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Abstract. In this work, we study the non-hermitian PT-symmetry Swanson Hamiltonian in the
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1. Introduction
The Swanson Model has been introduced in [1] as
an example of a PT-symmetry hamiltonian [2–8].
Since then it has been extensively studied, allowing
for several interesting extensions [9–25]. Among re-
cent works, let us mention an extension of the Swan-
son model with complex parameters [23, 25], this
work introduces bicoherent-state path integration as
a method to quantify non-Hermitian systems. Though
the Swanson model is described by quadratic opera-
tors, the underlying physics is nevertheless very rich.
Depending on the region in the model parameter space,
the Swanson model is similar to the hamiltonian of
a parabolic barrier or the hamiltonian of a harmonic
oscillator [26]. From the mathematical point of view,
it is an example of a hamiltonian with eigenfunctions
that do not belong to L2(R) in some regions of the
space of parameters.

Among the methods that are employed to describe
the physics of resonances with complex energy, the
Complex Scaling Method (CSM) [27–32] is one of
the most powerful. It has been extensively used in
the description of many-body resonant states and
non-resonant continuum states observed in unstable
nuclei [32]. In this work, we propose the use of the
CSM to describe the dynamics of the Swanson model,
particularly in the region of non-PT-symmetry.

The work is organized as follows. In Section 2 we
describe the application of the CSM to the Swanson
Hamiltonian. We establish a similarity transforma-
tion between the transformed hamiltonian and its
adjoint operator. We discuss, according to the space
of parameters of the model, the possibility of hav-
ing square-integrable eigenfunctions. We present the
mean values of some observables. In Section 3, we
analyse with an example, the survival probability as
a function of time for an initial coherent state. Con-
clusions are drawn in Section 4.

2. Formalism
The hamiltonian of Swanson [1] is given by

H = ℏω
(
a†a+ 1

2

)
+ ℏα a2 + ℏβ a†2

, (1)

with ω, α, β ∈ R. The hamiltonian of Eq. (1) can
be written in terms of the coordinate operator, x̂,
and the momentum operator, p̂, by implementing the
following representation

a = 1√
2

(
x̂

b0
+ ib0

ℏ
p̂

)
,

a† = 1√
2

(
x̂

b0
− ib0

ℏ
p̂

)
, (2)

being b0 the characteristic length of the non-
interacting system. The hamiltonian in Eq. (1) reads

H(ω, α, β) = 1
2ℏ(ω + α+ β)

(
x̂

b0

)2

+1
2ℏ(ω − α− β)

(
b0 p̂

ℏ

)2

+ℏ
(α− β)

2

(
2 x̂ i

ℏ
p̂+ 1

)
. (3)

The adjoint hamiltonian of H(ω, α, β) is Hc =
H(ω, β, α).

As we showed in [26], some of the eigenfunctions
of Eq. (3) do not belong to the usual Hilbert space,
H = L2(R), so that we have to work in a Rigged
Hilbert Space [33, 34].

An alternative approach to solve the eigenvalue
problem of the hamiltonian of Eq. (1), is the use of
the CSM method [27–32] . The aim of the CSM is
to make a similarity transformation from the original
hamiltonian to a hamiltonian which has eigenfunctions
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that belong to L2(R). In the framework of the CSM,
we shall introduce the transformation operator V̂ (θ) =
e− θ

2ℏ (x̂p̂+p̂x̂) with a real scaling parameter θ:

V̂ (θ)x̂V̂ −1(θ) = e iθ x̂,

V̂ (θ)p̂V̂ −1(θ) = e−iθ p̂. (4)

The hamiltonian of Eq. (3) is transformed as H(θ) =
V̂ (θ)HV̂ −1(θ):

H(θ) = H(θ, ω, α, β)

= 1
2ℏ(ω + α+ β)

(
e iθ x̂

b0

)2

+1
2ℏ(ω − α− β)

(
b0 e

−iθ p̂

ℏ

)2

+ℏ
(α− β)

2

(
2 x̂ i

ℏ
p̂+ 1

)
. (5)

It is straightforward to observe that

H†(θ) = H(−θ, ω, β, α). (6)

Notice that H(θ) is not invariant under the usual
PT-symmetry given by x̂ → −x̂, and p̂ → p̂, and
i → −i.

