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Abstract.
In this work we report on a 3-body system in a d−dimensional space Rd with a quadratic harmonic

potential in the relative distances rij = |ri − rj | between particles. Our study considers unequal masses,
different spring constants and it is defined in the three-dimensional (sub)space of solutions characterized
(globally) by zero total angular momentum. This system is exactly-solvable with hidden algebra sℓ4(R).
It is shown that in some particular cases the system becomes maximally (minimally) superintegrable.
We pay special attention to a physically relevant generalization of the model where eventually the
integrability is lost. In particular, the ground state and the first excited state are determined within
a perturbative framework.
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1. Introduction
The two-body harmonic oscillator, i.e. two particles
with masses m1 and m2 interacting via the transla-
tional invariant potential V ∝ |ri − rj |2, appears in
all textbook in Classical Mechanics. In an arbitrary
d−dimensional Euclidean space Rd this system ad-
mits separation of variables in the center-of-mass and
relative coordinates as well as exact solvability. The
relevance of such a system is obvious: any scalar po-
tential U = U(|ri − rj |) can be approximated by the
two-body harmonic oscillator. In this case, the center-
of-mass and relative coordinates are nothing but the
normal coordinates. Therefore, in the n-body case of
n > 2 particles interacting by a quadratic pairwise
potential it is natural to ask the question about the
existence of normal coordinates and the correspond-
ing explicit exact solutions. Interestingly, even for
the three-body case n = 3 a complete separation of
variables can not be achieved in full generality.

Starting in 1935, the quantum n−body problem in
R3 was studied by Zernike and Brinkman [1] using
the so-called hyperspherical-harmonic expansion. Two
decades later, this method possessing an underlying
group-theoretical nature was then reacquainted and
refined in the papers by Delves [2] and Smith [3].
Nevertheless, in practice the success of the method
is limited to the case of highly symmetric systems,
namely identical particles with equal masses and equal
spring constants.

In a previous work [4], the most general quantum
system of a three-body chain of harmonic oscillators,
in Rd, was explored exhaustively. For arbitrary masses
and spring constants this problem possesses spherical
symmetry. It implies that the total angular momen-
tum is a well-defined Observable which allows to re-
duce effectively the number of degrees of freedom in

the corresponding Schrödinger equation governing the
states with zero angular momentum. In the sector of
vanishing angular momentum, it turns out that this
three-body quantum system is exactly solvable. The
hidden algebra sℓ(4,R) responsible of the exact solv-
ability was exhibited in [4] using the ρ-representation.
In the present work we consider a physically relevant
generalization of the model where eventually the inte-
grability properties are lost. Again, in our analysis we
assume a system of arbitrary masses and spring con-
stants with the total angular momentum identically
zero.

In the current study we revisited the algebraic struc-
ture and solvability of the quantum 3-body quantum
oscillator system in the special set of coordinates ap-
pearing in [5], [6]. Afterwards, a physically motivated
generalization of the model is considered. The goal
of the paper is two-fold. Firstly, in the (sub)-space
of zero total angular momentum we will describe the
reduced Hamiltonian operator which admits a hidden
sℓ(4;R) algebraic structure, hence, allowing exact-
analytical eigenfunctions. Especially, at any d ≥ 1 it
is demonstrated the existence of an exactly-solvable
model that solely depends on the moment of inertia
of the system. This model, admits a quasi-exactly-
solvable extension as well.

Secondly, we explore a physically relevant general-
ization of the model. Approximate solutions of the
problem are presented just for the case of equal masses
in the framework of standard perturbation theory and
complemented by the variational method. The first
excited state, thus the energy gap of the system, is
briefly discussed.
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2. Generalities
The quantum Hamiltonian in Rd (d > 1) for three non-
relativistic spinless particles with masses m1,m2,m3
and translationally invariant potential is given by

H = −
3∑

i=1

1
2mi

∆(d)
i + V (r12, r13, r23) , (1)

(ℏ = 1) see e.g. [4, 5], where ∆(d)
i stands for the

individual Laplace operator of the ith mass with
d−dimensional position vector ri, and

rij = |ri − rj | , (2)

(j = 1, 2, 3) is the relative mutual distance between the
bodies i and j. The eigenfunctions of (1) which solely
depend on the ρ-variables, ρij = r2

ij , are governed by
a three-dimensional reduced Hamiltonian [4]

