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Abstract. This work reports the construction of constants of motion for a family of time-dependent
mass oscillators, achieved by implementing the formalism of form-preserving point transformations.
The latter allows obtaining a spectral problem for each constant of motion, one of which leads to
a non-orthogonal set of eigensolutions that are, in turn, coherent states. That is, eigensolutions
whose wavepacket follows a classical trajectory and saturate, in this case, the Schrödinger-Robertson
uncertainty relationship. Results obtained in this form are relatively general, and some particular
examples are considered to illustrate the results further. Notably, a regularized Caldirola-Kanai mass
term is introduced in an attempt to amend some of the unusual features found in the conventional
Caldirola-Kanai case.
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1. Introduction
The search for exact solutions for time-dependent
(nonstationary) quantum models is challenging task as
compared to the stationary (time-independent) coun-
terpart. In the stationary case, the dynamical law
(Schrödinger equation) reduces to an eigenvalue equa-
tion associated with the energy observable, the Hamil-
tonian, for which several methods can be implemented
to obtain exact solutions. Particularly, new exactly
solvable models can be constructed from previously
known ones through Darboux transformations [1] (also
known as SUSY-QM). In the nonstationary case, it
is still possible to recover an eigenvalue problem for
the Hamiltonian if one restricts to the adiabatic ap-
proximation [2, 3]. However, in general, the latter is
not feasible, and other workarounds should be imple-
mented. Despite all these challenges, time-dependent
phenomena find exciting applications in physical sys-
tems such as electromagnetic traps of charged particles
and plasma physics [4–8].

The parametric oscillator is perhaps the most well-
known exactly solvable nonstationary model in quan-
tum mechanics. A straightforward method to solve
such a problem was introduced by Lews and Riesen-
feld [9] by noticing that the appropriate constant of
motion (quantum invariant) admits a nonstationary
eigenvalue equation with time-dependent solutions
and constant eigenvalues. In this form, nonstationary
models can be addressed similarly to their station-
ary counterparts. This paved the way to solve other
time-dependent problems [10–14].

Recently, the Darboux transformation has been
adapted into the quantum invariant scheme to con-
struct new time-dependent Hamiltonians, together
with the corresponding quantum invariant and the
set of solutions [15–17]. Alternatively, other meth-

ods exist to build new time-dependent models, such
as the modified Darboux transfomation introduced
by Bagrov et al. [18], which relies on a differential
operator that intertwines a known Schrödinger equa-
tion with an unknown one. This has led to new re-
sults in the nonstationary Hermitian regime [19–21].
A non-Hermitian PT-symmetric extension has been
discussed in [22], and some further models were re-
ported in [23, 24].

On the other hand, the point transformations for-
malism [25] has been proved useful to construct and
solve time-dependent oscillators. This was achieved by
implementing a geometrical deformation that trans-
forms the stationary oscillator Schrödinger equa-
tion into one with time-dependent frequency and
mass [26, 27]. This allows obtaining further infor-
mation such as the constants of motion, which are
preserved throughout the point transformation [25],
leading to a straightforward way to get such constants
of motion without imposing any ansatz. A further
extension for non-Hermitian systems was introduced
in [28], whereas a non-Hermitian extension of the
generalized Caldirola-Kanai oscillator was discussed
in [29].

In this work, the point transformation formalism
is exploited to construct and study the dynamics of
semiclassical states associated with time-dependent
mass oscillators. This is achieved by using the afore-
mentioned preservation of constants of motion and
identifying their corresponding spectral problem. No-
tably, it is shown that one constant of motion leads
to an orthogonal set of solutions, whereas a differ-
ent one leads to nonorthogonal solutions that behave
like semiclassical states. That is, Gaussian wavepack-
ets whose maximum point follows the corresponding
classical trajectory and minimize, in this case, the
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Schrödinger-Robertson uncertainty principle. Two
particular examples are considered to illustrate the
usefulness of the approach further.

2. Materials and methods
Throughout this manuscript, the time-dependent mass
m(t) and frequency Ω2(t) oscillator subjected to an
external driving force F (t) is considered. Such a model
is characterized by the time-dependent Hamiltonian

Ĥck(t) = p̂2

2m(t) + m(t)Ω2(t)
2 x̂2 + F (t)x̂, (1)

with x̂ and p̂x the canonical position and momentum
operators, respectively, with [x̂, p̂x] = iℏI. Henceforth,
the identity operator I is omitted each time it mul-
tiplies a constant or a function. The corresponding
Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m(t)
∂2ψ

∂x2 +m(t)Ω2(t)x2

2 ψ+F (t)xψ, (2)

is recovered by using the coordinate representation
px ≡ −iℏ ∂

∂x and x̂ ≡ x ∈ R.
The solutions of Eq. (2) have been discussed by

several authors, see [27, 30–32]. Here, a brief sum-
mary of the point transformation approach discussed
in [26, 27] is provided. This eases the discussion of
semiclassical states and dynamics to be presented later
in Section 3.

