wykresx.eps Acta Polytechnica Vol. 51 No. 1/2011 Some Formulas for Legendre Functions Induced by the Poisson Transform I. A. Shilin, A. I. Nizhnikov Abstract Using the Poisson transform, which maps any homogeneous and infinitely differentiable function on a cone into a corresponding function on a hyperboloid, we derive some integral representations of the Legendre functions. Keywords: Legendre functions, Lorentz group, Poisson transform. 1 Introduction Let us assume that the linear space Rn+1 is endowed with the quadratic form q(x) := x20 − x 2 1 − . . . − x 2 n. We denote the polar bilinear form for q by q̂. The Lorentz group SO(n,1) preserves this form and di- vides Rn+1 into orbits. We will deal with two kinds of these orbits. One of them is C := {x | q(x)= 0}; it is a cone. The second kind of orbits consist of two-sheet hyperboloids H(r) := {x | q(x)= r2} for any r > 0. The group SO(n,1) has 2 connected components. One of them contains the identity and will be under our consideration further. We denote this subgroup by symbol G. The action x �−→ g−1x of the group G is transitive on C. Let σ ∈ C and Dσ be a lin- ear subspace in C∞(C) consisting of σ-homogeneous functions. It is useful to suppose throughout this paper that −n +1 < re σ < 0. We define the repre- sentation Tσ in Dσ by left shifts: Tσ(g)[f(x)] := f(g −1x). Suppose that γ is a contour on C intersecting all generatrices (i.e. all lines containing the origin). Ev- erypoint x ∈ γ depends on n−1parameters, so every point x ∈ C can be represented as xi = {tFi(ξ1, . . . , ξn−1), i =1, . . . , n +1. Denoting by G̃ the subgroup of G which acts transi- tively on γ, we have dx = tn−3dtdγ, (1) where dγ is the G̃-invariantmeasure on γ. For anypair (Dσ, Dσ̃), wedefine thebilinear func- tionals Fγ : (Dσ, Dσ̃) −→ C, (f1, f2) �−→ ∫ γ f1(x)f2(x)dγ. The functional Fγ does not depend on γ if σ̃ = −σ − n+1, because, first, we have formula (1), and, second, f1 and f2 are both homogeneous functions, and, third, the G-invariantmeasure on C can be rep- resented in the form dx = dxζ(1) . . .dxζ(n) |xζ(n+1)| , (2) where ζ ∈ S n and S n+1 is the permutation group of the set {1, . . . , n +1}. Let f ∈ Dσ and y ∈ H(1). We refer to the inte- gral transform Π(f)(y) :=Fγ(q̂ −σ−n+1(y, x), f) as the Poisson transform [1]. 2 Formulas related to sphere and paraboloid Let γ1 be the intersectionof the cone C and theplane x0 = 1. Each point x ∈ γ1 depends on spherical pa- rameters φ1, . . . , φn−1 by the formula xs = n−s∏ i=1 sinφi · cosφn−s+1, s �=0, The research presented in this paper was supported by grant NK 586P-30 from the Ministry of Education and Science of the Russian Federation. 70 Acta Polytechnica Vol. 51 No. 1/2011 if angle φn−s+1 exists. Here φn−1 ∈ [0;2π) and φ1, . . . , φn−2 ∈ [0;π). The subgroup H1 � SO(n) acts transitively on γ1, and any permutate ζ ∈ S n+1 defines the H1- invariant measure dγ1 = dγζ(2) . . .dγζ(n) |xζ(n+1)| . The invariant measure in spherical coordinates is given by 9.1.1.