Hrad ≡ −∆rad + V (ρ) , (3)

where

∆rad = 2
µ12

ρ12 ∂2
ρ12 + 2

µ13
ρ13 ∂2

ρ13

+ 2
µ23

ρ23 ∂2
ρ23 + 2(ρ13 + ρ12 − ρ23)

m1
∂ρ13, ρ12

+2(ρ13 + ρ23 − ρ12)
m3

∂ρ13, ρ23 + 2(ρ23 + ρ12 − ρ13)
m2

∂ρ23, ρ12

+ d

µ12
∂ρ12 + d

µ13
∂ρ13 + d

µ23
∂ρ23 , (4)

c.f. [5], and
µij = mi mj

mi +mj
,

denotes a reduced mass. The operator (3) de-
scribes three-dimensional (radial) dynamics in vari-
ables ρ12, ρ13, ρ23. This operator Hrad is, in fact,
equivalent to a Schrödinger operator, see [4]. We
call it three-dimensional (radial) Hamiltonian. All the
d−dependence in (3) occurs in the coefficients in front
of the first derivatives.

2.1. Case of identical particles:
τ-representation

Now, let us consider the case of identical masses

m1 = 1 ; m2 = 1 ; m3 = 1 ,

thus, µij = 1
2 , and the operator (4) is S3

permutationally-invariant in the ρ-variables. It sug-
gests the change of variables ρ ↔ τ where

τ1 = ρ12 + ρ13 + ρ23 ,

τ2 = ρ12 ρ13 + ρ12 ρ23 + ρ13 ρ23 ,

τ3 = ρ12 ρ13 ρ23 ,

(5)

are nothing but the lowest elementary symmetric poly-
nomials in ρ-coordinates.

In these variables (5), the coefficients of the operator
∆rad are also polynomials, hence, this operator is
algebraic in both representations. Explicitly,

∆rad = 6 τ1∂
2
1 + 2τ1(7τ2 − τ2

1 )∂2
2 + 2τ3(6τ2 − τ2

1 )∂2
3

+ 24 τ2∂
2
1,2 + 36τ3∂

2
1,3 + 2 [9τ3τ1 + 4τ2(τ2 − τ2

1 )]∂2
2,3

+ 6 d ∂1 + 2 (2d+ 1)τ1 ∂2 + 2 [(d+ 4)τ2 − τ2
1 ] ∂3

(6)
∂i ≡ ∂τi , i = 1, 2, 3.

3. Laplace-Beltrami operator
Now, as a result of calculations it is convenient to
consider the following gauge factor

Γ4 =
(S2

△)2−d

M I
, (7)

M = m1 +m2 +m3, where

S2
△ = 2ρ12 ρ13 + 2ρ12 ρ23 + 2ρ23 ρ13 − ρ2

12 − ρ2
13 − ρ2

23
16 ,

and

I = m1m2 ρ12 + m1m3 ρ13 + m2m3 ρ23

M
,

possess a geometrical meaning. The term S2
△ is the

area (squared) of the triangle formed by the position
vectors of the three bodies whilst the term I is the
moment of inertia of the system with respect to its
center of mass. The radial operator Hrad (3) is gauge-
transformed to a truly Schrödinger operator [4],

HLB ≡ Γ−1 Hrad Γ = −∆LB + V + V (eff) , (8)

here ∆LB stands for the Laplace-Beltrami operator

∆LB(ρ) =
√

| g | ∂µ
1√
| g |

gµν∂ν ,

(ν, µ = 1, 2, 3) and ∂1 = ∂
∂ρ12

, ∂2 = ∂
∂ρ13

, ∂3 = ∂
∂ρ23

.
The corresponding co-metric in ∆LB(ρ) reads

gµν =


2

µ12
ρ12

(ρ13+ρ12−ρ23)
m1

(ρ23+ρ12−ρ13)
m2

(ρ13+ρ12−ρ23)
m1

2
µ13

ρ13
(ρ13+ρ23−ρ12)

m3

(ρ23+ρ12−ρ13)
m2

(ρ13+ρ23−ρ12)
m3

2
µ23

ρ23

 .

Its determinant

| g | ≡ Detgµν = 32 M2

m2
1m

2
2m

2
3

I S2
△ , (9)

admits factorization and is positive definite. The term
V (eff) denotes an effective potential

V (eff) = 3
8

1
I

+ (d− 2)(d− 4)
32

M I
m1 m2 m3 S2

△
,

which depends on the two variables I and S2
△ alone.

