Mp+1] =

y W

{
∞Φ±,mp+1 [y; a | ±

...Mp] ,∞Φ0[y; a; ε | ±
...Mp]

}
∞Φ±,mp+1 [y; a | ±

...Mp]
=

y ∞Φ̇0[y; a; ε | ±
...Mp] − y ld∞Φ±,mp+1 [y; a; |

...Mp] ∞Φ0[y; a; ε | ±
...Mp]

(95)

representing the RDT of the principal solution of RCSLE (77) near its irregular singular point at y = 0 confirms
that it is a principal solution of the transformed RCSLE near the singular point in question. Vice versa the
quasi-rational function

y W

{
∗Φ±,mp

[y; a | ±
...Mp] ,∞Φ0[y; a; ε | ±

...Mp+1]
}

∗Φ±,mp+1 [y; a | ±
...Mp]

=

y ∞Φ̇0[y; a; ε | ±
...Mp+1] − y ld∗Φ±,mp+1 [y; a | ±

...Mp+1] ∞Φ0[y; a; ε | ±
...Mp+1]

(96)

representing the reverse RDT of the principal solution (95) is the principal solution of RCSLE (77) near its
irregular singular point at y = 0.

To study a behavior of Frobenius solutions near a regular singular point of RCSLE (77) at infinity it is
convenient to convert this equation to its ‘prime’ form [42] using the gauge transformation

∞ ̸Ψ [y; a; ε±
...Mp] = y−1/2

∞Φ[y; a; ε |
...Mp] (97)

which gives{
d

dy
y
d

dy
− y−3 + 2(a± 1)y−2 + 2 d

dy
(y ld∞W[y; a | ±

...Mp] ) + εy−1
}

∞ ̸Ψ [y; a; ε | ±
...Mp] = 0 (98)

As explained above the main advantage of this representation comes from the fact that the characteristic
exponents of two Frobenius solutions of RSLE (98) near this singular end have opposite signs, with the principal
Frobenius solution decaying as y−

√
−ε when y → ∞. Again RSLE (98) is nothing but the ‘algebraic’ [42] form of

the Schrödinger equation with the rationally deformed Morse potentials (88) or (89) accordingly – the common
feature of RCSLEs with density function (34) as far as the given SLE has a regular singular point at infinity.
Apparently

∞ ̸Ψ [y; a; ε | ±
...Mp+1] ≡ y−1/2

∞Φ[y; a; ε | ±
...Mp+1] =

y W

{
∞ ̸Ψ [y; a; ε±,mp+1(a) | ±

...Mp], ∞ ̸Ψ [y; a; ε | ±
...Mp]

}
∞ ̸Ψ [y; a; ε±,mp+1(a) | ±

...Mp]

(99)

Here we are only interested in cases when the FF appearing in the denominator of PF (99) is the non-principal
Frobenius solution of RSLE (98) near the singular point at infinity so

∞ ̸Ψ [y; a; ε | ±
...Mp+1] ≈ − [

√
−ε+

»
−ε±,mp+1(a)]y−

√
−ε for y >> 1 (100)

109



Gregory Natanson Acta Polytechnica

if ∞ ̸Ψ [y; a; ε | ±
...Mp] is an arbitrary principal Frobenius solution of this RSLE near the singular end in question.

We thus proved that the RDT of any principal Frobenius solution for each of the singular end points is itself
the principal Frobenius solution of the transformed RSLE near the singular point in question.

Suppose that RSLE (98) with Mp replaced for M±
p+1 has an additional eigenfunction ∞ ̸Ψ [y; a; ε∗(a) |

±
...M±

p+1] at the energy ε∗(a) < 0. Applying the reverse RDT with the FF

y1/2/∞Φ[y; a; ε±,mp+1(a) | ±
...M±

p ] = ∞ ̸Ψ−1 [y; a; ε±,mp+1(a) | ±
...M±

p ] (101)

to the new eigenfunction we would come to the solution which obeys the DBC at infinity:

