
https://doi.org/10.14311/AP.2023.63.0132
Acta Polytechnica 63(2):132–139, 2023 © 2023 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

EXACT SOLUTIONS FOR TIME-DEPENDENT COMPLEX
SYMMETRIC POTENTIAL WELL

Boubakeur Khantoula,b, Abdelhafid Bounamesa,∗

a University of Jijel, Department of Physics, Laboratory of Theoretical Physics, BP 98 Ouled Aissa, 18000 Jijel,
Algeria

b University of Constantine 3 – Salah Boubnider University, Department of Process Engineering, BP B72 Ali
Mendjeli, 25000 Constantine, Algeria

∗ corresponding author: bounames@univ-jijel.dz

Abstract. Using the pseudo-invariant operator method, we investigate the model of a particle with
a time-dependent mass in a complex time-dependent symmetric potential well V (x, t) = if (t) |x|.
The problem is exactly solvable and the analytic expressions of the Schrödinger wavefunctions are
given in terms of the Airy function. Indeed, with an appropriate choice of the time-dependent metric
operators and the unitary transformations, for each region, the two corresponding pseudo-Hermitian
invariants transform into a well-known time-independent Hermitian invariant which is the Hamiltonian
of a particle confined in a symmetric linear potential well. The eigenfunctions of the last invariant are
the Airy functions. Then, the phases obtained are real for both regions and the general solution to the
problem is deduced.
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1. Introduction
The discovery of a class of non-Hermitian Hamilto-
nian that may have a real spectrum has prompted a
revival of theoretical and applied research in quan-
tum physics. In fact, in 1998, C.M. Bender and S.
Boettcher showed that any non-Hermitian Hamilto-
nian invariant under the unbroken space-time reflec-
tion, or PT -symmetry, has real eigenvalues and satis-
fies all the physical axioms of quantum mechanics [1–3].
In 2002, A. Mostafazadeh presented a more extended
version of non-Hermitian Hamiltonians having a real
spectrum, proving that the hermiticity of the Hamilto-
nian with respect to a positive definite inner product,
⟨., .⟩η = ⟨.| η |.⟩, is a necessary and sufficient condition
for the reality of the spectrum, where η is the met-
ric operator which is linear, Hermitian, invertible and
positive. This condition requires that the Hamiltonian
H satisfies the pseudo-Hermitian relation [4–6]:

H† = ηHη† . (1)

Moreover in recent years, a significant progress
has been achieved in the study of time-dependent
(TD) non-Hermitian quantum systems in several
branches of physics. Finding exact solutions to the
TD Schrödinger equation, which cannot be reduced
to eigenvalues equation in general, is a problem of
intriguing difficulty. Different methods are used to ob-
tain solutions of Schrödinger’s equation for explicitly
TD systems, such as unitary and non-unitary transfor-
mations, the pseudo-invariant method, Dyson’s maps,
point transformations, Darboux transformations, per-
turbation theory and adiabatic approximation [7–31].

However, the emergence of a non-linear Ermakov-type
auxiliary equation for several TD systems, which is dif-
ficult to solve, constitutes an additional constraint to
obtain exact analytical solutions [32, 33]. This greatly
reduces the number of exactly solvable time-dependent
non-Hermitian systems [34–38]. In particular, other
works have been concerned with studying exact so-
lutions of TD Hamiltonians with a specific TD mass
in the non-Hermitian case [39, 40] and also in the
Hermitian case [41–45].

In the present work, we used the pseudo-invariant
method [17] to obtain the exact solutions of the
Schrödinger equation for a particle with TD mass
moving in a TD complex symmetric potential well:

V (x, t) = if(t) |x| , (2)

where f(t) is an arbitrary real TD function.
The manuscript is organised as follows: In Sec-

tion 2, we introduce some of the basic equations
of the TD non-Hermitian Hamiltonians and their
time-dependent Schrödinger equation (TDSE) with
a TD metric. In Section 3, we discuss the use of
the Lewis-Riesenfeld invariant method to address
the Schrödinger equation for an explicitly TD non-
Hermitian Hamiltonian. In Section 4, we use the
Lewis-Riesenfeld method to solve the TD Schrödinger
equation for a particle with TD mass in a TD complex
symmetric potential well. Finally, in Section 5, we
conclude with a brief review of the obtained results.
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2. TD Non-Hermitian Hamiltonian
with TD metric