We shall introduce the following similarity transfor-

mation induced by the operator Υ(θ) = e
− α−β

ω−α−β
e2iθx2

2b2
0 .

It reads

Υ(θ) H(θ)Υ(θ)−1 = h(θ), (7)

where h(θ) is given by

h(θ) = 1
2m

(
e−iθp̂

)2 + 1
2k

(
eiθx̂

)2
. (8)

We have defined [26] k = m Ω2 and

m = m(ω, α, β, b0) = ℏ
(ω − α− β)b2

0

Ω = Ω(ω, α, β) =
√
ω2 − 4αβ = |Ω|eiϕ. (9)

Though h(θ) is a non-hermitian operator, h†(θ) =
h(−θ) = V (−2θ)h(θ)V (−2θ)−1. Consequently

Υ(−θ)−1H†(θ)Υ(−θ) = h(θ)∗,

(Υ(−θ)V (−2θ))−1H†(θ)(Υ(−θ)V (−2θ)) = h(θ).
(10)

From Eqs. (7) and (10), it results H†(θ)S = SH(θ),
with S = Υ(−θ)V (−2θ)Υ(θ) [35–37].

The eigenfunctions and eigenvalues of h(θ), ϕ(θ)
and E(θ), are related to that of H and H† as follows.

Given h(θ)ϕ(θ, x) = E(θ)ϕ(θ, x):

H ϕ(θ, x) = Ẽ(θ) ϕ(θ, x),
H† ψ(θ, x) = E(θ) ψ(θ, x),

(11)

with

ϕ̃(θ, x) = Υ(θ)−1ϕ(θ, x), E(θ) = E(θ),
ψ(θ, x) = Υ(−θ)(ϕ(θ, x))∗, E(θ) = E(θ)∗.

(12)

Thus, the eigenfunctions of H(θ) with eigenvalue
Ẽν(θ) = Eν(θ) are given by

ϕ̃ν(θ, x) = e
α−β

ω−α−β
e2iθx2

2b2
0 Nνϕν(θ, x) (13)

with Nν a normalization constant.
It can be shown that the eigenfunctions of H†(θ)

are

ψν(θ, x) = e
− α−β

ω−α−β
e−2iθx2

2b2
0 (Nνϕν(θ, x))∗

, (14)

and the corresponding eigenvalue is given by Eν(θ) =
Ẽν(θ)∗. A similar structure for Eqs. (10)-(14) can be
found in [38, 39]. Moreover, the relation between the
eigenvalues, Eq. (12), is a typical feature for operators
which are self-adjoint in Krein spaces [39–41].

It should be mentioned that the Hamiltonian of
Eq. (5), for α = β = 0 and ω = 1/ cos(2θ), reduces
to the one introduced in [23–25]. Particularly, in [25]
the dynamics under the action of this hamiltonian is
described for values of θ ∈ (−π/4, π/4). For further
results, the reader is kindly referred to [23–25].

In what follows, we aim to determine the range of
values of θ for which ϕ(θ, x) belongs to the Hilbert
space L2(R).

2.1. Eigenfunctions and eigenvectors
For ω − (α+ β) ̸= 0, Eq. (8) can be also written as

−d2ϕ(y)
dy2 +

(
1
4y

2 − ϵ

)
ϕ(y) = 0, (15)

with

ϵ = E

ℏΩ = E

ℏ|Ω|
eiϕ (16)

and

y =
√

2 |σ|ei(θ+γ) x

b0
, (17)

where we have defined

σ =
(
mΩ
ℏ

)1/2
b0 = eiγ |σ|. (18)
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Figure 1. Effective potential of Eq. (19), u(θ,x)
|u(θ,x)| , for

a fixed x in the regions determined by the signs of
the parameters m(ω, α, β, b0) and Ω2(ω, α, β, b0). In
Panel (a), (sg(m), sg(Ω2)) = (+, +), Region I. For
Panel (b),(sg(m), sg(Ω2)) = (+, −), Region II. While,
(sg(m), sg(Ω2)) = (−, +) in Panel (c), Region III. In
Region IV (sg(m), sg(Ω2)) = (−, −), for Panel (d).
The real part of the effective potential, Re

(
u(θ,x)

|u(θ,x)|

)
,

is displayed in solid lines, while the imaginary part
of the effective potential, Im

(
u(θ,x)

|u(θ,x)|

)
, is drawn with

dashed lines.