2.1. Point transformations
In general, the method of form-preserving point trans-
formations relies on a geometrical deformation that
maps an initial differential equation with variable
coefficients into another one of the same form but
with different coefficients. To illustrate this, be the
stationary oscillator Hamiltonian

Ĥosc =
p̂2

y

2m0
+ m0w

2
0 ŷ

2

2 , [ŷ, p̂y] = iℏ, (3)

with ŷ and p̂y another couple of canonical position
and momentum observables, respectively. The corre-
sponding Schrödinger equation

iℏ
∂Ψ
∂τ

= − ℏ2

2m0

∂2Ψ
∂y2 + m0w

2
0y

2

2 Ψ, (4)

admits the well-known solutions [2]

Ψn(y, τ) = e−iw0(n+ 1
2 )τ Φn(y), (5)

where

Φn(y) =
√

1
2nn!

√
m0w0

πℏ
e− m0w0

2ℏ y2
Hn

(√
m0w0

ℏ
y
)
,

(6)
with Hn(z) the Hermite polynomials [33], fulfills the
stationary eigenvalue problem

HoscΦn(y) = E(osc)
n Φn(y), E(osc)

n = ℏw0

(
n+ 1

2

)
, (7)

with Hosc the coordinate representation of Ĥosc,
i.e., a second-order differential operator that admits
a Sturm-Liouville problem.

To implement the point transformation, one im-
poses a set of relationships between the coordinates,
time paramaters, and solutions of both systems in
consideration [25]. In general one has

y(x, t), τ(x, t), Ψ(y(x, t), τ(x, t)) ≡ G(x, t;ψ), (8)

where G(x, t;ψ) is a reparametrization of Ψ as an
explicit function of x, t, and ψ.

In the case under consideration, some further con-
ditions are required to preserve the linearity and the
Hermiticity of Ĥosc and Ĥck(t). A detailed discussion
on the matter can be found in [27]. Here, the final
form of the point transformation is used, leading to

y(x, t) = µ(t)x+ γ(t)
σ(t) , τ(t) =

∫ t dt′

σ2(t′) , (9)

and

Ψ(y(x, t), τ(t)) ≡ G(x, t;ψ) = A(x, t)ψ(x, t), (10)

with m(t) = µ2(t), together with σ(t) and γ(t) some
real-valued functions to be determined.

By substituting (9) into the Schrödinger equa-
tion (4), and after some calculations, one arrives to
a new partial differential equation for ψ(x, t) that
takes the exact form in (2). The latter allows obtain-
ing

A(x, t) =
√
σ

µ
exp A(x, t),

A(x, t) :=
(
i
m0w0

ℏ
µ

σ

(
Wµ

2 x2 +Wγx

)
+ iη

)
,

(11)

where A(x, t) is a local time-dependent complex-phase
and [27]

η(t) := m0

2ℏ
γ(t)Wγ(t)
σ(t) − 1

2ℏ

∫ t

dt′
F (t′)
µ(t′) ,

Wµ(t) = σ(t)µ̇(t) − σ̇(t)µ(t),
Wγ(t) = σ(t)γ̇(t) − σ̇(t)γ(t),

(12)

with ḟ(t) ≡ df(t)
dt a short-hand notation for the time

derivative. In the latter, σ(t) and γ(t) fulfill the
nonlinear Ermakov equation

σ̈(t) +
(

Ω2(t) − µ̈(t)
µ(t)

)
σ(t) = w2

0
σ3(t) , (13)

and non-homogeneous equation

γ̈(t) +
(

Ω2(t) − µ̈(t)
µ(t)

)
γ(t) = F (t)

m0µ(t) , (14)

The solutions of the Ermakov equation are well-
known [34–36] and computed from two linearly inde-
pendent solutions of the associated linear equation

q̈j(t) +
(

Ω2(t) − µ̈(t)
µ(t)

)
qj(t) = 0, j = 1, 2, (15)

212



vol. 62 no. 1/2022 TD mass oscillators: constants of motion and semiclasical states

through the nonlinear combination

σ(t) =
[
aq2

1(t) + bq1(t)q2(t) + cq2
2(t)

] 1
2 , (16)

with b2 −4ac = −4 w2
0

W2
0

and W0 = Wr(q1(t), q2(t)) ̸= 0
the Wronskian of two linearly independent solutions
of (15), which is in general a time-independent com-
plex constant. The previous constraint on a, b, and
c guarantees that σ(t) is different from zero [26] for
t ∈ R.

In this form, one obtains a set of solutions
{ψn(x, t)}∞

n=0 to the Schrödinger equation (2), where

ψn(x, t) =

√
µ(t)
σ(t) [A(x, t)]−1e−iw0(n+ 1

2 )τ(t)

× e
− m0w0

2ℏ

(
µ(t)x+γ(t)

σ(t)

)2

Hn

(√
m0w0

ℏ
µ(t)x+ γ(t)

σ(t)

)
.