(9) [2] Let γ2 be the intersection of cone C and the hy- perplane x0+xn =1. Wedescribe everypoint x ∈ γ2 by the coordinates r, φ1, . . . , φn−2 according to the formulas x0 = 1+ r2 2 , xn = 1− r2 2 , xs = r n−s−1∏ i=1 sinφi cosφn−s, s /∈ {0, n} (if angle φn−s exists), where r ≥ 0, φn−2 ∈ [0;2π) and φ1, . . . , φn−3 ∈ [0;π). We denote as H2 the subgroup of G acting tran- sitively on γ2. H2 consists of the matrices n(b)= ⎛ ⎜⎜⎜⎜⎝ diag(1, . . . ,1︸ ︷︷ ︸ n−1 ) bT bT −b 1− b∗ −b∗ b b∗ b∗ ⎞ ⎟⎟⎟⎟⎠ , where b =(b1, . . . , bn−1) and b ∗ = 1 2 (b21+ . . .+b 2 n−1). It is not too hard to derive the H2-invariantmea- sure dγ = rn−2dr n−2∏ i=1 sinn−i−2 φi dφi on γ2. Let λ > 0, μ ∈ R, k0 ≥ k1 ≥ . . . ≥ kn−2 ≥ 0, l1 ≥ . . . ≥ ln−2 ≥ 0, m1 ≥ . . . ≥ mn−2 ≥ 0, K = (k0, k1, . . . , kn−3, ±kn−2), L = (l1, . . . , ln−3, ±ln−2), M =(m1, . . . , mn−3, ±mn−2). We will now deal with two bases in Dσ. One of them consists of the functions f σ1K (x)= x σ−k0 0 Ξ n K(x), where K = (k0, k1, . . . , kn−3, ±kn−2) ∈ Zn−1, ki ≥ ki+1 ≥ 0 and ΞnT(x) = n−3∏ i=1 r ti−ti+1 n−i · C n−i 2 −1 ti−ti+1 ( xn−i rn−i ) (x2 ± ix1)tn−2. The second basis consists of the functions f σ2(L,λ)(x) = (x0 + xn) σ+ n−32 · ( λ 2 )l1 (λrn−1 2 )3−n 2 −l1 · Jl1+n−32 ( λrn−1 x0 + xn ) Ξn−1L (x), where r2j = x 2 1+ . . .+x 2 j, L =(l1, . . . , ln−3, ±ln−2) ∈ Z n−2, λ ≥ 0 and li ≥ li+1 ≥ 0. Suppose, in addition, that the functions of the above bases are equipped with the normalizing factors defined by formulas [2, 9.4.1.7, 10.3.4.9]. Let us consider the distribution f σ1K (x)= ∑ L ∫ +∞ 0 cσ12K,(L,λ) f σ2 (L,λ)dλ. (3) From the orthogonality of the functions ΞnT , we ob- tain the property Fγ(f σ1 K , f −σ−n−1,1 −K̃ )= δKK̃ . From this property, it immediately follows that cσ12K,(L,λ) =Fγ(f σ1 K , f −σ−n−1,2 (L,λ) ). Let γ = γ1. Then from the formula∫ 1 −1 (1− x2)ν− 1 2 Cνm(x)C ν n(x)dx =0, where m �= n, re ν > − 1 2 , we derive Lemma 1. If n−2∑ i=1 (ki − li)2 �=0, then cσ12K,(L,λ) =0. Let us assume another situation. Lemma 2. If n−2∑ i=1 (ki − li)2 =0, then cσ12K,(L,λ) =2 −σ+n+3k1−3 π−1 ik1 (n +2k0 −2) 1 2 · √ (k0 − k1)!λk1 Γ ( n −1 2 ) Γ ( n −1 2 + k1 ) · Γ (n 2 + k1 −1 ) Γ 1 2 ( n −1 2 ) Γ−1(n +2k1 − 2) · Γ− 1 2(n + k0 + k1 −2) k0−k1∑ m=0 (−1)m (m!)−1 · Γ(n + k0 + k1 + m −2)Γ−1 ( n −1 2 + k1 + m ) · Γ−1(k0 − k1 − m −1)Γ−1(−σ + k1 + m) · G2113 ⎛ ⎝λ2 4 ∣∣∣∣∣∣ −m −σ + k1 −1, n −3 2 + k1 ⎞ ⎠ . 71 Acta Polytechnica Vol. 51 No. 1/2011 Proof. Suppose γ = γ2. Then we obtain the inte- gral ∫ +∞ 0 r n−1 2 +l1 (r2 +1)σ−k1 · C n 2 −k1−1 k0−k1 ( 1− r2 1+ r2 ) J n−3 2 +l1 (λr)dr, which can be solved explicitly after replacing rk Jk(λr) =2 k λ−k G1002 (( λr 2 )2 ∣∣∣∣∣ 0k,0 ) according to formulas [3, 8.932.1, 8.932.2] and [4, 20.5.4].� Theorem 1. P − n2+1 −σ− n2 (coshα)= 22n− 9 2 π− 3 2 √ n −1 · sinh n 2 −1 α e(σ+n−1)α Γ (n 2 −1 ) Γ ( n +1 2 ) · Γ−1(−σ)Γ− 1 2(n −1) ∫ +∞ 0 λ−n+3 · G2113 ⎛ ⎝λ2 4 ∣∣∣∣∣∣ 0 −σ −1,0, n −3 2 ⎞ ⎠ · G2113 ⎛ ⎝(λe−α)2 4 ∣∣∣∣∣∣ 0 σ − n −1 2 ,0, n −3 2 ⎞ ⎠ dλ. Proof. Suppose that the condition k1 = l1, . . . , kn−2 = ln−2 holds. From the distribution (3), we obtain Π(f σ1K )= ∫ +∞ 0 cσ12K,(L,λ)Π(f σ2 (L,λ))dλ. FurtherweassumeΠ(f σ1K )=Fγ1(q̂ −σ−n+1(y, x), f σ1K ) and Π(f σ2(L,λ)) = Fγ2(q̂ −σ−n+1(y, x), f σ2(L,λ)), then for the case y = (coshα,0, . . . ,0,sinhα) and put K = (0, . . . ,0).