Eq. (15) is the Schrödinger equation corresponding
to the effective potential

u(θ, x) = U(θ, x)
ℏΩ = e2i(θ+γ) 1

2 |σ|2x
2

b2
0
. (19)

Solutions corresponding to Eq. (15) represent dif-
ferent physical systems according to the signs of
m(ω, α, β, b0) and Ω2(ω, α, β, b0) [26]. In what follows,
we shall refer to Region I when (sg(m), sg(Ω2)) =
(+,+), Region II for the case (sg(m), sg(Ω2)) =
(+,−), Region III for (sg(m), sg(Ω2)) = (−,+), and
Region IV for (sg(m), sg(Ω2)) = (−,−), respectively.

In Figure 1 we present the behaviour of the effective
potential of Eq. (19), u(x)

|u(x)| , as a function of θ, for
x, |σ| and |Ω| fixed, in the different regions of the
parameter model-space. The real part of the effec-
tive potential, Re

(
u(x)

|u(x)|

)
, is displayed in solid lines,

while the imaginary part of the effective potential,
Im

(
u(x)

|u(x)|

)
, is drawn with dashed lines.

2.1.1. Discrete spectrum
For the discrete sector of the spectrum, eigenvalues
and the eigenfunctions are given by

En = ℏ Ω [n] = ℏ |Ω|eiϕ [n],

ϕ̃m(θ, x) = e
α−β

ω−α−β e2iθ x2
2b2

0 ϕm(θ, x), (20)

ψm(θ, x) = e
− α−β

ω−α−β e−2iθ x2
2b2

0 (ϕm(θ, x))∗, (21)

where ϕn(θ, x) can be written as

(a)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

(b)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

(c)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

(d)

0
π

2
π

3 π

2
2 π

-1

0

1

θ

R
e
(u
(x
)/
|u
(x
)|
)

Figure 2. Real part of the effective potential of
Eq. (19), u(θ,x)

|u(θ,x)| . The shadowed sectors correspond
to the values of θ for which the solutions of Eq. (15)
are square-integrable. In Panels (a), (b), c) and (d)
we present the results for Regions I, II, III and IV,
respectively.

ϕn(θ, x) = Nne
−e2i(θ+γ) x2

2b2
0

|σ|2

Hn

(
ei(θ+γ) x

b0
|σ|

)
.

Nn
2 = ei(θ+γ)

√
πn!2n

|σ|
b0
, (22)

being Hn(z) the Hermite Polynomial of order n, and
[n] = n+ 1/2.

Eigenfunctions ϕn(θ, x) are square-integrable for θ-
intervals where Re(u(θ, x)) takes positive values. In
Figure 2, we plot Re(u(θ, x)/|u(θ, x)|) for every region,
the gray regions correspond to the intervals for which
the eigenfunctions are square integrable.

In Table (1), we summarize the sign of the parame-
ter m and Ω2, which characterize the different regions
of the model, and for each region we present the val-
ues of phases γ and ϕ, and the interval where the
eigenfunctions are square-integrable.

In Regions (I) and (III), we can define two well-
defined θ−domains: I1 = [−π,−3π/4)∪(−π/4, π/4)∪
(3π/4, π] and I2 = (−3π/4,−π/4) ∪ (π/4, 3π/4).
While, in Regions (II) and (IV), the θ-domains are:
I3 = (−π,−π/2) ∪ (0, π/2) and I4 = (−π/2, 0) ∪
(π/2, π). The intervals repeat themselves periodically,
with period π.

