AP06_6.vp 1 Introduction Many publications in the field of SEIG have been dealt with solutions to a range of problems (e.g. enhancing perfor- mance, loading, interfacing with the grid, etc). El Sousy et al [1] discuss a method for controlling a 3 phase induction gen- erator using indirect field orientation control, while Mashaly at al [2] introduce an FLC controller for a wind energy utiliza- tion scheme. We have found no studies concentrating on a wind energy scheme system for supplying an isolated load. The primary advantages of SEIG are less maintenance costs, better transient performance, no need for dc power supply for field excitation, brushless construction (squirrel-cage ro- tor), etc. In addition, induction generators have been widely employed to operate as wind-turbine generators and small hydroelectric generators for isolated power systems [3, 4]. Induction generators can be connected to large power systems, in order to inject electric power, when the rotor speed of the induction generator is greater than the synchronous speed of the air-gap-revolving field. In this paper the dy- namic performance is studied for SEIG driven by WECS to feed an isolated load. The d-q axes equivalent circuit model based on different reference frames extracted from fundamental machine theory can be employed to analyze the response of the machine transient in dynamic performance [3,4]. The voltage controller, for SEIG, is conducted to adapt the terminal voltage, via a semiconductor switching system. The semiconductor switch regulates the duty cycle, which adjusts the value of the capacitor bank connected to the SEIG [5, 6]. The SEIG is equipped with a frequency controller to regulate the mechanical input power. In addition, the stator frequency is regulated. This is achieved by adjusting the pitch angle of the wind turbine. In this paper, the integral gain (Ki) of the PI controller is supervised using the FLC to enhance the overall dynamics response. The simulation results of the proposed technique are compared with the results obtained for the PI with fixed and variable Ki. 2 The system under study Fig. 1 shows the block diagram for the study system, which consists of SEIGs driven by WECS connected to an isolated 36 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006 Fuzzy Algorithm for Supervisory Voltage/Frequency Control of a Self Excited Induction Generator Hussein F. Soliman, Abdel-Fattah Attia, S. M. Mokhymar, M. A. L. Badr This paper presents the application of a Fuzzy Logic Controller (FLC) to regulate the voltage of a Self Excited Induction Generator (SEIG) driven by Wind Energy Conversion Schemes (WECS). The proposed FLC is used to tune the integral gain (KI) of a Proportional plus Integral (PI) controller. Two types of controls, for the generator and for the wind turbine, using a FLC algorithm, are introduced in this paper. The voltage control is performed to adapt the terminal voltage via self excitation. The frequency control is conducted to adjust the stator frequency through tuning the pitch angle of the WECS blades. Both controllers utilize the Fuzzy technique to enhance the overall dynamic performance. The simulation result depicts a better dynamic response for the system under study during the starting period, and the load variation. The percentage overshoot, rising time and oscillation are better with the fuzzy controller than with the PI controller type. Keywords: fuzzy logic controller, self exited induction generator, voltage control, frequency control, wind power station. Fig. 1: System under study load. Two control loops for terminal voltage and pitch angle using FLC to tune Ki of the PI controller are shown in the same figure. The mathematical model of SEIG driven by WECS is simulated using the MATLAB/SIMULINK package to solve the differential equations. Meanwhile, two controllers have been developed for this system. The first is the voltage controller to adjust the terminal voltage at the rated value. This is done by varying the switching capacitor bank, for changing the duty cycle, to adjust the self excitation. The second controller is the frequency controller to regulate the input power to the generator and thus to keep the stator fre- quency constant. This is achieved by changing the value of the pitch angle for the blade of the wind turbine. First, the sys- tem under study is tested when equipped with a PI controller for both voltage and frequency controllers at different fixed values KI. Then the technique is developed to drive the PI controller by a variable KI to enhance the dynamic