� Consider the case SO(2,1) of the group SO(n,1). In this case, K ≡ k and (L, λ) ≡ λ. The following theorem is related to this case. Theorem 2. If −1 < re σ < 0 and α �=0, then P −l+12 σ+12 (coshα)= (−1)l−12−σ− l 2− 9 4 π− 1 2 × e−α sin(−πσ) sinhl+ 1 2 α ·( coshα +1 coshα −1 ) l 2+ 1 4 Γ(σ − l +1)Γ ( l − 3 2 ) · Γ−1 ( l + 1 2 ) ∫ ∞ 0 ρ−σ−1 Kσ+1(ρe −α) · (4) ∞∑ s=0 (−1)n Γ−2(s +1)Γ−1(s − σ) · G2113 ( ρ2 4 ∣∣∣∣∣ −s−σ −1, 0 ) dρ Proof. After repeating the proof of the previous theorem, we derive the following representation of the Gauss hypergeometric function: 2F1 ( −σ − 1 2 , σ + 3 2 ; 1 2 + l; 1−coshα 2 ) = (−1)l−12−σ− 5 2 π− 1 2 e−α sinhα sin(−πσ) ·( coshα +1 coshα −1 ) l 2+ 1 4 Γ(σ +1− l)Γ ( l − 3 2 ) ·∫ ∞ 0 λ−σ−1 Kσ+1(λe −α) ∞∑ s=0 (−1)n Γ−2(s +1) · Γ−1(s − σ)G2113 ( λ2 4 ∣∣∣∣∣ −s−σ −1, 0, 0 ) dλ. Now we use the formula [5, 7.3.1.88] for l =0.� 3 Formulas related to paraboloid and hyperboloid Let γ3+ be the intersection of cone C and the plane xn =1. We denote as γ3− the intersection of C and the plane xn = −1. Let γ3 := γ3+ ∪ γ3−. The con- tour γ3 is a homogeneous space with respect to the subgroup H3 � SO(n−1,1). If x belongs to γ3, then xn = ±1, x0 =cosht, xs = sinht n−s−1∏ i=1 sinφi ·cosφn−s, s /∈ {0, n} (if angle φn−s exists), where t ∈ R, φn−2 ∈ [0;2π) and φ1, . . . , φn−3 ∈ [0;π). Any permutation ζ ∈ S n determines the H3- invariantmeasure dγ4 = dxζ(1) . . .dxζ(n−1) |xζ(n)| on γ3, so dγ3 =cosh n−2 tdt n−2∏ i=1 sinn−i−2 φi dφi. Let us now consider the basis consisting of the functions f σ2(M,μ,±)(x) = (xn) σ+ n−32 ± r 3−n 2 −m1 n−1 · P 3−n 2 −m1 −12+iμ ( x0 xn ) Ξn−1M (x), 72 Acta Polytechnica Vol. 51 No. 1/2011 where (xn) σ+ n−32 ± is the generalized function defined as (xn) σ+ n−32 ± = { |xn|σ+ n−3 2 , if sign xn = ±1, 0, if sign x �= ±1, M = (m1, . . . , mn−3, ±mn−2) ∈ Zn−2, mi ≥ mi+1 ≥ 0 and μ ∈ R. By analogywith the previous case, we can obtain the coefficients cK,(M,μ,+). Let us suppose that n =3 and K =(l, s), M ≡ m. From the distribution f σ3m,μ,+(x)= ∞∑ l=0 |l|∑ s=−|l| cl,s,m,μ,+ f σ1 l,s(x), we have f σ3−s,μ,+(x)= ∞∑ l=0 cl,s,−s,μ,+ f σ1 l,s(x) and, therefore, Π(f σ3−s,μ,+)= ∞∑ l=0 |l|∑ s=−|l| cl,s,−s,μ,+Π(f σ1 l,s). (5) We choose γ3 (in fact, γ3+) on the left side of equality (5) and γ1 on the opposite side. In accordance with our choice, we use two parametrizations of a point y ∈ H(1): y(v)= ( v + v−1 2 ,0, . . . ,0, v−1 − v 2 ) and y(t) = (cosht,0, . . . ,0,sinht) respectively, so v = e−t. After integration we have sin[π(σ +1)] cosh−1 tΓ ( iμ − σ − 1 2 ) · Γ ( − 3 2 − σ − iμ ) P σ+1 −12+iμ (tanht)= √ 2π 3 2 ∞∑ l=0 (−1)l (l!)−1 Al sinh 1 2 t · Γ(l +1)Γ−1(σ − l +1)P − 1 2 −l σ+12 (cosht), where Al is the normalizing factor of the function f σ1l,s(x). References [1] Vilenkin, N. Ja., Klimyk, A. U.: Representation of Lie groups and special functions, Vol. 2, 1993. [2] Vilenkin, N. Ja.: Special functions and theory of group representations, 1968. [3] Erdelyi, A.: Tables of integral transforms, 1954. [4] Gradstein, I. S., Ryshik, I. M.: Tables of series, products and integrals, 1981. [5] Prudnikov, A. P., Brychkov, Yu. A., Mari- chev, O. I.: Integrals and Series, Vol. 3: More Special Functions, 1989. Ilya Shilin Dept of Higher Mathematics M. Scholokhov Moscow State University for the Humanities Verhnya Radishevskaya 16–18 Moscow 109240, Russia Dept 311 Moscow Aviation Institute Volokolamskoe shosse 4, Moscow 125993, Russia Aleksandr Nizhnikov Moscow Pedagogical State University M. Pirogovskaya 1, Moscow 119991, Russia 73