In the domains summarized in Table 1, eigenfunc-
tions {ψν(θ, x), ϕ̃ν(θ, x)} form a biorthogonal com-
plete set.

∫ ∞

−∞
(ψm(θ, x))∗ϕ̃n(θ, x) dx =∫ ∞

−∞
ϕm(θ, x)ϕn(θ, x) dx = δmn. (23)

It should be noticed that in all regions, the
θ−domains of positive spectrum are different from
the domains with negative spectrum. They represent
different physical boundary conditions.
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sg(m) sg(Ω2) γ ϕ I θc

I + + 0 0 I1

±π/4π/2 π I2

III - + π/2 0 I2

0 π I1

II + - π/4 π/2 I4 0
±π/2
π

−π/4 −π/2 I3

IV - - −π/4 π/2 I3

π/4 −π/2 I4

Table 1. Values of the characteristic parameters
for the different model-space regions. In columns
2 and 3 we give the sign of m and Ω2, respec-
tively. Phases γ and ϕ, for the different regions,
are given in columns 4 and 5, respectively. In col-
umn 6 we present the θ-interval for which the dif-
ferent eigenfunctions are square-integrable. In the
Table I1 = [−π, −3π/4) ∪ (−π/4, π/4) ∪ (3π/4, π],
I2 = (−3π/4, −π/4) ∪ (π/4, 3π/4), I3 = (−π, −π/2) ∪
(0, π/2) and I4 = (−π/2, 0) ∪ (π/2, π). In the last col-
umn, we give the values of θc for which the eigenfunc-
tions of the continuous spectrum are square-integrable.
The intervals repeat themselves periodically, with pe-
riod π.

2.1.2. Continuous spectrum
The eigenfunctions associated to the continuous spec-
trum [26, 42–45] are given, in terms of the eigenfunc-
tions of h(θ) of Eq. (8), ϕE

±(θ, x), by

ϕ̃E
±(θ, x) = e

α−β
ω−α−β e2iθ x2

2b2
0 ϕE

±(θ, x), (24)

ψ
E

±(θ, x) = e
− α−β

ω−α−β e−2iθ x2
2b2

0 (ϕE
±(θ, x))∗, (25)

with

ϕE
±(θ, x) = C Γ(ν + 1)D−ν−1

(
∓

√
−2ei(θ+γ)|σ| x

b0

)
.

(26)

being D−ν−1(y) the parabolic cylinder functions and
ν = ϵ− 1

2 . The normalization constant takes the value
C = eiπ/8iν/2(

|σ|
b0

ei(θ+γ)
)1/2

π23/4
.

The biorthogonality and the completeness relation
can be written as

∫ ∞

−∞
(ψE

±(θ, x))∗ϕ̃E′

± (θ, x)dx = δ(E − E′),∑
s=±

∫ ∞

−∞
(ψE

s (θ, x))∗ϕ̃E
s (θ, x)dE = δ(x− x′). (27)

The possible values that the parameter θ can take
to fulfill the requirements of biorthogonality and com-
pleteness of Eq. (27), θc, are presented in the last
column of Table 1.

In the framework of the CSM, the continuous spec-
trum lies along the line 2θ. In Regions II and IV, the
2θc = ± π so that E ∈ (−∞,+∞) Meanwhile, in Re-
gion I and III, 2θc = ± π

2 , so that E takes imaginary
values. Consequently, the parameter ν associated to
the order of the eigenfunctions of Eq. (26) takes the
value ν = −i|ϵ| − 1

2 .
If we look at the effective potential u(θ, x), the

values of θc correspond to the values of θ for which
Re(u(θ, x)) = 0.

2.1.3. Particular cases
Case (a): Ω = 0.

When Ω = 0 and ω − (α + β) ̸= 0, the problem
reduces to that of a free particle of energy E = ε e−2iθ.
Eq. (8) reduces to

− ℏ2

2m e2iθ
d2f(x)

dx2 = E f(x), (28)

the wave function can be written as f(x) = Aeikx +
Ae−ikx, with k =

√
2ε

ℏ(ω−α−β)b2
0
.

Case (b): ω − (α+ β) = 0, α ̸= β.
To study this case we have to look at Eq. (5).