perfor- mance of the SEIG. KI is then tuned by using two different algorithms. The simulation is carried out when the PI controller is driven by variable KI using a linear function, with limitors, between KI and voltage error for voltage control. The simula- tion also includes variable KI based on the mechanical power error for the frequency controller. Meanwhile, variable KI has lower and upper limits. Then, the simulation is conducted when the PI controller is driven by a variable KI through FLC technique. The simulation results depict the variation of the different variables of the system under study, such as terminal voltage, load current, frequency, duty cycles of the switching capacitor bank, variable KI in voltage controller KIV and vari- able KI in frequency controller KIF. 3 Mathematical model of the SEIG driven by WECS 3.1 Electrical equation of the SEIG The stator and rotor voltage equations using the Krause transformation [3, 4], based on a stationary reference frame, are given in the appendix [7]. 3.2 Mechanical equations of the WECS The mechanical equations relating the power coefficient of the wind turbine, the tip speed ratio (�) and the pitch angle (�) are given in [7, 8, 9]. The analysis of an SEIG in this re- search is performed taking the following assumptions into account [3]: � All parameters of the machine can be considered constant except Xm. � Per-unit values of the stator and rotor leakage reactance are equal. � Core loss in the excitation branch is neglected. � Space and time harmonic effects are ignored. 3.3 Equivalent circuit The d and q axes equivalent-circuit models parameters for a no-load, three-phase symmetrical induction generator refer to a 1.1 kW, 127/ 220 V (line voltage), 8.3/4.8 A (line current), 60 Hz, 2 poles, wound-rotor induction machine [4]. More de- tails about the machine are described in [7, 8]. 3.4 Voltage control and switching capacitor bank technique: 3.4.1 Switching Switching of capacitors has been discarded in the past because of the practical difficulties involved [5, 6], i.e. the occurrence of voltage and current transients. It has been ar- gued, and justly so, that current ‘spikes’, for example, would inevitably exceed the maximum current rating as well as the (di/dt) value of a particular semiconductor switch. The only way out of this dilemma would be to design the semiconduc- tor switch to withstand the transient value at the switching instant. The equivalent circuit in Fig. 2 is added to explain this sit- uation of the switching capacitor bank due to the duty cycle. The details of this circuit are given in [6]. For the circuit of Fig. 2, the switches are operated in anti-phase, i.e. the switch- ing function fs2 which controls switch S2 is the inverse func- tion of fs1 which controls switch S1. In other words, switch S2 is closed during the time when switch S1 is open, and vice versa. This means that S1 and S2 of branch 1 and 2 are operated in such a manner that one switch is closed while the other is open. 3.4.2 Voltage control As shown in Fig. 1, the input to the controllers is the volt- age error, while the output of the controllers is used to execute the duty cycle (�). The value of calculated � is used as an input to the semiconductor switches to change the value of the ca- pacitor bank according to the need for the effective value of the excitation. Accordingly, the terminal voltage is controlled by adjusting the self-excitation through automatic switching of the capacitor bank. 3.5 Frequency control Frequency control is applied to the system by adjusting the pitch angle of the wind turbine blades. This is used to keep the SEIG operating at a constant stator frequency and to counteract the speed disturbance effect. The pitch angle is a function of the power coefficient Cp of the wind turbine WECS. The value of Cp is calculated using the pitch angle value according to the equation mentioned in [7, 8, 9]. Conse- quently, the best adjustment for the value of the pitch angle improves the mechanical power regulation, which, in turn, achieves a better adaptation for the frequency of the overall system. Accordingly, the frequency control regulates the me- chanical power of the wind turbine. © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 37 Acta Polytechnica Vol. 46 No. 6/2006 Fig. 2: Semi conductor switches (S1, S2) circuit for capacitor bank 4 Controllers Two different types of controller strategies have been con- ducted. First, the conventional PI controller with fixed and variable gains is applied. Second, FLC is applied to adjust the value of KI for both frequency and voltage controllers. 