(17)

From (10)-(11) it follows that

(ψm, ψn) :=
∫
R
dxψ∗

m(x, t)ψn(x, t)

=
∫
R
dyΨ∗

m(y, τ)Ψn(y, τ) = δn,m, (18)

with z∗ the complex conjugate of z. That is, the inner
product is preserved and thus the set {ψn(x, t)}∞

n=0
is orthonormal in L2(R, dx).

The expressions presented so far are general,
and specific result may be obtained once the time-
dependent mass and frequency terms are specified.
This is discussed in the following sections.

Before concluding, an explicit expression for τ(t)
can be determined in terms of the two linearly inde-
pendent solutions q1(t) and q2(t) as well. One gets

τ(t) = w−1
0 arctan

[
W0

2w0

(
b+ 2cq2(t)

q1(t)

)]
. (19)

3. Results: Constants of motion
and semiclassical states

Additional information can be extracted from the sta-
tionary oscillator into the time-dependent model. Par-
ticularly, point transformations preserve first-integrals
of the initial equation [25]. In the context of the
Schrödinger equation, such first-integrals correspond
to constants of motion, also known as quantum in-
variant, associated with the physical models under
consideration. From the stationary oscillator, it is
straightforward to realize that the Hamiltonian Ĥosc
is a constant of motion that characterize the energy
observable. In the time-dependent case, Ĥck(t) is no
longer a constant of motion, as dĤck(t)

dt ≠ 0. This
implies that an eigenvalue problem associated with
Ĥck is not possible1.

1One can still link an eigenvalue problem with Ĥck(t) under
the adiabatic approximation [3]. This work focuses on exact
solutions and such an approach will be disregarded.

On the other hand, an orthonormal set of solutions
{ψn(x, t)}∞

n=0 has been already identified, and it is still
unclear the eigenvalue problem that such a set solves.
This problem was addressed by Lewis-Riesenfeld [9]
while solving the dynamics of the parametric oscillator.
They notice that even in the time-dependent regime,
there may be a constant of motion Î0(t) that admits
a spectral problem

Î0(t)ϕ(x, t) = λϕ(x, t), (20)

where the eigenvalues λ are time-independent. The
existence and uniqueness of such a quantum invariant
is not necessarily ensured. Still, for the parametric
oscillator, Lewis and Riesenfeld managed to find the
quantum invariant and solve the related spectral prob-
lem.

Here, some quantum invariants associated with Ĥck
can be found through point transformations. First,
notice that the point transformation was implemented
in the Schrödinger equation to get the time-dependent
counterpart. The same transformation can be applied
to a constant of motion of the harmonic oscillator
to get the corresponding one on the time-dependent
model. Particularly, by consider the eigenvalue prob-
lem (7), and after some calculations, one gets a first
quantum invariant of the form

Î1(t) := σ2(t)
2m0µ2(t) p̂

2
x + m0

2

(
W 2

µ(t) + w2
0
µ2(t)
σ2(t)

)
x̂2

+ σWµ(t)
2µ(t) (x̂p̂x + p̂xx̂) + σWγ(t)

µ(t) p̂x

+m0

(
Wγ(t)Wµ(t) + w2

0
µ(t)γ(t)
σ2(t)

)
x̂

+
(
m0

2 W 2
γ (t) + γ2(t)

σ2(t)

)
. (21)

It is straightforward to show that Î1(t) is indeed
a quantum invariant,

i

ℏ
[Ĥck, Î1(t)] + ∂Î1(t)

∂t
= 0. (22)

Moreover, I1(t), the coordinate representation of
Î1(t), defines a Sturm-Liouville problem with time-
dependent coefficients,

I1(t)ψn(x, t) = ℏw0

(
n+ 1

2

)
ψn(x, t), (23)

which justifies the existence of the orthogonal set of
solutions found in Section 2. Note that orthogonal-
ity has been alternatively proved in (18) using the
preservation of the inner product.

Remarkably, there are still more quantum invari-
ants to be exploited. To see this, let us consider the
operators

â =
√
m0w0

2ℏ ŷ + i
p̂y√

2m0ℏw0
,

â† =
√
m0w0

2ℏ ŷ − i
p̂y√

2m0ℏw0
,

(24)

213



Kevin Zelaya Acta Polytechnica

which factorize the stationary oscillator Hamiltonian
as Ĥosc = ℏw0(â†â+ 1

2 ) and fulfill the commutation
relationship [â, â†] = 1. Although â and â† are not
constants of motion of Ĥosc, one can introduce a new
pair of operators

â := eiw0τ â, â† := e−iw0τ â†, (25)

where the straightforward calculations show that
i
ℏ [Ĥosc, â] + ∂â

∂τ = 0, and similarly for â†. That is,
a and a† are quantum invariants of Ĥosc.

The latter can now be mapped into the time-
dependent model, leading straightforwardly to new
quantum invariants of Ĥck(t) of the form

Îa(t) = eiw0τ(t)
[

i√
2m0ℏw0

σ(t)
µ(t) p̂x

+
(√

m0w0

2ℏ
µ(t)
σ(t) + i

√
m0

2ℏw0
Wµ(t)

)
x̂

+
(√

m0w0

2ℏ
γ(t)
σ(t) + i

√
m0

2ℏw0
Wγ(t)

)]
, (26)

and its adjoint Î†
a(t).