Let H(t) be a non-Hermitian TD Hamiltonian and h(t)
its associated TD Hermitian Hamiltonian. The two
corresponding TD Schrödinger equations describing
the quantum evolution are:

H(t)
∣∣ΦH(t)

〉
= iℏ∂t

∣∣ΦH(t)
〉
, (3)

h(t)
∣∣Ψh(t)

〉
= iℏ∂t

∣∣Ψh(t)
〉
, (4)

where the two Hamiltonians are related by the Dyson
maps ρ(t) as

H(t) = ρ−1(t)h(t) ρ(t) − iℏρ−1(t) ρ̇(t) , (5)

and their wavefunctions
∣∣ΦH(t)

〉
and

∣∣Ψh(t)
〉

as∣∣Ψh(t)
〉

= ρ(t)
∣∣ΦH(t)

〉
. (6)

The hermiticity of h(t) allowed us to establish the
connection between the Hamiltonian H(t) and its
Hermitian conjugate H†(t) as

H†(t) = η(t)H(t) η−1(t) + iℏη̇(t) η−1(t) , (7)

which is a generalisation of the well-known conven-
tional quasi-Hermiticity Equation (1), and the TD
metric operator is Hermitian and defined as η(t) =
ρ†(t) ρ(t).

3. Pseudo-invariant operator
method

Let us start with the description of the Lewis-
Riesenfeld theory [46] for a TD Hermitian Hamil-
tonian h(t) with a Hermitian TD invariant Ih(t). The
dynamic invariant Ih(t) satisfies:

dIh(t)
dt

= ∂Ih(t)
∂t

− i

ℏ
[
Ih(t) , h(t)

]
= 0 . (8)

The eigenvalue equation for Ih(t) is:

Ih(t)
∣∣ψh

n(t)
〉

= λn

∣∣ψh
n(t)

〉
, (9)

where the eigenvalues λn of Ih(t) are reals and time-
independent, and the Lewis-Riesenfeld phase is defined
as:

ℏ
d

dt
εn(t) =

〈
ψh

n(t)
∣∣ iℏ ∂

∂t
− h(t)

∣∣ψh
n(t)

〉
, (10)

and the solution of the TDSE of h(t) is given as∣∣Ψh(t)
〉

= exp [iεn(t)]
∣∣ψh

n(t)
〉
. (11)

In the paper [17], we showed that any TD Hamilto-
nian H(t) satisfying the TD quasi-hermiticity Equa-
tion (7) admits a pseudo-hermitician invariant Iph(t)
such that:

Iph†(t) = η(t)Iph(t)η−1(t) ⇔
Ih(t) = ρ(t)Iph(t)ρ−1(t) = Ih†(t) . (12)

Since the Hermitian invariant Ih(t) satisfies the
eigenvalues Equation (9), Equation (12) ensures that
the pseudo-Hermitian invariant’s spectrum is real with
the same eigenvalues λn of Ih(t):

Ih(t)
∣∣ψh

n(t)
〉

= λn

∣∣ψh
n(t)

〉
, (13)

Iph(t)
∣∣ϕph

n (t)n(t)
〉

= λn

∣∣ϕph
n (t)

〉
, (14)

where the eigenfunctions
∣∣ψh

n(t)
〉

and
∣∣ϕph

n (t)
〉
, of Ih(t)

and Iph(t), respectively, are related as∣∣ψh
n(t)

〉
= ρ(t)

∣∣ϕph
n (t)

〉
. (15)

The inner products of the eigenfunctions associated
with the non-Hermitian invariant Iph(t) can now be
written as

⟨ϕph
m (t)

∣∣ϕph
n (t)

〉
η

= ⟨ϕph
m (t)|η

∣∣ϕph
n (t)

〉
= δmn , (16)

and it corresponds to the conventional inner product
associated to the Hermitian invariant Ih(t).