W

{
∞ ̸Ψ−1 [y; a; ε±,mp+1(a) | ±

...M±
p ],∞ ̸Ψ [y; a; ε∗(a) | ±

...M±
p+1]

}
∞ ̸Ψ−1 [y; a; ε±,mp+1(a) | ±

...M±
p ]

≈ [
»

−ε±,mp+1(a) −
»

−ε∗(a)]y−
√

−ε±,mp+1 (a) for y >> 1

(102)

assuming that ε∗(a) ̸= ε±,mp+1(a). On other hand, the quasi-rational function on the left is related to principal
solution (96) via gauge transformation (97) with ε = ε∗(a) and therefore the solution in question would obey
both DBCs which contradicts the assumption that ε∗(a) is a new eigenvalue. The only exception corresponds to
the case ε∗(a) = ε±,mp+1(a), when the RDT with FF (100) insert the new bound energy state below the ground
energy level of rationally deformed Morse potential (88) or (89) accordingly.

3.3. Isospectral family of rationally deformed Morse potentials with a regular
spectrum

Let us prove that any set M_
p of seed solutions ϕ−,mk

[y; a] (0 < m1 < mk < mk+1 ≤ p) is admissible if the
generalized Bessel polynomial Y (−2a)

mk (y) does not have positive zeros so each seed function ∞ϕ−,mk
[y; a] preserves

its sign on the positive semi-axis. According to (73), this is possible if m > 2a− 1 for any m ∈ M_
p . In other

words we have to prove that polynomial Wronskian (83) does not have positive zeros if this is true for each
polynomial Y (−2a)

mk (y). This assertion is obviously trivial for
˜
p = 1. It also directly follows from the arguments

presented in previous subsection that the RDT of BRef CSLE (32) with the FF ϕ−,m1 [y; a] preserves the discrete
energy spectrum so the prime RSLE{

d

dy
y
d

dy
+ y∞I

0[y; a | −
...m1] + (ε+ 1/2)y−1

}
∞ ̸Ψ [y; a; ε | −

...m1] = 0 (103)

solved under the DBCs

lim
y→0 ∞ ̸Ψ [y; a; εn(a) | −

...m1] = lim
y→∞ ∞ ̸Ψ [y; a; εn(a) | −

...m1] = 0 (104)

has exactly N(a) eigenfunctions

∞ ̸Ψ [y; a; εn(a) | −
...m1] ≡ ∞ ̸Ψ−,n [y; a | −

...m1] = y−1/2
∞Φ−,n[y; a | −

...m1] (105)

at the energies ∞ε−,n(a) with n varying from 0 to N(a) − 1. Making use of (90) with p = 1 and m = n, they
can be also re-written in the quasi-rational form

∞ ̸Ψ−,n [y; a | −
...m1] = ∞ ̸ψ−,0 [y; a− 1] ∞W[y; a | −

...m1, n]
Y

(−2a)
m1 (y)

(106)

Keeping in mind that the PF in the right-hand side of the latter expression is proportional to yn−1 for y >> 1
one can immediately confirm that eigenfunctions (105) vanish in the limit y → ∞ for any n < a− 1/2.

Let us now use the mathematical induction to prove that the polynomial ∞W[y; a | −
...M_

˜
p+1] does not have

positive zeros if this assertion holds for the polynomial ∞W[y; a | −
...M_

˜
p ]. Again it is suitable to convert RCSLE

(77) to its prime form{
d

dy
y
d

dy
+ y∞I

0[y; a | −
...M_

˜
p ] + (ε+ 1/2)y−1

}
∞ ̸Ψ [y; a; ε | −

...M_

˜
p ] = 0 (107)
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solved under the DBCs

lim
y→0 ∞ ̸Ψ [y; a; εn(a) | −

...M_

˜
p ] = lim

y→∞ ∞ ̸Ψ [y; a; εn(a) | −
...M_

˜
p ] = 0. (108)