Before proceeding, it is worth to recalling that two
arbitrary quantum invariants Î(t) and ˆ̃

I(t) of a given
Hamiltonian Ĥ(t) can be used to construct further
invariants. This follows from the fact that the linear
combination ℓÎ(t) + ℓ̃

ˆ̃
I(t) and the product ℓÎ(t)ˆ̃I(t)

of quantum invariants are also quantum invariants
of the same Hamiltonian Ĥ(t), for ℓ, ℓ̃, and ℓ time-
independent coefficients.

In this form, Îa(t) and Î†
a(t) generate Î1(t) through

Î1(t) = ℏw0

(
Î†
a(t)Îa(t) + 1

2

)
, (27)

which is analogous to the factorization of the station-
ary oscillator. Similarly, the commutation relationship
[â, â†] = 1 of the stationary oscillator is preserved.
One thus get [Îa(t), Î†

a(t)] = 1 together with

[Î1(t), Îa(t)] = −ℏw0Îa(t), [Î1(t), Î†
a(t)] = ℏw0Î

†
a(t), (28)

which means that Îa(t) and Î†
a(t) are annihilation and

creation operators, respectively, for the eigensolutions
of Î1(t). The latter leads to

Îa(t)ψn+1(x, t) =
√
ℏw0(n+ 1)ψn(x, t),

Î†
a(t)ψn(x, t) =

√
ℏw0(n+ 1)ψn+1(x, t),

(29)

for n = 0, . . . .
On the other hand, the orthonormal set

{ψn(x, t)}∞
n=0 can be used as a basis to expand any

arbitrary solution ψ(x, t) of (2) through

ψ(x, t) =
∞∑

n=0

Cnψn(x, t), Cn := (ψn(x, t), ψ(x, t)). (30)

Now, from the above results, one may investigate
the spectral problem related to the remaining quan-
tum invariants Îa(t) and Î†

a(t). By considering the

annihilation operator Îa(t), one obtains the eigenvalue
problem

Îa(t)ξα(x, t) = αξα(x, t), (31)
where the eigensolution ξα(x, t) can be expanded as
the linear combination

ξα(x, t) =
∞∑

n=0
C̃n(α)ψn(x, t), α ∈ C. (32)

This corresponds to the construction of coherent states
using the Barut-Girardelo approach [37]. The com-
plex coefficients C̃n(α) are determined by using the
action of the ladder operators (29) and exploiting
the orthonormality of the set {ψn(x, t)}∞

n=0. After
substituting the linear combination ξα(x, t) into the
corresponding eigenvalue problem in (31), one obtains
the one-parameter normalized eigensolutions

ξα(x, t) = exp
(

− |α|2

2ℏw0

) ∞∑
n=0

(
α√
ℏw0

)n
ψn(x, t)√

n!
. (33)

Henceforth, the latter are called time-dependent co-
herent states or semiclassical states interchangeably.

Similar to Glauber coherent states [38], the eigenso-
lutions of the annihilation operator Îa are not orthog-
onal among themselves. This follows from the overlap
between two solutions with different eigenvalues, let
say α and β, leading to

|(ξβ , ξα)|2 = exp
(

−|α|2 + |β|2 − 2 Re(α∗β)
ℏw0

)
, (34)

which is different from zero for every α, β ∈ C, with
the inner product defined in (18). Interestingly, the
eigensolution ξα(x, t) can be brought into an alterna-
tive and handy expression by using the explicit form of
ψn(x, t) given in (17), together with the well-known
summation rules for the Hermite polynomials. By
doing so one gets

ξα(x, t) ≡
√
µ(t)
σ(t)

√
m0w0

πℏ
[A(x, t)]−1e−i

w0τ(t)
2

× exp

[
i

√
2m0w0

ℏ

(
µ(t)x+ γ(t)

σ(t)

)
Im α̃(t)

]

×exp

[
−m0w0

2ℏ

(
µ(t)x+ γ(t)

σ(t) −
√

2ℏ
m0w0

Re α̃(t)

)2]
,

(35)

with α̃(t) = αe−iw0τ(t). Thus, ξα(x, t) is a normal-
ized Gaussian wavepacket with time-dependent width.
The complex constants α plays the role of the initial
conditions of the wavepacket at a given time t0. See
the discussion in the following section.

Despite the lack of orthogonality in the elements of
the set {ξα(x, t)}α∈C, they can be still used as a non-
orthogonal basis so that any arbitrary solution of (2)
can be constructed through the appropriate linear
superposition. That is, a given solution ψ(x, t) of (2)
expands as

ψ(x, t) =
∫
C

d2α

πℏ
C(α)ξα(x, t), (36)
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where C(α) = (ξα(x, t), ψ(x, t)).
So far, the spectral problem related to the quantum

invariants Î1(t) and Îa(t) has led to a discrete and
a continuous representation, respectively, in which any
solution of (2) can be expanded.

