ap-4-10.dvi Acta Polytechnica Vol. 50 No. 4/2010 Single Phase Voltage Source Inverter Photovoltaic Application J. Bauer Abstract Photovoltaic applications have been developing and spreading rapidly in recent times. This paper describes the control strategy of the Voltage Source Inverter that is the important tail end of many photovoltaic applications. In order to supply the grid with a sinusoidal line current without harmonic distortion, the inverter is connected to the supply network via a L-C-L filter. The output current is controlled by the hysteresis controller. To improve the behaviors of the L-C-L filter, active damping of the filter is being used. This paper discusses controller design and simulation results. Keywords: voltage source inverter, L-C-L filter, hysteresis controller, pulse width modulation. 1 Introduction Increasing efforts are being made nowadays to use re- newable energy sources. Processing the energy ob- tained from sun, wind or water is coming to the fore. The energy supplied by these sources does not have constant values, but fluctuates according to the sur- rounding conditions (intensity of sun rays, water flow, etc.). These supplies are therefore supplemented by additional converters. The most used types are in- verters orDC/DC converters. The area of high power converters for solar application is already covered by industrial manufacturers. However, the area of low power devices is not fully covered. These converters are mostly built from commercially produced parts that can perform demanded functions, but they are notdeveloped for this typeof applicationandtherefore the efficiency of the whole system is low. Low power devices are important in applications where there is no voltage grid present and electric power is required (mountains, desert expeditions, etc.) The simplified block structure of the investigated system is shown in Fig. 1. A DC/DC converter with an MPPT (Maximum Power Point Tracker) is con- nected to the solar array. A second DC/DC con- verter is connected to the output of this converter. The second converter raises the voltage acquired from the solar system to the voltage level demanded by the VSI. Fig. 1: Block diagram of the system 2 DC voltage control The power produced by solar arrays depends on sur- rounding conditions, e.g. temperature ϑ and intensity of sunexposure E. The solararrayoutputpower isnot therefore constant. The output power also depends on the withdrawn current and voltage. (Fig. 2) Fig. 2: Output characteristic of the solar cell and themax- imum power point tracking principle The MPPT control algorithm ensures that the so- lar array operates at its optimal point and that it delivers maximal power. The algorithm periodically changes the duty cycle of the converter in the de- fined hysteresis range, it increases the duty cycle, it decreases the duty cycle, and it compares the pow- ers delivered by the solar cell. Then it chooses the duty cycle that corresponds with the maximal deliv- ered power. If the converter operates on the left side of the MPP (area 1.), the algorithm will decrease the duty cycle. When it is operating on the right (area 3.) of the MPP, the controller will increase the duty cy- cle. If the converter is operating at MPP (area 2.), the power obtained on both sides will be lower and the duty cycle remains the same. The second DC/DC converter is a boost type full bridge with galvanic insulation. The converter works with a fixedduty cycle andboosts the input voltage to the voltage level required by the inverter. For a single phase VSI, 400 V should be enough. 7 Acta Polytechnica Vol. 50 No. 4/2010 3 Voltage Source Inverter The VSI is used for converting energy fromDC to AC voltage. The detailed scheme of the inverter is shown in the Fig. 3. The power part of the inverter is made of four MOSFETs and the L-C-L filter is connected to the output of the inverter. This filter ensures the sinusoidal shape of the output current. Fig. 3: Inverter diagram The inverter in this application can operate in two differentmodes. Firstly, it can operate in the so-called “island mode”, which means that the converter acts as a voltage source and supplies some devices with si- nusoidal voltage of the common network parameters. PWM control is used for this purpose. The second possible operation mode delivers current to the sup- ply network. PWM control is not suitable for this operation mode and the current hysteresis control is therefore used. 3.1 Current control The simplest hysteresis controller can be realized as a simple bang-bang regulator. The actual value of the output current is controlled in order to remain in a defined area. This method is fast and simple, and provides good results with an L-C-L filter. The onlyproblem is the variable switching frequency of the semiconductor switches that is a direct consequence of