It is easy to verify, by a direct substitution of the
Hermitian Hamiltonian h(t) and the Hermitian invari-
ant Ih(t) by their equivalents in the Expressions (5)
and (12), respectively, that the pseudo Hermitian
invariant Iph(t) satisfies:

∂Iph(t)
∂t

= i

ℏ
[
Iph(t) , H(t)

]
. (17)

We should remark that the invariant operator’s
eigenstates and eigenvalues can be computed using
the same procedure as the Hermitian case.

The solution
∣∣ΦH(t)

〉
of the Schrödinger Equa-

tion (3) is different from
∣∣ϕph

n (t)
〉

in Equation (14)
only by the factor eiεph

n (t) where εph
n (t) is a real phase

given by:

ℏ d

dt
εph

n (t) =
〈
ϕph

n (t)
∣∣ η(t)

[
iℏ ∂

∂t
− H(t)

] ∣∣ϕph
n (t)

〉
. (18)

4. Particle in TD complex
symmetric potential well

Let us consider a particle with a TD mass m(t) in the
presence of a pure imaginary TD symmetric poten-
tial well Equation (2), where its Hamiltonian can be
written as:

H(t) =
{

p2

2m(t) + if(t)x if x ≥ 0
p2

2m(t) − if(t)x if x ≤ 0
, (19)

the associated TDSE of the system is:
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[
p2

2m(t) + if(t) |x|
]

Ψ(x, t) = i
∂

∂t
Ψ(x, t) , (20)

where m(t) is the particle TD mass and f(t) an arbi-
trary real TD function, and the unit of ℏ = 1. This
model can be considered as the complex version of the
Hermitian case of a particle, with TD mass and charge
q, moving under the action of TD electric field E(t)
and confined in a pure imaginary symmetric linear
potential well: if(t)x for x ≥ 0 and −if(t)x for x ≤ 0,
where f(t) = −qE(t).

According to the results in [17], the solution to the
TD Schrödinger equation with a TD non-Hermitian
Hamiltonian is easily found if a nontrivial TD pseudo-
Hermitian invariant Iph(t) exists and satisfies the von-
Neumann Equation (17).

In the current problem, in order to solve the TD
Shrödinger Equation (20) we assume that the Hamil-
tonian H(t) admits an invariant in each region: let
Iph

1 (t) for x ≥ 0 and Iph
2 (t) for x ≤ 0.

For the region x ≥ 0, let us look for a non-Hermitian
TD invariant in the following quadratic form:

Iph
1 (t) = β1(t)p2 + β2(t)x+ β3(t)p+ β4(t) , (21)

where βi(t) are arbitrary complex functions to be
determined. By inserting the Expressions (19) and
(21) in Equation 17, the following system of equations
can be found:


β̇1(t) = 0 ,
β̇2(t) = 0 ,
β̇3(t) = − β2(t)

m(t) + 2 if(t)β1(t) ,
β̇4(t) = if(t)β3(t) ,

(22)

to simplify the calculations, we take β1(t) = 1 and
β2(t) = 1, so β3(t) and β4(t) are given by:

β3(t) = g(t) + ik(t) , (23)

β4(t) = s(t) + iw(t) , (24)

where

g(t) = −
∫

dt
m(t) , k(t) = 2

∫
f(t)dt,

s(t) = −
∫
f(t)k(t)dt and

w(t) =
∫
f(t)g(t)dt.

Substituting Expressions (23) and (24) in Equa-
tion (21) we found:

Iph
1 (t) = p2 +x+ [g(t) + ik(t)] p+ s(t) + iw(t) . (25)

Its eigenvalue equation is as follows:

Iph
1 (t) |ψ(t)⟩ = λ1 |ψ(t)⟩ , (26)

in order to show that the spectrum of Iph
1 (t) is real,

we search for a metric operator that fulfills the pseudo
hermiticity relation:

Iph†
1 (t) = η1(t)Iph

1 (t)η−1
1 (t) , (27)

and we make the following choice for metric:

η1(t) = exp[−α(t)x− β(t)p] , (28)

where α(t) and β(t) are chosen as real functions in
order that the metric operator η1(t) is Hermitian.