Although the eigenvalue problem related to the
quantum invariant Î†

a(t) can be established, it leads
to non-finite norm solutions and is thus discarded.

3.1. Semiclassical dynamics
With the time-dependent coherent states already con-
structed, one can now study the evolution on time of
such state and its relation with physical observables
such as position and momentum x̂ and p̂x, respec-
tively. To this end, note that the quantum invariants
obtained through point transformations preserve the
commutation relation (28) of the corresponding op-
erators of the stationary oscillator. That is, the set
{Îa(t), Î†

a(t), Î†
a(t)Îa(t)} fulfill the Weyl-Heisenberg al-

gebra [39]. This allows the construction of a unitary
displacement operator of the form [39]

D(α; t) = eαÎ†
a(t)−α∗Îa(t) = e− |α|

2 eαÎ†
ae−α∗Îa ,

α ∈ C,
(37)

so that

D†(α, t)Îa(t)D(α, t) = Îa(t) + α,

D†(α; t)Î†
a(t)D(α; t) = Î†

a(t) + α∗.
(38)

It follows that the action of the first relationship
acted on ψ0(x, t) leads to Îa(t)D(α, t)ψ0(x, t) =
αD(α, t)ψ0(x, t), from which one recovers the eigen-
value equation previously analyzed in (31) by identi-
fying ξα(x, t) = D(α, t)ψ0(x, t). This corresponds to
the coherent states construction of Perelomov [39].

So far, two different and equivalent ways to con-
struct the solutions ξα(x, t) have been identified,
a property akin to Glauber coherent states. To further
explore the time-dependent coherent states, one can
take the unitary transformations (38) and combine
them with the relationship between the ladder opera-
tors and the physical position x̂ and momentum p̂x

observables presented in (26). After some calculations
one obtains

⟨x̂⟩α(t) =
√

2ℏ
m0w0

σ(t)
µ(t)r cos (w0τ(t) − θ) − γ(t)

µ(t) , (39)

where α = reiθ. By using (19) and some elemen-
tary trigonometric identities, one recovers an explicit
expression in terms of q1(t) and q2(t) as

⟨x̂⟩α(t) = −γ(t)
µ(t)

+
√

2ℏw0

m0c

r

W0

[(
cos θ + W0

2w0
c sin θ

)
q1(t)
µ(t)

+ W0

w0
c sin θ q2(t)

µ(t)

]
. (40)

Similarly, the calculations for the momentum observ-
able leads to

⟨p̂x⟩α(t) = −m0
µ(t)
σ(t) (Wµ(t)⟨x̂⟩α(t) +Wγ(t))

−
√

2m0ℏw0
µ(t)
σ(t)r sin (w0τ(t) − θ)). (41)

In the latter, ⟨Ô⟩α(t) ≡ (ξα(x, t), Ôξα(x, t)) stands
for the average value of the observable Ô computed
through the time-dependent coherent state ξα(x, t).

The expectation value of the momentum (41) can
be further simplified so that it simply rewrites as

⟨p̂x⟩α(t) = m(t) d
dt

⟨x̂⟩α(t), m(t) = m0µ
2(t), (42)

which is an analogous relation to that obtained from
the canonical equations of motion of the corresponding
classical Hamiltonian. This is also consequence of the
quadratic nature of the time-dependent Hamiltonian
Ĥck(t) and the Ehrenfest theorem.

From the expectation values obtained in (39)-(42),
a relationship between the complex parameter α =
reiθ and the expectation values at a given initial time
t = t0 can be established. The straightforward calcu-
lations lead to(

Re α̃t0

Im α̃t0

)
=
(√m0w0

2ℏ
γt0
σt0√

m0
2ℏw0

Wγt0

)

+
(√m0w0

2ℏ
µt0
σt0

0√
m0

2ℏw0
Wµt0

1√
2m0ℏw0

σt0
µt0

)(
⟨x̂⟩t0

⟨p̂x⟩t0

)
, (43)

with α̃t0 = αe−iw0τt0 = rei(θ−w0τt0 ), τt0 = τ(t0),
σt0 = σ(t0), γt0 = γ(t0), Wγt0

= Wγ(t0), Wµt0
=

Wµ(t0), ⟨x̂⟩t0 = ⟨x̂⟩α(t0), and ⟨p̂x⟩t0 = ⟨p̂x⟩α(t0).
On the other hand, one can write the probability

density associated with the time-dependent coherent
state in terms of ⟨x̂⟩α(t) through

Pα(x, t) := |ξα(x, t)|2 =
√
m0w0

πℏ
µ(t)
σ(t)

× exp
[
−m0w0

2ℏ
µ2(t)
σ2(t) (x− ⟨x̂⟩α(t))2

]
, (44)

which is a Gaussian wavepacket whose maximum
follows the classical trajectory. That is, the time-
dependent coherent state is considered as a semiclas-
sical state.