this control strategy. Better results can be obtained whencontrolof thehysteresiswidth isused. According to [1], the width depends on the demanded switching frequency fs of the converter, on the inverter side filter inductance Li, on the actual value of DC-link voltage UDC, and on the filter capacitor voltage uCf. Hy = |uCf | UDC − |uCf | LifsUDC (1) Implementation of equation (1) causes the switching frequency to remain approximately constant. The influence of variable hysteresis width is depicted in Fig. 4. A further improvementof the output current shape involves adapting the hysteresis controller. A simple Fig. 4: Switching frequency during variable hysteresis con- trol hysteresis controller alternates only between two com- binations (S1, S2) or (S3, S4), whichmeans that either +UDC or −UDC appears on the output (Fig. 5). Fig. 5: Bipolar hysteresis controller With the help of the PWM switching analogy, bipolar switching can easily be adapted to unipolar switching. This method generates three output volt- age levels +UDC, 0 and −UDC. The controller is shown in Fig. 6. Two hysteresis controllers of differ- ent hysteresis width are used instead of one. The first controls switches S2, S3 and the second controls S1, S4. Outer hysteresis is used in areas where the cur- rent crosses zero and the drop in the desired current Fig. 6: Unipolar hysteresis controller 8 Acta Polytechnica Vol. 50 No. 4/2010 value is faster than the drop in the output current. The output current then reaches the outer hysteresis, and the controller switches from S1 to S4 or vice versa. This control of the VSI is used when the converter operates on the supply network and is used for gener- ation of current. The output voltage is guardedby the supply network itself. The converter “pushes” current into the grid. 3.2 PWM control Hysteresis control cannot operate in “island mode”, because there is no supply network voltage that can guard the generated voltage. Then the converter is supposed to generate output voltagewith a sinusoidal shape, as in the supply network. The PWM control algorithm was therefore used for “island mode”. The controller is shown in Fig. 7. The PI controller is used in the voltage control loop. The output of the con- troller is the duty cycle for the modulator. Fig. 7: Island mode control loop 4 L-C-L filter design The filter is an important part of every semiconduc- tor converter. The filter reduces the effects caused by switching semiconductor devices on other devices. The generation of the harmonics around switching fre- quency can be filtered by large inductance connected to the output of the converter. But the large induc- tance decreases the dynamics of the system and also the operation rangeof the converter. Insteadof the in- ductance the inverter can be equipped with an L-C-L filter. The L-C-L filter has good current ripple atten- uation evenwith small inductance values. However, it can bring also resonances and unstable states into the system. Thefiltermust thereforebedesignedprecisely according to the parameters of the specific converter. In the technical literature we can find many articles on the design of the L-C-L filters [2, 3]. Table 1: Parameters for calculating the filter components Grid Voltage (V) 230 Output Power of the Inverter (kVA) 1.5 DC link Voltage (V) 400 Grid Frequency (Hz) 50 Switching Frequency (Hz) 3000 Nowthefilter designwill be described. The system parameters considered for calculating the components for a filter with power approx. 1.5 kVA are shown in Tab. 1. First, the base values need to be calculated. These values are later used for calculating the filter compo- nents. Zb = U2n Sn =46Ω (2) Cb = 1 ωnZb =69.91μF (3) The first step in calculating the filter components is the design of the inverter side inductance Li, which can limit the output current ripple by up to 10% of the nominal amplitude. It can be calculated according to the equation derived in [3]: Li = UDC 16fsΔIL max =17.7mH (4) where ΔIL max is the 10% current ripple specified by (5) ΔIL max =0.01 Pn √ 2 Un =0.234A (5) The design of the filter capacityproceeds fromthe fact that themaximal power factor variationacceptable by the grid is 5%. The filter capacity can therefore be calculated as a multiplication of system base capaci- tance Cb Cf =0.05Cb =3.45μF (6) The grid side inductance Lg can be calculated as (7) Lg = rLi =0.32Li =5.7mH (7) The last step in the design is the control of the reso- nant frequency of the filter. The resonant frequency musthaveadistance fromthe grid frequencyandmust be minimally one half of the switching frequency, be- cause the filter must have enough attenuation in the switching frequency of the converter. The resonant frequency for the L-C-L filter can be calculated as (8) fres = 1 2π √ Li + Lg LiLgCf =1.30kHz (8) In order to reduce oscillations and unstable states of