4.1 Conventional PI controller The simulation program is carried out for different values of KI while the value of the proportional gain is kept constant, as shown in Fig. 3. It is observed from the simulation results that the value of the percentage overshoot (P.O.S), rising time and settling time change as KI is changed. Then the tech- nique of having variable KI depending on the voltage error, for voltage control, is introduced to obtain the advantage of high and low value of the integral gain of voltage loop KIV. 4.2 PI-Controller with variable gain A program has been developed to compute the value of the variable integral gain KIV, using the following rule: if (eV � eVmin), KIV � KIVmin; elseif (eV � eVmax), KIV � KIVmax; else (eVmin� eV � eVmax), M � (KIVmax� KIVmin)/(eVmax� eVmin); C � KIVmin� M×eVmin; KIV = M×eV� C; end where, eV � voltage error, eVmin � minimum value of the volt- age error, eVmax � maximum value of the voltage error, KIVmin � minimum value of KIV, KIVmax � maximum value of KIV, C is a constant and M is the slope value. Fig. 4 shows the rule for calculating KIV of KIV against the terminal voltage error eV. The value of eVmin and eVmax is obtained by trail and error to give the best dynamic performance. The proportional gains (KPV and KPF) are also kept con- stant for the voltage and frequency controllers, respectively. Various characteristics are tested to study the effect of chang- ing the value of (KIV) to update the voltage control. The simulation results cover the starting period and the period when the system is subjected to a sudden increase in the load, at instant 8 sec. Fig. 3 shows the simulation results for the variable KIV . Figs. 5, 6 show the effect of variable voltage inte- gral gain KIV and frequency KIF controllers versus time, respectively. 38 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006 Fig. 3: Dynamic response of the terminal voltage with different values of integral gain for voltage control Fig. 4: Variable integral gain for PI controller 5 A Fuzzy Logic Controller (FLC) To design the fuzzy logic controller, FLC, the control engi- neer must gather information on how the artificial decision maker should act in the closed-loop system, and this would be done from the knowledge base [10]. The fuzzy system is con- structed from input fuzzy sets, fuzzy rules and output fuzzy sets, based on the prior knowledge base of the system. Fig. 7 shows the basic construction of the FLC. There are rules to govern and execute the relations between inputs and outputs for the system. Every input and output parameter has a mem- bership function which could be introduced between the lim- its of these parameters through a universe of discourse. The better the adaptation of the fuzzy set parameters is, the better the tuning of the fuzzy output is conducted. The proposed FLC is used to compute and adapt the variable integral gain KI of PI controller. © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 39 Acta Polytechnica Vol. 46 No. 6/2006 Fig. 5: Variable integral gain in PI-voltage controller with FLC Fig. 6: Variable integral gain in PI-frequency controller with FLC 5.1 Global input and output variables For voltage control the fuzzy input vector consists of two variables; the terminal voltage deviation eV, and the change of the terminal voltage deviation � eV . Five linguistic variables are used for each of the input variables, as shown in Fig. 8a and Fig. 8b, respectively. The output variable fuzzy set is shown in Fig. 8c and Fig. 8d, while shows the fuzzy surface. For frequency control, the fuzzy input vector also consists of two variables; the mechanical power deviation eF , and the change of the mechanical power deviation � eF . Five linguistic vari- ables are used for each of the input variables, as shown in Fig. 9a and Fig. 9b, respectively. The output variable fuzzy set is shown in Fig. 9c, and Fig. 9d shows the fuzzy surface. In Figs. 8, 9 linguistic variables have been used for the input vari- ables, P for Positive, N for Negative, AV for Average, B for Big and S for Small. For example, PB is Positive Big and NS is Negative Small, etc. After constructing the fuzzy sets for input 40 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006 Fig. 7: The three stages of the fuzzy logic controller a) b) c) d) Fig. 8: a) membership function of voltage error, b) membership function of change in voltage error, c) membership function of variable KIV, d) fuzzy surface and output variables, it is required to develop the set of rules, the so-called Look-up table, which defines the relation be- tween the input variables, eV, eF , � eV and � eF and the output variable of the fuzzy logic controller. The output from the fuzzy controller is the integral gain value of KI used in the PI controller. The look-up table is given in Table 1. 