Before concluding this section, it is worth explor-
ing the corresponding uncertainty relations associ-
ated with the canonical observables, which can be
computed by using (26), (31), and (38). After some
calculations one gets

(∆x̂)2
α = ℏ

2m0w0

σ2(t)
µ2(t) ,

(∆p̂x)2
α = m0ℏw0

2
µ2(t)
σ2(t)

(
1 +

σ2(t)W 2
µ(t)

w2
0µ

2(t)

)
,

(45)
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from which the uncertainty relation reduces to

(∆x̂)2
α (∆p̂x)2

α = ℏ2

4

(
1 +

σ2(t)W 2
µ(t)

w2
0µ

2(t)

)
, (46)

where it is clear that, in general, ξα(x, t) does not min-
imize the Heisenberg uncertainty relationship, except
for those times t′ at which Wµ(t′) = 0. The latter
follows from the fact that σ ̸= 0 for t ∈ R. Still, there
are two special cases for which Eq. (46) minimizes at
all times.
• For µ(t) = µ0 and Ω(t) = w1, one can always find

a constant solution σ4(t) = w2
0/w

2
1 so that Wµ = 0.

The uncertainty relationship (46) is minimized, and
the time-dependent Hamiltonian becomes

Ĥck(t) = p̂2
x

2m0µ2
0

+ m0µ
2
0w

2
1

2 x̂2 + F (t)x̂, (47)

which is nothing but a stationary oscillator with an
external time-dependent driving force F (t)2. Thus,
the uncertainty relation gets minimized in the sta-
tionary limit, as expected.

• For Ω2(t) = w2
0µ

−4(t), there is a solution σ(t) =
µ(t) for which Wµ = 0. This leads to a Hamiltonian
of the form

Ĥck(t) =
1

µ2(t)

(
p̂2

x

2m0
+ m0w

2
0

2 x̂2 + µ2(t)F (t)x̂
)
. (48)

Although the solutions ξα(x, t) minimize the Heisen-
berg uncertainty relation only on some restricted cases,
one can still explore the Schrödinger-Robertson in-
equality [40, 41]. This is defined for a pair of observ-
ables Â and B̂ through(

∆Â
)2 (

∆B̂
)2

≥ |⟨[Â, B̂]⟩|2

4 + σ2
A,B , (49)

where σA,B := 1
2 ⟨ÂB̂ + B̂Â⟩ − ⟨Â⟩⟨B̂⟩ stands for the

correlation function.
For the canonical position x̂ and momentum p̂x

observables one gets

σ2
x,px

= ℏ2

4w2
0

σ2(t)W 2
µ(t)

µ2(t) , (50)

when computed through ξα(x, t). Thus, the semiclassi-
cal states ξα(x, t) minimize the Schrödinger-Robertson
relationship for t ∈ R.

4. Discussion: Conventional and
regularized Caldirola-Kanai
oscillators

So far, the most general setup has been addressed
for a time-dependent mass oscillator. Two particular

2The Hamiltonian (47) is essentially stationary, for the term
F (t) can be absorbed through an appropriate reparametrization
of the canonical coordinate.

examples are considered in this section to further illus-
trate the usefulness and behavior of the so-constructed
solutions and coherent states. Henceforth, all calcula-
tions are carried on by working in units of ℏ = 1 to
simplify the ongoing discussion. Throughout the rest
of this manuscript, the following two time-dependent
masses are considered:

µck(t) = e−κt, κ ≥ 0, (51a)
µrck(t) = e−κt + µ0, κ, µ0 ≥ 0. (51b)

The first one corresponds to the well-known
Caldirola-Kanai oscillator [42, 43], which contains
a mass-term that asymptotically approaches to zero.
This is a rather unrealistic scenario in the context of
the Schrödinger equation. Still, one can study the
dynamics on a given time range, let say t ∈ [0, T ],
where T denotes the time spent by the mass to re-
duce its initial value in a factor e−1. In other words,
T = κ−1 is equivalent to the lifetime of a decay-
ing system. One thus may disregard the dynamics
for t > T . To amend such issue, the second mass
term µrck(t) has been introduced, which transits from
µrck(0) = 1 to µck(t → ∞) = µ0. Thus, there is
no need to introduce any artificial truncation on the
time domain. The Hamiltonian associated with this
mass-term will be called regularized Caldirola-Kanai
oscillator. Despite the apparent advantages of the
regularized system, analytic expressions for σ(t) are
significantly more complicated with respect to those
obtained from µck(t). Still, exact result can be ob-
tained. The discussion is thus divided for each case
separately.

4.1. Caldirola-Kanai case
The so-called Caldirola-Kanai system is another well-
known nonstationary problem, characterized by time-
dependent mass decaying exponentially on time. It
was independently introduced by Caldirola [42] and
Kanai [43] in an attempt to describe the quantum
counterpart of a damped oscillator. This model
has been addressed by different means, such using
a Fourier transform to map the map it into a para-
metric oscillator [32], and using the quantum Arnold
transformation [30].