If ω − (α+ β) = 0, it reads

H(θ) = ℏ(α+ β)
(

e iθ x̂

b0

)2

+ℏ
(α− β)

2

(
2 x̂ i

ℏ
p̂+ 1

)
, (29)

f(x) = e
−e2iθ x̂2

4b2
0

α+β
α−β

x− 1
2 + εe−2iθ

ℏ(α−β) . (30)

In Table 2 we present the values of E for which the
wavefunction f(x) is square-integrable.

(α+ β)/(α− β) (α− β) cos(2θ) ε

+ + I1 ε| cos(2θ)|
ℏ|α−β| < 1

2
- - I2

+ - I1 ε| cos(2θ)|
ℏ|α−β| > 1

2
- + I2

Table 2. Regions for which the wave function of
Eq. (30) is square-integrable.

2.2. Mean values of observables
To compute the mean values, we use operators P̂ and
X̂ defined as [19, 46, 47]

P̂ = Υ−1V (θ + γ)p̂V (θ + γ)−1Υ

= e−i(θ+γ)p̂+ iℏei(θ+γ) α− β

(ω − α− β)b2
0
x̂,

X̂ = Υ−1V (θ + γ)x̂V (θ + γ)−1Υ
= ei(θ+γ)x̂, (31)
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that satisfy

[X̂, P̂ ] = iℏ. (32)

For the discrete spectrum of H, it can be proved
that

⟨m|P̂ |n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ P̂ ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕm(θ, x) e−i(θ+γ)p̂ ϕn(θ, x)dx

= iℏ√
2b0r

(√
n+ 1δm,n+1 −

√
nδm,n−1

)
,

⟨m|P̂ 2|n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ P̂ 2 ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕm(θ, x) e−2i(θ+γ)p̂2 ϕn(θ, x)dx

= iℏ√
2b0r

(√
n+ 1δm,n+1 −

√
nδm,n−1

)
= − ℏ2

2b2
0r

(√
(n+ 2)(n+ 1)δm,n+2

−(2n+ 1)δm,n

+
√
n(n− 1)δm,n−2

)
, (33)

and

⟨m|X̂|n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ X̂ ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕ±

m(θ, x) ei(θ+γ)x̂ ϕ±
n (θ, x)dx

= b0r√
2

(√
n+ 1δm,n+1 +

√
nδm,n−1

)
,

⟨m|X̂2|n⟩ =
∫ ∞

−∞
(ψm(θ, x))∗ X̂2 ϕ̃n(θ, x)dx

=
∫ ∞

−∞
ϕm(θ, x) e2i(θ+γ)x̂2 ϕn(θ, x)dx

= b2
0r

2

(√
(n+ 2)(n+ 1)δm,n+2

+(2n+ 1)δm,n

+
√
n(n− 1)δm,n−2

)
, (34)

with b0r = b0/|σ|.

2.3. Time dependent mean values
From the Schrödinger equation

iℏ ∂
∂t

Φ̃n(θ, x, t) = H(θ)Φ̃n(θ, x, t), (35)

it results

Φ̃n(θ, x, t) = e−iẼn
t
ℏ ϕ̃n(θ, x). (36)

In the same way

iℏ ∂
∂t

Ψn(θ, x, t) = H(θ)†ψn(θ, x, t), (37)

it results

Ψn(θ, x, t) = e−iEn
t
ℏψn(θ, x). (38)

2.3.1. Reigions I and III: Real spectrum
In Regions I and III, the discrete eigenvalues of H(θ)
take the values E±

n = ±ℏ|Ω|[n], with eigenfunctions
ϕ̃±

n (θ, x). In Region I, the eigenfunctions of the posi-
tive (negative) are square integrable in interval I1 (I2),
see Table 1. Meanwhile, in Region III, tthe eigenfunc-
tions of the positive (negative) are square integrable
in interval I2 (I1). Consequently the time evolution
of the states is given by

Φ̃±
n (θ, x, t) = e−i Ẽnt

ℏ ϕ̃n(θ, x),
= e∓i(n+ 1

2 )|Ω|tϕ̃±
n (θ, x).