Making use of (90) with p =
˜
p we can again re-write the eigenfunctions

∞ ̸Ψ−,n [y; a | −
...M_

˜
p ] ≡ ∞ ̸Ψ [y; a; εn(a) | −

...M_

˜
p ] = y−1/2

∞Φ−,n[y; a | −
...M_

˜
p ] (109)

in the quasi-rational form

∞ ̸Ψ [y; a | −
...M_

˜
p ] = ∞ ̸ψ−,0 [y; a−

˜
p]

∞W[y; a | −
...M_

˜
p+1]

∞W[y; a | −
...M_

˜
p ]

(110)

Examination of q-RS (110) reveals that it vanishes at the origin and therefore represents a principal solution of
prime SLE (103) near its irregular singular point. Since this solution lies below the lowest eigenvalue it must be

nodeless [43] and therefore no Wronskian ∞W[y; a | −
...M_

p ] has positive zeros.
All the q-RSs

∞ ̸Ψ−,n [y; a | −
...M_

p ] = ∞ ̸ψ−,0 [y; a− p] ∞W[y; a | −
...M_

p , n]

∞W[y; a | −
...M_

p ]
(111)

vanish at infinity for n < N(a) = ⌊A⌋ since the power exponent of the PF in the right-hand side of (111) is
equal to n− p in the limit y → ∞. This confirms that the Direchlet problem for SLE (103) has exactly N(a)
eigenfunctions defined via (111) with n < N(a). Since these eigenfunctions must be orthogonal [43] with the

weight y−1 the polynomial Wronskians ∞W[y; a | −
...M_

p , n] with n varying from 0 to N(a) − 1 are orthogonal
with the positive weight

∞W [y; a | −
...M_

p ] = ∞ ̸ψ2
−,0 [y; a− p]

y ∞W2[y; a | −
...M_

p ]
. (112)

If the Morse potential has at least 2 energy levels the sequence starts from a polynomial of degree

| M_
p | −0.5 p(p+ 1) ≥ 2p. (113)

keeping in mind
| M_

p |> (2a− 1)p+ 0.5p(p+ 1) > 2p+ 0.5p(p+ 1) (114)

in this case. The finite EOP sequence in question thus starts from a polynomial of at least second degree and
therefore [46] does not obey the Bochner theorem [47].

Re-writing (85) with Mp = M_
p as

∞I
0[y; a | −

...M_
p ] = ∞I

0[y; a− p] + 2
y

d

dy

Å
y ld∞W[y; a | −

...M_
p ]
ã

(115)

we can then explicitly express corresponding Liouville potential (89) in terms of the admissible Wronskian

∞W[y; a | −
...M_

p ] as follows

∞V [y; a | −
...M_

˜
p ] = ∞V [y; a− p] − 2y d

dy

Å
y ld∞W[y; a | −

...M_
p ]
ã

(116)

As mentioned in previous subsection this net of isospectral rational potentials starts from potential function (16)
in [10] with A = a− 1/2 , B = 1, after the latter is expressed in terms of the variable y = ex.
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3.4. Subnet of rationally deformed Morse potentials quantized via Wronskians of
R-Bessel polynomials

Another family of solvable RDCT s of CSLE (32) can be constructed using juxtaposed pairs of eigenfunctions
∞ϕ−,nk

[y; a], ∞ϕ−,nk+1[y; a] (0 < nk < nk+1 − 1 < N(a) for k = 1, . . . , J). The simplest double-step
representative of this finite family of rationally deformed Morse potentials with n1 = 1, J = 2 was constructed
by Bagrov and Samsonov [38, 48] in the late nineties based on the conventional L Ref representation of the
Schrödinger equation with the Morse potential. The extensions of their works to an arbitrary number of
juxtaposed pairs of eigenfunctions in both L Ref and BRef representations were performed more recently in
[11] and [19] accordingly.

For any TFI RCSLE from Group A one can by-pass an analysis of the pre-requisites for the Krein-Adler
theorem [49, 50] by taking advantage of the fact that the Wronskians of eigenfunctions are composed of weighted
orthogonal polynomials with the common degree-independent weight and therefore the numbers of their positive
zeros are controlled by the general Conjectures proven in [51] for Wronskians of positive definite orthogonal
polynomials. In particular we conclude that any Wronskian formed by juxtaposed pairs of R-Bessel polynomials
of non-zero degrees may not have positive zeros.