For this particular case, a constant frequency
ω2(t) = w2

1 and a driven force F (t) = A0 cos(νt),
for ν,A0 ∈ R, are considered. This leads to a forced
Caldirola-Kanai oscillator Hamiltonian [10, 44] of the
form

Ĥck(t) = e2κt

2m0
p̂2

x +e−2κtm0w
2
1

2 x̂2 +A0 cos(νt)x̂. (52)

From the results obtained in previous sections,
one gets the solutions to the Ermakov and non-
homogeneous equations as

σ(t) =
(
aq2

1(t) + bq1(t)q2(t) + cq2
2(t)

) 1
2 ,

γ(t) = γ1q1(t) + γ2q2(t) + γp(t),
(53)

216



vol. 62 no. 1/2022 TD mass oscillators: constants of motion and semiclasical states

(a) . Wµ(t) (b).

Figure 1. (A) Wµ(t) = σ(t)µ̇(t) − σ̇(t)µ(t) for the Caldirola-Kanai mass term µck(t). (B) Variances (∆x̂)2
α (solid-

blue), (∆p̂x)2
α (dashed-red), the Schrödinger-Robertson uncertainty minimum (dotted-green), and the Heisenberg

uncertainty minimum (thick-solid-black) associated with the coherent states ξα(x, t) and the mass term µck(t). The
parameters have been fixed as a = c = w0 = 1, w1 = 2, and κ = 0.5.

(a) . n = 0 (b) . n = 1 (c).

Figure 2. Probability density Pn = |ψn(x, t)|2 for n = 0 (A), n = 1 (B), and Pα = |ψn(x, t)|2 (C) associated with
the Caldirola-Kanai mass term µck(t). For simplicity, the external force F (t) and γ(t) have been fixed to zero. The
rest of parameters have been fixed as w0 = a = b = 1, w1 = 2, and κ = 0.5.

respectively, with γ1 and γ2 arbitrary real constants,
b2 − 4ac = −16 w2

0
w2

1−κ2 , and

q1(t) = cos(
√
w2 − κ2 t), q2(t) = sin(

√
w2 − κ2 t),

γp(t) = A0e
−kt (w2

1 − ν2) cos(νt) − 2κν sin(νt)
(w2

1 + ν2)2 − 4ν2(w2
1 − κ2) .

(54)
In the sequel, κ = 0.5 is consider so that the

Caldirola-Kanai oscillator is constrained to the time
interval t ∈ [0, 2]. Further discussions concerning the
dynamics will be restricted to such a time interval.

It is worth recalling that the zeros of Wµ(t) corre-
spond to the times for which the Heisenberg uncer-
tainty relationship saturates. Although the expression
for Wµ(t) is rather simple in this case, determining
the zeros consist of solving a transcendental equation.
Thus, to get further insight, one may analyze Fig-
ure 1a, which depicts the behavior of such a function
for µck(t) (solid-blue). From the latter, one can see
that zeroes do exist indeed, and thus one should expect

points in time for which the Heisenberg inequality sat-
urates. Despite the latter, the Schrödinger-Robertson
inequality saturates at all times.

In Figure 1b, one can see the behavior of the vari-
ances, from which it is clear that the variance in the
position blows up at time pass by, whereas the mo-
mentum variance squeezes indefinitely, approaching
asymptotically to zero. This odd behavior results
from a mass term that quickly decays, approaching
zero but never converging to it. For those reasons,
a truncation on the time interval was previously in-
troduced in the form of a mean lifetime, which in this
case becomes T = κ−1 = 2. In this form, one still has
a realistic behavior for t ∈ (0, 2).

The previous results can be verified by looking at
the probability density associated with the solutions
ψn(x, t) and the coherent state ξα(x, t), which is de-
picted in Figure 2. From those probability densities,
one may see the increase on the position variance
(∆x̂)2

α, for the wavepacket spreads rapidly on time,
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(a) . Wµ(t) (b).

Figure 3. (A) Wµ(t) = σ(t)µ̇(t) − σ̇(t)µ(t) for the regularized Caldirola-Kanai mass term µrck(t). (B) Variances
(∆x̂)2

α (solid-blue), (∆p̂x)2
α (dashed-red), the Schrödinger-Robertson uncertainty minimum (dotted-green), and the

Heisenberg uncertainty minimum (thick-solid-black) associated with the coherent states ξα(x, t) and the mass term
µrck(t). The parameters have been fixed as a = c = w0 = 1, w1 = 2, µ0 = 0.3, and κ = 0.5.

to the point that, for times t > 4 is almost indistin-
guishable. For completeness, the classical trajectory is
depicted as a dashed-black curve in Figure 2c, where
the initial conditions ⟨x̂⟩t0 = 2 and ⟨p̂x⟩t0 = 0 have
been used.