The position and momentum operators transform
according to the transformation η1(t) as:

η1(t)xη−1
1 (t) = x+ iβ(t) , (29)

η1(t)pη−1
1 (t) = p− iα(t) , (30)

incorporating these relationships into Equation (27),
we found:

α(t) = k(t) , (31)
β(t) = g(t)k(t) − 2w(t) , (32)

then the TD metric operator η1(t) is given by:

η1(t) = exp[−k(t)x− (g(t)k(t) − 2w(t))p] , (33)

according to the relation η1(t) = ρ†
1(t)ρ1(t), and since

ρ1(t) is not unique, we can take it as a Hermitian
operator in order to simplify the calculations:

ρ1(t) = exp
[
−k(t)

2 x−
[
g(t)k(t)

2 − w(t)
]
p

]
, (34)

the Hermitian invariant Ih
1 (t) associated with the

pseudo-Hermitian invariant Iph
1 (t) is given by:

Ih
1 (t) = ρ(t)Iph

1 ρ−1(t) = p2+x+g(t)p+ k2(t)
4 +s(t) . (35)

For the region x ≤ 0, we take the non-Hermitian
invariant Iph

2 as

Iph
2 (t) = α1(t)p2 + α2(t)x+ α3(t)p+ α4(t) , (36)

where αi(t) are arbitrary complex functions to be
determined.

In the same way as the precedent case, inserting
the Expressions (19) and (36) in Equation (17), where
we take α1(t) = 1 and α2(t) = −1, so α3(t) and α4(t)
are given by:

α3(t) = −g(t) − ik(t) , (37)
α4(t) = s(t) + iw(t) . (38)
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Then, the final results of Iph
2 (t) and η2(t) are:

Iph
2 (t) = p2 −x− [g(t) + ik(t)] p+ s(t) + iw(t) , (39)

η2(t) = exp[k(t)x− [2w(t) − g(t)k(t)] p] . (40)

We take ρ2(t) as a Hermitian operator, then η2(t) =
ρ2

2,

ρ2(t) = exp
[
k(t)

2 x+
[
k(t)g(t)

2 − w(t)
]
p

]
, (41)

and the related Hermitian invariant Ih
2 (t) is:

Ih
2 (t) = p2 − x− g(t)p+ k2(t)

4 + s(t) . (42)

To derive the eigenvalues equations of the invariants
Ih

j (t) for the two regions (j = 1, 2), we introduce the
unitary transformations Uj(t):

|ϕn,j(t)⟩ = Uj(t) |φn⟩ , j = 1, 2 , (43)

where φn will be determined later and

U1(t) =

exp
[
−ig(t)

2 x+ i

4
[
k2(t) − g2(t) + 4s(t)

]
p

]
,

(44)

U2(t) =

exp
[
i
g(t)

2 x− i

4
[
k2(t) − g2(t) + 4s(t)

]
p

]
.

(45)

According to these transformations, the invariants
Ih

1 (t) and Ih
2 (t) turn into:

I1 = U†
1 (t)Ih

1 (t)U1(t) = p2 + x , (46)

I2 = U†
2 (t)Ih

2 (t)U2(t) = p2 − x , (47)

and they can be written in the following combined
form:

I = p2 + |x| . (48)

We note here that I can be considered as the Hamil-
tonian of a particle of mass m0 = 1/2 confined in the
linear symmetric potential well |x|. Therefore, the
eigenvalue equation of the invariant I:[

d2

dx2 + (λn − |x|)
]
φn(x) = 0 , (49)

is a well-known problem in quantum mechanics. The
bound states φn(x) are given in terms of the Airy
functions Ai and Bi [47, 48]:

φn(x) = Nn Ai(|x| − λn) +N
′

n Bi(|x| − λn) . (50)

This solution is not relevant because Bi(|x|−λn) tends
to infinity for (|x| − λn) > 0. Thus, we take N ′

n = 0
and the above solution reduces to:

φn(x) = Nn Ai(|x| − λn) . (51)

The eingenvalues λn are determined by matching
the functions φn(x) and their derivatives in the two
regions at the point x = 0:

φ(1)
n (0) = φ(2)

n (0) , (52)

φ
′(1)
n (0) = ±φ

′(2)
n (0) , (53)

from which there are two possibilities for λn and the
normalisation constant Nn depending on whether n
is even or odd:

• If n is even:
λn = −a′

n
2 +1 , (54)

where a′
k is the kth zero of the derivative Ai′ of

the Airy function, and all values of a′
k are negative

numbers [49].
The normalisation constant is:

Nn = 1√
−2a′

n
2 +1Ai(a′

n
2 +1)

, (55)

and the corresponding eigenfunction of I is:

φn(x) =
1√

−2a′
n
2 +1Ai(a′

n
2 +1)

Ai(|x| + a′
n
2 +1) , (56)

• If n is odd:

λn = −an+1
2
, (57)

where ak is the kth zero of the Airy function Ai,
and all values of ak are negative numbers [49].

The normalisation constant is:

Nn = 1√
2Ai′(an+1

2
)
, (58)

and the corresponding eigenfunction of I is:

φn(x) = sgn(x) 1√
2Ai′(an+1

2
)
Ai(|x|+an+1

2
) . (59)

The eigenfunctions of the Hermitian invariants Ih
j (t)

are written for each region as:

|ϕn,j(t)⟩ = Uj(t) |φn⟩ , (60)

then, the eigenfunctions of the pseudo-Hermitian in-
variants Iph

j (t) are given by:

|ψn,j(t)⟩ = ρ−1
j (t)Uj(t) |φn⟩ , (61)
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thus, the solutions of the time-dependent Schrödinger
Equation (20) take the form:

|Ψn,j(t)⟩ = eiϵj
n(t) |ψn,j(t)⟩ , (62)

where ϵjn(t) is the phase (ϵ1n(t) for x ≥ 0 and ϵ2n(t) for
x ≤ 0), which is obtained from the following relation:

ϵ̇jn(t) = ⟨ψn,j(t)| ηj(t)
[
i
∂

∂t
−H(t)

]
|ψn,j(t)⟩

= ⟨ϕn,j(t)| iρj(t)ρ̇−1
j (t) |ϕn,j(t)⟩

− ⟨ϕn,j(t)| ρj(t)H(t)ρ−1
j (t) |ϕn,j(t)⟩

+ ⟨ϕn,j(t)| i ∂
∂t

|ϕn,j(t)⟩

= θ(t) − ⟨ϕn,j(t)| p2

2m(t) |ϕn,j(t)⟩

+ ⟨ϕn,j(t)| i ∂
∂t

|ϕn,j(t)⟩ , (63)

where

θ(t) = 1
2f(t)

[
k(t)

2 g(t) − w(t)
]
. (64)

Using the unitary transformations Uj(t), we found:

ϵ̇jn(t) = χj(t) − 1
2m(t) ⟨φn(t)| (p2 ± x) |φn(t)⟩ , (65)

where

χ1(t) = θ(t)− 1
16m(t)

[
k2(t) + 3g2(t) + 4s(t)

]
, (66)

χ2(t) = θ(t) + 1
16m(t)

[
k2(t) − g2(t) + 4s(t)

]
. (67)

From the eigenvalue equation of the invariant I, we
have:

(p2 ± x) |φn(t)⟩ = λn |φn(t)⟩ , (68)

then, the phases ϵjn(t) take the form:

ϵjn(t) =
∫

(χj(t) − λn

2m(t) )dt , (69)

and the solution of the TD Schrödinger Equation (20)
is given by:

|Ψn,j(t)⟩ = exp
[
iϵjn(t)

]
ρj(t)−1 |ϕn,j(t)⟩ . (70)

In position representation we have:

〈
x

∣∣ρ−1
j (t)

∣∣ϕj(t)
〉

= exp [iζ(t)] exp
[
±k(t)