Let N2J be a set of R-Bessel polynomials of degrees

N2J = M(∆′
L→1) =

n1 : n1 + 2j1 − 1, n2j1+1 : n2j1+1 + 2j2 − 1, . . . , n2J−2jL+1 : n2J(n1 > 0, n2J < N)
(117)

with even
δ′

l = 2jl (l = 1, . . . , L). (118)
Examination of the q-RS functions

∞ ̸Ψ−,n [y; a | −
...N2J ] = y−1/2

∞Φ−,n[y; a | −
...N2J ] =

∞ ̸ψ−,0 [y; a− 2J ] ∞W[y; a | −
...N2J , n]

∞W[y; a | −
...N2J ]

(n /∈ N2J)
(119)

shows that they all represent principal solutions near the irregular singular point of the prime RSLE{
d

dy
y
d

dy
+ y∞I

0[y; a | −
...N2J ] + (ε+ 1/2)y−1

}
∞ ̸Ψ [y; a; ε | −

...N2J ] = 0 (120)

assuming again that the latter equation is solved under DBCs

lim
y→0 ∞ ̸Ψ [y; a; εn | −

...N2J ] = lim
y→∞ ∞ ̸Ψ [y; a; εn | −

...N2J ] = 0. (121)

Note that the PF in the right-hand side of (119) is proportional to yn−2J for y >> 1 so each solution with
n /∈ N2J < N(a) represents an eigenfunction of RSLE (120).

Again these eigenfunctions must be orthogonal with the weight y−1 and therefore N(a) − 2J Wronskians

∞W[y; a | −
...N2J , n] with n /∈ N2J < N(a) form a polynomial set orthogonal with the positive weight

∞W [y; a | −
...N2J ] = ∞ ̸ψ2

−,0 [y; a− 2J ]

y∞W2[y; a | −
...N2J ]

(122)

If sequence (117) starts from n1 = 1 then the finite EOP sequence in question lacks the first-degree polynomial.
Otherwise it always starts from a polynomial of non-zero degree

| N2J | −J(2J + 1) > (n1 − 1)(δ′
1 − 1) ≥ 1. (123)

In both cases the pre-requisites of the Bochner theorem are invalid as expected [46].
The Liouville potentials in question can be thus expressed in terms of the admissible Wronskians ∞W[y; a |

−
...N2J ] as follows

∞V [y; a | −
...N2J ] = ∞V [y; a− 2J ] − 2y d

dy
(y ld∞W[y; a | −

...N2J ]). (124)

We refer the reader to Conjectures in [51] to verify that the number of zeros of each Wronskian in the constructed
orthogonal polynomial set changes exactly by 1 even if a jump in the polynomial degree is larger than 1. However
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even if we take advantage of these elegant results we still need to prove that there are no additional eigenfunctions
with a number of nodes larger than N(a) − 2J − 1. In contrast with the analysis presented in the previous
section, this proof is complicated by the fact that the RDT at each odd step results in a non-solvable RSLE
with singularities on the positive semi-axis. Luckily we deal with the TFI CSLE so its RDCT using juxtaposed
pairs of eigenfunctions can be alternatively obtained via sequential RDTs with seed solutions from the second
sequence +,m [11, 19]. Namely, as already mentioned in the end of section 2 the conjugated partition

M+
|δ1→L| = M(∆1→L) (125)

is formed by alternating even and odd integers starting from an even integer δ′
1. The reverse is also true: if the

partition
M+

p = M(pδ1→Lp
; pδ′

1→Lp
) (126)

is composed of alternating even and odd integers starting from an even integer δ′
1 then each segment of the

conjugated partition
pN2Jp

= M(pδ
′
Lp→1; pδLp→1) (127)

must have an even length, with the largest element

m+
|pδ′

1→Lp |
=| p∆1→Lp

| −1 = m|pδLp→1| ∈ pN2Jp
, (128)

where p∆1→Lp
≡ pδ1→Lp

; pδ′
1→Lp

.
Making use of (37) one can verify that quasi-rational functions (30) can be decomposed as