the filter, the capacitor should be added with an in- series connected resistor. This solution is sometimes called “passive damping”. It is simple and reliable, but it increases the heat losses in the system and it greatly decreases the efficiency of the filter. The value of the damping resistor can be calculated as (9) Rsd = 1 3ωresCf =11.2Ω (9) So-called “active damping”methodswith a virtual re- sistor were therefore developed. As mentioned in [4], 9 Acta Polytechnica Vol. 50 No. 4/2010 there are four possible ways to place a virtual resistor for active damping. One of them is shown in Fig. 8. Fig. 8: A single phase L-C-L filter and an alternative cir- cuit Figure 8 shows a model of a single phase L-C-L filter with resistor damping connected in series with the filter capacitor. The inverter can be considered as a current source. The resistor reduces the voltage across the capacitor by a voltage proportional to the current that flows through it. In the control loop the current through Cf is measured and differentiated by the term sCf Rsd. A real resistor is not used, and the calculated value is subtracted from the demanded cur- rent (Fig. 9). Fig. 9: A single phase L-C-L filter with a virtual resistor In this way the filter is actively damped with a virtual resistor without losses. The disadvantage of this method is that an additional current sensor is re- quired and thedifferentiatormaybringnoise problems because it amplifies high frequency signals. 5 Simulation results A model of the VSI with the control was made with the help ofMatlab-Simulink SW. All simulations were made for output current Ig = 3 A, output voltage Ug = 230 V and output frequency f = 50 Hz. The switching frequency of the inverter was fs = 3 kHz a filter with parameters designed in this paper Li = 17.7mH, Cf =3.45μF, Lg =5.7mHanddamping re- sistor Rsd =11.2Ωwas connected to the output of the filter. Fig. 10 shows the effects of the virtual damping resistor from time t =0.1 s when the filter is damped with a virtual resistor. Fig. 10: Effect of the virtual resistor on the L-C-L filter Fig. 11: Simulation results for current hysteresis control Figure 11 shows the simulation results of the in- verterwith double hysteresis control. The filtered cur- rent ig is in the phase with the grid voltage. Except for small spikes in areas where the current changes its direction, the shape of the filtered current is sinu- soidal. The same simulationswere done for “islandmode” operation. In this case, the output voltage is regu- lated to ug =230 V and the current is determined by the load. The shape of the current is smoother, but there is a slight phase shift, caused by the output fil- ter inductance and the load character. The harmonics content of both currents is good. 10 Acta Polytechnica Vol. 50 No. 4/2010 Fig. 12: Simulation results for island mode with PWM control 6 Conclusion The control algorithm for a grid connected voltage source inverter has been presented here. A sinusoidal line current is produced due to the hysteresis con- troller. The switching frequency is almost constant because of the variable hysteresis width control. The output current filter has been designed and simulated. The obtained results seem to be promising. However, wewill not be able to evaluatewhole systemuntil after it has been realized. Acknowledgement This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS 10800630. The researchdescribed in thepaperwas su- pervised by Prof. J. Lettl, CSc., FEE CTU in Prague. References [1] Hinz, H., Mutschler, P., Calais, M.: Control of a single phase three level voltage source inverter for grid connected photovoltaic systems, PCIM 1997. [2] Liserre, M., Blaabjerg, F., Hansen, S.: Design and control of an lcl-filter based three-phase ac- tive rectifier. In Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Confer- ence Record of the 2001 IEEE, volume 1, 2001. [3] Araújo, S. V., Engler, A., Sahan, B.: LCL Filter design for grid-connectedNPC inverters in offshore windturbines. InThe 7th InternationalConference on Power Electronics. Daegu (Korea), 2007. [4] Dahono, P. A.: A method to damp oscillations on the input lc filter of current-type ac-dc pwm con- verters by using a virtual resistor. In Telecommu- nications Energy Conference INTELEC’03, 2003. About the author Jan BAUER was born in Prague on January 14, 1983. He studied electrical engineering at CTU in Prague and was awarded his master’s degree in June 2007. He is currently working on his PhD thesis at CTU in Prague, FEE at the department of Electric Drives and Traction. His main fields of interest are modern control algorithms for inverters and matrix converters. Jan Bauer E-mail: bauerj1@.fel.cvut.cz Dept. of Electric Drives and Traction Faculty of Electrical Engineering Czech Technical University in Prague Technická 2, 166 27 Praha, Czech Republic 11