Thus, the underlying geometry of the system emerges.
The classical analogue of the quantum Hamilto-

nian operator (8) describes an effective non-relativistic
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Figure 1. 3-body chain of harmonic oscillators.

classical particle in a three-dimensional curved space.
Explicitly, the Hamiltonian function takes the form

H(classical)
LB = gµν Πµ Πν + V , (10)

where Πµ , µ = 12, 23, 13 are the associated canon-
ical conjugate momenta to the ρ-coordinates. The
Hamilton-Jacobi equation, at vanishing potential
V = 0 (free motion), is clearly integrable. However,
a complete separation of variables is absent in the
ρ-representation. The Poisson bracket between the ki-
netic energy T = gµν Πµ Πν and the linear function
in momentum variables

L
(c)
1 = (ρ13−ρ23)Π12+(ρ23−ρ12)Π13+(ρ12−ρ13)Π23 ,

is zero.

4. Three body harmonic oscillator
system

In the spectral problem with Hamiltonian (3) we take
the harmonic potential

V (HO)(ρ) = 2ω2
[
ν12 ρ12 + ν13 ρ13 + ν23 ρ23

]
, (11)

ω > 0 is frequency and ν12, ν13, ν23 > 0 are con-
stants with dimension of mass. This problem can
be solved exactly [4]. In particular, in ρ-space the
reduced operator (3) possesses multivariate polyno-
mial eigenfunctions, see below. We call the above
potential V (HO)(ρ) the 3-body oscillator system. We
mention that in the case d = 1 (3 particles on a line),
the corresponding spectral problem was studied in
the paper [7]. In the current report, we analyze the
d−dimensional case with d > 1.

In r-variables, ρ = r2, the potential (11) can be
interpreted as a three-dimensional (an)isotropic one-
body oscillator. It is displayed in Figure 1. The
configuration space is a subspace of the cube R3

+(ρ)
in E3 ρ-space. The ρ-variables must obey the “tri-
angle condition” S2

△ ⩾ 0, namely the area of the
triangle formed by the position vectors of the bodies
is always positive.

4.1. Solution for the ground state
In the harmonic potential (11), the ground state eigen-
function reads

Ψ(HO)
0 = e−ω (a1 µ12 ρ12 + a2 µ13 ρ13 + a3 µ23 ρ23) , (12)

where the parameters a1, a2, a3 ≥ 0 are introduced
for convenience. They define the spring constants, see
below. The associated ground state energy

E0 = ω d (a1 + a2 + a3) , (13)

is mass-independent. There exists the following alge-
braic relations

ν12 = a2
1 µ12 + a1 a2

µ12 µ13

m1
+ a1 a3

µ12 µ23

m2

− a2 a3
µ13 µ23

m3
,

ν13 = a2
2 µ13 + a1 a2

µ12 µ13

m1
+ a2 a3

µ13 µ23

m3

− a1 a3
µ12 µ23

m2
,

ν23 = a2
3 µ23 + a1 a3

µ12 µ23

m2
+ a2 a3

µ13 µ23

m3

− a1 a2
µ12 µ13

m1
.

5. Lie algebraic structure
Using the previous function Ψ(HO)

0 (12) as a gauge
factor, the transformed Hamiltonian Hrad (3)

h(algebraic) ≡
(
Ψ(HO)

0
)−1 [−∆rad + V − E0] Ψ(HO)

0
(14)

is an algebraic operator, i.e. the coefficient are poly-
nomials in the ρ-variables. The E0 is taken from
(13).

In addition, this algebraic operator (14) is of Lie-
algebraic nature. It admits a representation in terms
of the generators

J −
i = ∂

∂yi
,

J 0
ij = yi

∂

∂yj
,

J 0(N) =
3∑

i=1
yi

∂

∂yi
−N ,

J +
i (N) = yi J 0(N) = yi

 3∑
j=1

yj
∂

∂yj
−N

 ,

(i, j = 1, 2, 3) of the algebra sℓ(4,R), see [8, 9] here N
is a constant. The notation

y1 = ρ12 , y2 = ρ13 , y3 = ρ23 ,

was employed for simplicity. If N is a non-negative
integer, a finite-dimensional representation space takes
place,

VN = ⟨yn1
1 yn2

2 yn3
3 | 0 ≤ n1 + n2 + n3 ≤ N⟩ . (15)
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6. Relation with the Jacobi
oscillator

Now, we can indicate an emergent relation between
the harmonic potential (11) and the Jacobi oscillator
system

H(Jacobi) ≡
2∑

i=1

[
− ∂2

∂zi∂zi
+ 4 Λi ω

2 zi · zi

]
, (16)

where ω > 0, Λ1, Λ2 ≥ 0, and

z1 =
√

m1 m2

m1 +m2
(r1 − r2)

z2 =

√
(m1 +m2)m3

m1 +m2 +m3

(
r3 − m1 r1 +m2 r2

m1 +m2

)
are standard Jacobi variables, see e.g. [10]. This
Hamiltonian describes two decoupled harmonic os-
cillators in flat space, see [6]. Consequently, it is an
exactly-solvable problem. The complete spectra and
eigenfunctions can be calculated by pure algebraic
means.