5.2 The defuzzification method The Minimum of maximum method has been used to find the output fuzzy rules representing a polyhedron map, as shown in Fig. 10. First, the minimum membership grade, which is calculated from the minimum value for the intersec- tion of the two input variables (x1 and x2) with the related fuzzy set in that rule. This minimum membership grade is calculated to rescale the output rule, then the maximum is taken, as shown in Fig. 11. Finally, the centroid or center of area has been used to compute the fuzzy output, which repre- sents the defuzzification stage, as follows: K y y y y y I � � � � � ( ) ( ) d d . More details about the variables of the above equation are given in [10]. 6 Simulation results 6.1 Dynamic performance due to sudden load variation The FLC utilizes the terminal voltage error (eV) and its rate of change (� eV ) as input variables to represent the volt- age control. The output of FLC is used to tune up KI of the PI controller. Another FLC is used to regulate the mechanical power via the blade angle adaptation of the wind turbine. Figs. 8a, b, c and d depict the fuzzy sets of eV, � eV , KIV and the © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 41 Acta Polytechnica Vol. 46 No. 6/2006 Voltage Deviation (eV) Voltage Deviation Change (� eV) NB NS AV PS PB NB NB NB NB NS AV NS NB NB NS AV PS AV NB NS AV PS PB PS NS AV PS PB PB PB AV PS PB PB PB Table 1: Look up table of fuzzy set rules for voltage control a) b) c) d) Fig. 9: a) membership function of mech. power error, b) membership function of change on mech. power error, c) membership function of variable KIF , d) fuzzy surface fuzzy surface, respectively. The terminal voltage error (eV) varies between (�220 and 220) and its change (� eV ) varies be- tween (� 22 and 22). The output of FLC is KIV, which changes between (5e�003 and 5.5e�003). Table 1 shows the lookup table of fuzzy set rules for voltage control. The same tech- nique is applied for the frequency controller, where the two inputs for FLC are the mechanical power error (eF ), which varies between (�1 and 1) and its change (� eF ), which varies between (�0.1 and 0.1). The output of FLC is KIF , which changes between (4e�006 and 5e�006). The output of the PI-FLC in the frequency controller adapts the pitch angle value to enhance the stator frequency. Fig. 9a, b, c and d show the fuzzy sets of eF , � eF , the related output fuzzy set and fuzzy surface, respectively. Based on the mathematical model of the system, equipped with two controllers (PI & FLC) for terminal voltage and blade angle, the simulation is carried out using the MATLAB- Simulink Package. It runs for a PI controller with varying integral gain finding a relation between the voltage or frequency error and the value of these gains. Figs. 11, 12, 13 show the simulation results for the terminal voltage for differ- ent loads. At time � 8 sec the system is subjected to sudden 42 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006 Rule1: if Verror (X1) is NS and Change in (Y)) is NSVerror (X2) is AV then output (integral gain Rule2: if Verror (X1) is AV and Change in Verror (X2) is PS then output (integral gain (Y)) is PS Fig. 10: Schematic diagram of the defuzzification method using the center of area Fig. 11: Dynamic response of terminal voltage for PI with and without FLC © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 43 Acta Polytechnica Vol. 46 No. 6/2006 Fig. 12: Dynamic response of terminal voltage for PI with and without FLC Fig. 13: Dynamic response of terminal voltage for PI with and without FLC change in load. Fig. 14 shows the stator frequency. The system is equipped with a conventional controller having fixed and variable integral gain and the FLC algorithm. The proposed FLC is used to adapt KI to give a better dynamic performance for the overall system, as shown in Figs. 11, 12, 13, regarding P.O.S and settling time compared with fixed PI and PI with variable KI for different loads. Figs. 15, 16 depict the simula- tion results for the load current and controller’s duty cycle. The same conclusion is achieved as explained for Fig. 11. 