4.2. Regularized Caldirola-Kanai
In this section, the regularized Caldirola-Kanai os-
cillator is introduced so that it amends the diffi-
culties found in the Caldirola-Kanai for t >> T .
This model is characterized by a constant frequency
Ω2(t) = w2

1 and a mass term µrck(t) = µ0e
−κt + µ1,

with w1, µ0, µ1, κ > 0. The mass term will converge at
a constant value (different from zero) and the anoma-
lies found in the conventional Caldirola-Kanai case
will be fixed. The main consequence of the mass reg-
ularization is that the classical equation of motion is
not as trivial as in Section 4. In turn one has

q̈(t) +
(
w2

1 − κ2

1 + µ0eκt

)
q(t) = 0. (55)

Two linearly independent solutions to the correspond-
ing linear equation (15) can be found as

q1(t) = z(t)i
w1
k 2F1

A1, A2

1 − 2iw1

k

∣∣∣∣∣∣ −1
z(t)

 ,

q2(t) = q∗
1(t),

(56)

where z(t) = µ0e
κt, A1 = −iw1

k −i
√

w2
1

k2 − 1, and A2 =

−iw1
k + i

√
w2

1
k2 − 1. On the other hand, 2F1(a, b; c;Z)

stands for the hypergeometric function [33], which
converges in the complex unit-disk |Z| < 1. Given
that z(t) : R → (1,∞), the solutions q1,2(t) in (56)
converge for t ∈ R.

Since both solutions in (56) are complex-valued,
with q2 = q∗

1, one can construct a real-valued solution
to the Ermakov equation by taking q1 =Re(q1) and

q2 =Im(q1). To simplify the ongoing discussion, the
external force is considered null, F (t) = 0. One thus
obtains

σ2(t) = a Re[q1(t)]2 + b Re[q1(t)] Im[q1(t)]
+ c Im[q1(t)]2, (57)

γ(t) = γ1 Re[q1(t)] + γ2 Im[q1(t)], (58)
where the Wronskian of the two linearly independent
solutions Re q1 and Im q1 becomes W0 = w1, leading
to the constraint b2 − 4ac = −4 w2

0
w2

1
.

Similarly to the Caldirola-Kanai case, the Heisen-
berg uncertainty relation saturates for times tm such
that Wµ(tm) = 0. In this case, an analytic expression
for such points is fairly complicated. Instead, one may
look at the behavior of Wµ(t) depicted in Figure 3a,
from which it is clear that such points exist. On the
other hand, Figure 3b reveals that, in contradistinc-
tion to the Caldirola-Kanai case, the position variance
does not grow indefinitely in time. This is rather ex-
pected as, for asymptotic times t >> 1, the mass term
converges to a finite value different from zero. That is,
the Hamiltonian becomes stationary for asymptotic
values.

Before conclude, the probability density for ψn(x, t)
and ξα(x, t) are shown in Figure 4. In the latter, it
can be verified that the width of the wavepackets
oscillates in a bounded way for times t > 2. Partic-
ularly, for the coherent state case of Figure 4c, the
dynamics of the wavepacket can be identified clearly,
where the maximum point follows the corresponding
classical trajectory (dashed-black). Therefore, there
is no need to introduce a truncation time T , for the
mass converges to a constant value different from zero,
remaining physically reasonable at all times.

5. Conclusions
In this work, the class of form-preserving point trans-
formations has been used to construct the constants of
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(a) . n = 0 (b) . n = 1 (c).

Figure 4. Probability density Pn = |ψn(x, t)|2 for n = 0 (A), n = 1 (B), and Pα = |ψn(x, t)|2 (C) associated with
the regularized Caldirola-Kanai mass term µrck(t). The rest of parameters have been fixed as w0 = a = b = 1, w1 = 2,
µ0 = 0.3, and κ = 0.5.

motion for the family of time-dependent mass oscilla-
tors. This was achieved by exploiting the preservation
of first-integrals on the initial stationary oscillator
model. Since several constants of motion are already
known for the initial system, the corresponding coun-
terparts for the time-dependent model are straightfor-
wardly constructed by implementing the appropriate
mappings. Notably, three different constants of mo-
tion were identified, one that admits an orthogonal set
of eigensolutions, another that permits non-orthogonal
eigensolutions, and the third one that does not admit
finite-norm solutions.

Interestingly, the non-orthogonal eigensolutions are
actually coherent states, for they are constructed from
the annihilation operator of the time-dependent os-
cillator. Furthermore, by exploiting the underlying
Weyl-Heisenberg algebra fulfilled by the quantum in-
variants, it was possible to find exact expressions for
the expectation values of the position and momentum
observables. The latter revealed the coherent states
are represented by Gaussian wavepacket whose maxi-
mum follows the corresponding classical trajectory.

Besides the latter properties, it was also found that,
in general, the Schrödinger-Robertson uncertainty re-
lation saturates for all times, whereas the Heisenberg
one gets minimized only for some times. Still, two
special time-dependent Hamiltonians exist so that the
Heisenberg inequality saturates at all times, one of
which is the stationary limit case, as expected.

Remarkably, the newly introduced regularized
Caldirola-Kanai mass term admits exact solutions that
regularize the unusual behavior observed in the con-
ventional Caldirola-Kanai case. More precisely, the
variances become bounded as well as the expectation
values. This allows obtaining localization of particles,
which is desired in physical implementations such as
traps of charged particles.
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