The solutions of the Jacobi oscillator that solely
depend on the Jacoby distances zi = |zi| are governed
by the operator,

H(Jacobi)
rad =

2∑
i=1

[
− ∂2

∂zi∂zi
− (d− 1)

zi

∂

∂zi

]
+ 4 Λ1 ω

2 z2
1 + 4 Λ2 ω

2 z2
2 .

(17)

In this case, the associated hidden algebra is given
by sl

⊗ (2)
2 which acts on the two-dimensional space

(z1, z2).
In particular, the eigenfunctions of H(Jacobi) (16)

can be employed to construct approximate solutions
for the n-body problem, for this discussion see [10].

Assuming any of the two conditions
m2

m3
= ν12

ν13
; m1

m2
= ν13

ν23
,

in the harmonic oscillator potential V (HO) (11), we
obtain

U
(HO)
J ≡ 4 Λ1 ω

2 z2
1 + 4 Λ2 ω

2 z2
2

= 2ω2
[
ν12 ρ12 + ν13 ρ13 + ν23 ρ23

]
= V (HO)

(18)

with
Λ1 = Λ2 = m1 +m2 +m3

2m1 m3
ν13 ,

hence, in this case the three-body oscillator poten-
tial coincides with the two-body Jacobi oscillator
potential. In fact, imposing the singly condition
m2 ν13 = m3 ν12 the equality (18) is still valid but
Λ1 ̸= Λ2 and the system is not maximally superinte-
grable any more.

6.1. Identical particles: hyperradious
A remarkable simplification occurs in the case of three
identical particles with the same common spring con-
stant, namely

m1 = m2 = m3 = 1 , a1 = a2 = a3 ≡ a .
(19)

Thus, the potential (11) reduces to

V (HO) = 3
2 a

2 ω2 (ρ12 + ρ13 + ρ23)

= 3
2 a

2 ω2 τ1 .

Consequently, the ground state solutions (12) and (13)
read

Ψ(3a)
0 = e− ω

2 a ( ρ12 + ρ13 + ρ23 )

= e− ω
2 a τ1 ,

(20)

E0 = 3ω d a , (21)
respectively. Moreover, from (6) it follows that in this
case there exists an infinite family of eigenfunctions

ΨN (τ1) = e− 1
2 a ω τ1 L

(d−1)
N (aω τ1) ,

with energy

EN = 3 aω ( d + 2N ) ,

N = 0, 1, 2, 3, . . ., that solely depend on the variable
τ1, the so called hyperradious, here L(d−1)

N (x) denotes
the generalized Laguerre polynomial. These solutions
are associated with a hidden sℓ(2,R) Lie-algebra.

6.2. Arbitrary masses: moment of inertia
A generalization of the results presented in Section 6.1
can be derived from the decomposition of ∆rad (4)

∆rad = ∆I + ∆̃ , (22)

where ∆I = ∆I(I) is an algebraic operator for arbi-
trary d ≥ 1. It depends on the moment of inertial I
only. Explicitly, we have

∆I = 2 I ∂2
I,I + 2 d ∂I . (23)

The operator ∆̃ = ∆̃(I, q1, q2) depends on I and
two more (arbitrary) variables q1, q2 for which the
coordinate transformation {ρij} → {I, q1, q2} is in-
vertible (not singular). Since such an operator ∆̃
annihilates any function F = F (I), i.e. ∆̃F = 0,
the splitting (22) indicates that for any potential of
the form

V = V (I) , (24)
the eigenvalue problem for the operator Hrad =
−∆rad + V is further reduced to a one-dimensional
spectral problem, namely

[ −∆I + V (I) ]ψ = E ψ , (25)

which can be called the I−representation.
In the case of equal masses m1 = m2 = m3 the co-

ordinate I is proportional to the hyperspherical radius
(hyperradious). Also, HI (25) is gauge-equivalent to
a one-dimensional the Schrödinger operator.
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Figure 2. Classical generalized three-body harmonic
oscillator system: average Lyapunov exponent in the
space of parameters (H, m1). The values m2 = m3 =
1, ω = 1, ν12 = ν13 = ν23 = 1 and R12 = R13 = R23 =
1 were used.