∞χ∓N [y; a] = y1/2N(N−1)∓Nδ[ξ]∞ϕN
±,0[y; a(δ)] (129)

and therefore the denominators of the fractions in equivalence relations (29) take form

y−1/2|δL|(|δL|−1)
L∏

l=1
∞χ−δl

[y; a(|∆′
l→1|−δ)] = yΣL ∞ϕ

|δL|
−,0 [y; a] (130)

y−1/2|δ′
L|(|δ′

L|−1)
L∏

l=1
∞χ−δ′

l
[y; a(|∆′

l→1|−δ′)] = yΣL ∞ϕ
|δ′

L|
−,0 [y; a(|∆1→L|)] (131)

accordingly, where | ∆1→L |=| ∆′
L→1 | and

ΣL =
L∑

l=1
δ′

l(δl +
L∑

˜
l=l+1

δ
˜
l) =

L∑
l=1

δl(δ′
l +

l−1∑
˜

l=1
δ′

˜
l). (132)

We thus come to the following equivalence theorem for the Wronskians of generalized Bessel polynomials

∞Ŵ[y; a | +
...M(∆1→L)] = ∞Ŵ[y; a(|∆1→L|) | −

...M(∆′
L→1)]. (133)

Note that decomposition (129) holds for any TFI CSLE of Group A provided that we replace y2 for the leading
coefficient lσ[y] of the corresponding counter-parts of differential eigenequations (46). This brings us to the
equivalence relations for polynomial Wronskians discovered by Odake and Sasaki [19] in their pioneering analysis
of TSI potentials from Group A.

If a > 1/2 then, according to (128), the largest element of the partition pN2Jp
is smaller than a+

| p∆l→Lp
| −1/2 and therefore the Wronskian in the right-hand side of (133) with ∆′

L→1 replaced for p∆′
Lp→1

is formed by juxtaposed pairs of R-Bessel polynomials. This confirms that none of the polynomial Wronskians

∞Ŵ[y; a | +
...M+

p ] has zeros on the positive semi-axis and therefore each partition M+
p specifies an admissible

sequence of seed solutions ∞ϕ+,mk
[y; a] (mk ∈ M+

p for k = 1, . . . , p). Based on the arguments presented
in subsection 3.2 we thus assert that the RDTs in question may insert only one bound energy level at the
energy ∞ε+,mp+1(a) which by definition lies below the ground energy level ∞ε+,mp

(a) of the Liouville potential
∞V [a | M+

p ]. On other hand all the existent energy levels remain unchanged.
As the simplest example we can cite the partition

1, 2, . . . , 2J = M(2J, 1) = M
†(1, 2J) for 2J ≤ ⌊A⌋ (134)
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As a direct consequence of the equivalence theorem we find that

Ŷ
(2a−2J−1,−2)

2J (y) = ∞Ŵ[y; a | −
...1 : 2J ] (2J ≤ ⌊A⌋), (135)

where the Wronskian on the right is formed by 2J sequential R-Bessel polynomials of non-zero degrees smaller
than A and therefore may not have positive zeros for a > −1/2 [51]. As initially proven in [7] and then illuminated
in more details in [8] using the so-called ‘Kienast-Lawton-Hahn’s theorem’ [52–54] the latter assertion holds for
any positive J despite the fact that the seed functions ∞ ̸ψ−,m [y; a(2J+1)] have nodes on the positive semi-axis
for

a(2J+1) + 1/2 < m < 2A. (136)
Indeed, representing (56) as

Y (2a,−2)
m (y) ≡ Y (2a)

m (−y/2) = m! (−y/2)mL(−2a−2m−1)
m (−2/y) (137)

shows that the absolute value of the negative m-dependent Laguerre index

αm = −2a− 2m− 1 < 0 (138)

is larger than the polynomial degree and therefore the polynomial in question may not have zeros at negative
values of its argument.