Ψ±
n (θ, x, t) = e−i Ent

ℏ ψn(θ, x),

= e∓i(n+ 1
2 )|Ω|tψ

±
n (θ, x), (39)

and then

⟨m|Ô|n⟩ =

e∓i(n−m)|Ω|t
∫ ∞

−∞
(ψ±

m(θ, x))∗Ôϕ̃±
n (θ, x)dx.

(40)

2.3.2. Region II and IV: Complex spectrum
In Regions II and IV, the discrete eigenvalues of H(θ)
take the values E±

n = ±iℏ|Ω|[n], with eigenfunctions
ϕ̃±

n (θ, x). In Region II, the eigenfunctions of the posi-
tive (negative) are square integrable in interval I4 (I3).
Meanwhile, in Region III, the eigenfunctions of the
positive (negative) are square integrable in interval I3
(I4). So that the time evolution of the eigenfunctions
are given by

Φ̃±
n (θ, x, t) = e−i Ent

ℏ ϕ̃±
n (θ, x),

= e±(n+ 1
2 )|Ω|tϕ̃n(θ, x). (41)

and

Ψ±
n (θ, x, t) = e−i E∗

nt

ℏ ψn(θ, x),

= e∓(n+ 1
2 )|Ω|tψ

±
n (θ, x). (42)

As a result

⟨m|Ô|n⟩ =

e±(n−m)|Ω|t
∫ ∞

−∞
(ψ±

m(θ, x))∗Ôϕ̃±
n (θ, x)dx.

(43)
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3. Results and discussion
In order to evaluate the benefits of the present ap-
proach, let us consider the time evolution of a given
initial state when the parameters of the model corre-
spond to Region II.

In [26] we have analysed the Swanson model by
solving its eigenvalue problem in the Rigged Hilbert
Space. We have found that in Region II the hamilto-
nian was similar to the one of a particle in a parabolic
barrier. In the framework of the CSM, we model the
effective interaction by a complex potential. This fact
resembles the spirit of the Optical Potential in Nuclear
Physics [48, 49], as the potential seen by an incident
nucleon on a nucleus is modeled by a complex effective
potential accounting for the loss of flux due to the
interaction of an incident particle with the nucleons
of the nucleus.

We shall consider the solutions with eigenvalues
En = −iℏ|Ω|(n + 1/2), which evolve in time as
e−|Ω|(n+1/2)t. They correspond to the boundary prob-
lem for 0 < t < ∞. In this case γ = −π/4 and
θ ∈ I3.

For simplicity, let us assume that the initial state
is a coherent state of the form

ϕI(z, θ, x) = e−|z|2/2
∞∑

k=0

zk

√
k!
ϕk(θ, x), (44)

where ϕ̃k(θ, x) is the k-eigenfunction of H(θ). The
survival probability of the state can be computed as

p(t) =
∣∣∣∣∫ ∞

−∞
(ψI(z, θ, x))∗e−iH(θ)t/ℏϕI(z, θ, x)dx

∣∣∣∣2

=

∣∣∣∣∣e−|z|2−|Ω|t/2
∞∑

k=0

(|z|2e−|Ω|t)k

k!

∣∣∣∣∣
2

= e−|Ω|t+2|z|2(e−|Ω|t−1). (45)

Notice that, in this particular case, p(t) is independent
of the parameter θ.

4. Conclusions
In this work we analyse the advantages of the CSM
for describing the dynamics of a non-hermitian sys-
tem when the eigenfunctions of the problem do not
belong to L2(R). We have shown that we can cast
the original problem into a complex potential, which
includes absorption and dissipation effects according
to the sign of its imaginary component. We have
shown that for a range of values of θ in the different
regions of the model, the resulting eigenfunctions are
square-integrable. This feature facilitates the study
of the dynamics of the system from the computa-
tional point of view. The price we have to pay is the
lack of PT-symmetry invariance of the transformed
hamiltonian.

Work is in progress concerning the application of the
CSM to a more involved problem as the one presented
in [50].
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