7. Generalized three body
harmonic oscillator system

Now, let us consider the following potential

V (R) = 2 ω2
[

ν12 (√ρ12 − R12)2 + ν13 (√ρ13 − R13)2

+ ν23 (√ρ23 − R23)2
]

,

(26)
where R12, R13, R23 ⩾ 0 denote the rest lengths

of the system. At R12 = R13 = R23 = 0 we re-
cover the exactly solvable 3-body oscillator system,
V (R) → V (HO). The relevance of V (R) comes from
the fact that any arbitrary potential V = V (rij) can
be approximated, near its equilibrium points, by this
generalized 3-body harmonic potential.

However, the existence of non-trivial exact solu-
tions is far from being evident. Even for the most
symmetric case of equal masses and equal spring con-
stants, we were not able to find a hidden Lie algebra
in the corresponding spectral problem (3). Moreover,
at the classical level such a system is chaotic. This
can be easily seen by computing the average Lya-
punov exponent in the space of parameters (H, m1),
see Figure 2, where H is the value of the classical
Hamiltonian (energy) with potential V (R) (26).

Also, for one-dimensional systems it is said (see [11])
that a classical orbit is PT -symmetric if the orbit re-
mains unchanged upon replacing x(t) by −x∗(−t).
There are several classes of complex PT -symmetric
non-Hermitian quantum-mechanical Hamiltonians
whose eigenvalues are real and with unitary time evo-
lution [12, 13]. However, while the corresponding
quantum three-body oscillator Hamiltonian is Her-
mitian, it can still have interesting complex classical
trajectories.

7.1. Identical particles
In order to simplify the problem one can consider
the simplest case of equal masses and equal spring
constants (19) with ω = 1. Also, we will assume equal
rest lengths

R12 = R13 = R23 = R > 0 .

Ε0PT
[0.5, R]

Ε0PT
[1, R]

Ε0PT
[2, R]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
R

5

10

15

20
Ε0[ a, R]

Figure 3. Ground state energy of the generalized 3-
body harmonic oscillator vs R for different values of the
parameter a which defines the spring constant, see text.
The solid lines correspond to the variational result
whilst the dashed ones refer to the value calculated by
perturbation theory up to first order.

In this case, approximate solutions for the Schrödinger
equation can be obtained using perturbation theory
in powers of R.

7.1.1. Ground state
Taking the R−dependent terms in (26) as a small
perturbation, the first correction E1,0 to the ground
state energy takes the form

E1,0 = 3 a
2π ( 3π aR2 − 4R

√
6π a ) .

The domain of validity of this perturbative approach
is estimated by means of the variational method. The
use of the simple trial function

Ψtrial
0 = e− ω

2 a α ( ρ12 + ρ13 + ρ23 )

c.f. (20), where α is a variational parameter to be fixed
by the procedure of minimization, leads to the results
shown in Figure 3.

7.1.2. First excited state
It is important to mention that for the 3-body har-
monic oscillator (R = 0) the exact first excited state
possesses a degeneracy equal to 3. For R > 0, the
perturbation theory partially breaks this degeneracy.
The energy of the approximate first excited state cal-
culated by perturbation theory, up to first order, is
displayed in Figure 4.

8. Conclusions
In this report for a 3-body harmonic oscillator in Eu-
clidean space Rd we consider the Schrödinger operator
in ρ-variables ρij = r2

ij ,

HLB = −∆LB(ρij) +V (HO)(ρij) +V (eff)(ρij) , (27)

where the kinetic energy corresponds to a 3-
dimensional particle moving in a non-flat space. The
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E1[0.5, R]

E1[1, R]

E1[2, R]

0.2 0.4 0.6 0.8 1.0
R

5

10

15

20

25

30

E1[a, R]

Figure 4. First excited state of the generalized 3-
body harmonic oscillator vs R.

Schrödinger operator (27) governs the S-states solu-
tions of the original three-body system (1), in par-
ticular, it includes the ground state. It implies that
the solutions of corresponding eigenvalue problem
depend solely on three coordinates, contrary to the
(3d)-dimensional Schrödinger equation. The reduced
Hamiltonian HLB is an Hermitian operator, where the
variational method can be more easily implemented
(the energy functional is a 3-dimensional integral only).
The classical analogue of (27) was presented as well.
The operator (27) up to a gauge rotation is equivalent
to an algebraic operator with hidden algebra sℓ(4,R),
thus, becoming a Lie-algebraic operator.

In the case of identical masses and equal frequencies
the aforementioned model was generalized to a 3-body
harmonic system with a non-zero rest length R > 0.
In this case, no hidden algebra nor exact solutions
seem to occur. An indication of the lost of integra-
bility is the fact that the classical counterpart of this
model exhibits chaotic motion. Using perturbation
theory complemented by the variational method it
was shown that the ground state energy vs R develops
a global minimum, hence, defining a configuration of
equilibrium.
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