2 x

]
× ϕj(x± i(g(t)k(t)

2 − w(t)), t) ,
(71)

where (+) is for the positive region while (−) is for
the negative region, and

ζ(t) = −k

4 (g(t)k(t)
2 − w(t)) . (72)

Then, the solution of the Schrödinger Equation for
each region (70) can be written as:

Ψn,j(x, t) = exp
[
i(ϵjn(t) + ζ(t))

]
exp

[
±k(t)

2 x

]
× ϕn,j(x± i(g(t)k(t)

2 − w(t)), t) , (73)

and the general solution of the Schrödinger Equa-
tion (20) is given by:

Ψ(x, t) =
{

Ψn,1(x, t) for x ≥ 0 ,
Ψn,2(x, t) for x ≤ 0 . (74)

According to the Equations (51), (60), (61) and
(62), the probability density function is given by:

|ρ1(t)Ψn,1|2 + |ρ2(t)Ψn,2|2 =
= |ϕn,1|2 + |ϕn,2|2 = |φn|2 ,

(75)

and because φn(x) is determined in terms of Airy
function Ai(x), which is a real function, and according
to Equations (56) and (59), the probability density
expression can be written as:

• For n is even

|φn(x)|2 =
1

(−2a′
n
2 +1)

[
Ai(an

2 +1)
]2

[
Ai(|x| + a′

n
2 +1)

]2
,

(76)

and which is represented in Figure 1 for the first
three even states (n = 0, 2, 4).

• For n is odd

|φn(x)|2 =
1

2
[
Ai′(an+1

2
)
]2

[
Ai(|x| + an+1

2
)
]2
, (77)

and which is represented in Figure 2 for the first
three odd states (n = 1, 3, 5).

We note here that the probability in the region
x ≤ 0 is

⟨Ψn,2(t)| η2(t) |Ψn,2(t)⟩ = ⟨φn| φn⟩x≤0

=
0∫

−∞

φ∗
n(x)φn(x)dx = 1

2 , (78)

and the probability in the region x ≥ 0 is
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-6 -4 -2 2 4 6
x

0.1

0.2

0.3

0.4

0.5

φn
2
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n=0

Figure 1. Probability density of Equation 76 for even
values of n = 0, 2, 4.

⟨Ψn,1(t)| η1(t) |Ψn,1(t)⟩ = ⟨φn| φn⟩x≥0

=
∞∫

0

φ∗
n(x)φn(x)dx = 1

2 . (79)

So the two regions are equiprobable and the proba-
bility in all space is equal to one

⟨Ψ(t) ,Ψ(t)⟩η = ⟨Ψn,1| η1(t) |Ψn,1⟩ + ⟨Ψn,2| ηn,2(t) |Ψ2⟩

=
∞∫

−∞

φ∗
n(x)φn(x)dx = 1 . (80)

5. Conclusion
The pseudo-invariant method has been used to
obtain the exact analytical solutions of the time-
dependent Schrödinger equation for a particle with
time-dependent mass moving in a complex time-
dependent symmetric potential well. We have shown
that the problem can be reduced to solve a well-known
eigenvalue equation for a time-independent Hermitian
invariant. In fact, with a specific choice of the TD
metric operators, η1(t) and η2(t), and the Dyson maps,
ρ1(t) and ρ2(t), and using unitary transformations,
the pseudo-invariants operators (Iph

1 (t) for x ⩾ 0 and
Iph

2 (t) for x ⩽ 0) are mapped to two time-independent
Hermitian invariants Ih

1 (t) and Ih
2 (t), which can be

combined in a unique form I = p2 + |x|. The latter
can be considered as the Hamiltonian of a particle con-
fined in a linear time-independent symmetric potential
well, where its eigenfunctions are given in terms of the
Airy function Ai. The phases have been calculated
for the two regions and are real. Thus, the exact
analytical solution of the problem has been deduced.
Finally, let us highlight the fact that the probabil-
ity density associated with the model in question is
time-independent.
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Figure 2. Probability density of Equation 77. for
odd values of n = 1, 3, 5.
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