3.5. Isospectral rational extensions of Krein-Adler SUSY partners of Morse
potential

Since any RDCT of the Morse potentials using pairs of juxtaposed eigenfunctions N2J keeps unchanged
the ground-energy level a set of seed functions ∞ϕ+,m[y; a] is admissible iff all m ∈ N2J ,M

_
p , where M_

p is
an admissible set of seed polynomials specified in subsection 3.3. We can then use the same arguments as
in subsection 3.3 to prove that any Liouville potential

∞V [y; a | −
...N2J ,M

_
p ] = ∞V [y; a− 2J − p] − 2y d

dy

Å
y ld∞W[y; a | −

...N2J ,M
_
p ]
ã

(139)

has exactly the same discrete energy spectrum as rationally deformed Morse potential (124) constructed by
means of juxtaposed pairs of R-Bessel polynomials of non-zero degrees. Its eigenfunctions expressed in terms of
the variable y = ex can be represented as

∞ ̸ψ−,n [y; a | −
...N2J ,M

_
p ] = ∞ ̸ψ−,0 [y; a− 2J − p] ∞W[y; a | −

...N2J , n,M
_
p ]

∞W[y; a | −
...N2J ,M

_
p ]

for n /∈ N2J < N(a) (140)

keeping in mind that the corresponding prime RSLE is nothing but the Schrödinger equation re-written in its
algebraic form.

4. Conclusions
The presented analysis illuminates the non-conventional approach [19] to the family of rationally deformed
Morse potentials using seed solutions expressed in terms of Wronskians of generalized Bessel polynomials in the
variable y = ex. As a new achievement compared with Odake and Saski’s [19] study on RDCT s of the Morse
potential (see also [11] where a similar analysis was performed within the conventional L Ref framework) we
constructed a new RDC net of isospectral potentials by expressing them in terms of the logarithmic derivative
of Wronskians of generalized Bessel polynomials with no positive zeros. The constructed isospectral family
of rationally deformed Morse potentials represents a natural extension of the isospectral RDT s of the Morse
potential discovered by Quesne [10]. An important element of our analysis often overlooked in the literature
is the proof that the sequential RDTs in question do not insert new bound energy states. The widespread
argumentation in support of this (usually taken-for-granted) presumption is based on the speculation that the
theorems of the regular Sturm-Liouville theory [55] are automatically applied to singular SLEs. We can refer
the reader to the scrupolous analysis performed in [43] for SLEs solved under the DBCs as an illustration
that this is by no means a trivial issue. To be able to prove the aforementioned assertion we converted the
given RCSLE to its prime form such that the characteristic exponents of Frobenius solutions for the regular
singular point at ∞ have opposite signs and therefore the principal Frobenius solution near this singular end
is unambiguously selected by the corresponding DBC. (In the particular case under consideration the prime
RSLE accidently coincides with the Schrödinger equation re-written in the ‘algebraic’ [42] form but this is
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not true in general.) Re-formulating the given spectral problem in such a very specific way allowed us to take
advantage of powerful theorems proven in [43] for zeros of principal solutions of SLEs solved under the DBCs at
singular ends. We [42] also used this simplified version of the conventional spectral theory to prove that any
RDT of a principal (non-principal) Frobenius solution near the regular singular point at ∞ is itself a principal
(non-principal) Frobenius solution of the transformed RSLE. This assertion plays a crucial role in our proof of
the exact solvability of the constructed DC net of isospectral rational potentials. It is commonly presumed that
the Krein-Adler theorem [49, 50] is applied to an arbitrary potential regardless its behavior near the singular
end points. In [42] we examined this presumption more carefully for the Dirichlet problems of our interest again
taking advantage of the theorems proven in [43] for zeros of juxtaposed eigenfunctions. However one can by-pass
this analysis for any TFI RSLE from Group A keeping in mind that the Wronskians in questions are formed by
orthogonal polynomials with degree-independent indexes and therefore the numbers of their positive zeros are
controlled by the general Conjectures proven in [51]. In particular this implies that any Wronskian formed by
juxtaposed pairs of R-Bessel polynomials of non-zero degrees may not have positive zeros.
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