6.2 Dynamic performance due to sudden wind speed variation There are different simulation results when the overall sys- tem is subjected to a suddenly disturbance the wind speed from 7 m/s to 15 m/s in Figs. 17, 18 show the simulation results of the wind speed variation and the stator frequency, respec- tively. The simulation given in Fig. 18 shows the ability of the 44 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006 Fig. 14: Dynamic response of stator frequency for PI with and without FLC Fig. 15: Dynamic response of load current for PI with and without FLC proposed controller to overcome the speed variation for vari- able and fixed integral gain. 7 Conclusion This paper presents an application of FLC to a self-excited induction generator driven by wind energy. The proposed FLC is applied to frequency and voltage controls of the system to enhance its dynamic performance. FLC is used to regulate the duty cycle of the switched capacitor bank to adjust the ter- minal voltage of the induction generator. FLC is also applied to regulate the blade angle of the wind energy turbine to control the stator frequency of the overall system. The simula- tion results show better dynamic performance of the overall system using the FLC controller than for the variable PI type. Another simulation was conducted to study the dynamic performance to this system with a suddenly disturbance for wind speed variation. A comparison was conducted for the stator frequency in dynamic performance with variable and fixed KI. © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 45 Acta Polytechnica Vol. 46 No. 6/2006 Fig. 16: Dynamic response of duty cycle for PI with and without FLC Fig. 17: Suddenly variation for the wind speed versus time Appendix SEIG differential equations at no load vds Stator Voltage (volt) Differential Equation at Direct Axis v R i ps b b ds ds qs ds� � � � � � � � � � � � � � � � � � � � � , (1) vqs Stator Voltage Differential Equation at Quadrate Axis v R i ps b b qs qs ds qs � � � � � � � � � � � � � � � � � � � � � , (2) vdr Rotor Voltage Differential Equation at Direct Axis v R i p b b dr r dr r qr dr� � � � � � � � � � � � � � � � ( )� � � � � � , (3) vqr Rotor Voltage Differential Equation at Quadrate Axis v R i p b b qr r qr r dr qr � � � � � � � � � � � � � � � � ( )� � � � � � , (4) where p is the differentiation parameter d/dt. Flux Linkage Differential Equation for Stator and Rotor components �ds ls ds m dr ds� � � �X i x i i( ), (5) where �ds is the stator flux linkage (Wb) at direct axis, idr the rotor current (A) at direct axis, ids the stator current (A) at direct axis. �qs ls qs m qr qs� � � �X i x i i( ), (6) where �qs is the stator flux linkage at quadrant axis, iqr the rotor current at quadrant axis, iqs the stator current at the quadrant axis. �dr lr dr m dr ds� � �X i x i i( ), (7) �qr lr qr m qr qs� � �X i x i i( ), (8) d d qs b qs s qs ds � � � t v R i� � �( ), (9) d d ds b ds s ds qs � � � t v R i� � �( ), (10) where �dr, �qr is the rotor flux linkage at the direct and quad- rant axis, respectively, wb the base speed. Magnetizing reactance and load case differential equations i c v t v L i t ds ds ds L Lds d d d d � � � � � � � � � � � � � � � � � � � � � RL , (11) i c v t v L i t qs qs qs L Lqs d d d d � � � � � � � � � � � � � � � � � � � � � RL , (12) � �i i i i im qr qs dr ds� � � �( ) ( ) .2 2 0 5, (13) � �T i ie ds qs qs ds� � � � , (14) xm � 105 77. . . . . at m0 0 0 864. .� �i , (15) x im m � � 340 2 2 35 . . . . . . at m0 864 1051. .� �i , (16) 46 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006 Fig. 18: Stator Frequency according to the wind speed variation for SEIG controlled by FLC & PI x im m � � 227 4 122 . . . . . . . at m1051 1 476. .� �i , (17) x im m � � 202 3 9 3 . . . . . . . at m1 476 1717. .� �i , (18) x im m � � 179 8 6 3 . . . . . . . at m1717. � i . (19) Excitation differential equations i c p v C vcd cd s cq� � � � � �( )� , (20) i c p v C vcd cd s cq� � � � � �( )� , (21) where �s is the synchronous speed (rad/sec), icd the capacitor current in the direct axis, icq the capacitor current in the quadrant axis, C the value of the capacitor bank. C v t i i� � � � � � � � � d d ds ds Lds( ), (22) C v t i i� � � � � � � � � d d qs qs Lqs( ), (23) ( ) ( )L pi v R iL Lds ds L Lds� � � , (24) ( ) ( )L pi v R iL Lqs qs L Lqs� � � , (25) C v t i v L i t R � � � � � � � � � � � � � � � � �d d d dds ds ds L Lds L , (26) C v t i v L i t R � � � � � � � � � � � � � � � � �d d d dqs qs qs L Lqs L , (27) where iLds is the load current in the direct axis, iLqs the load current in quadrant axis, RL the load resistance (�), LL the load inductance (H). C C eff � � � max ( ) ( )1 2 2� � � , (28) where Ceff is the effective capacitor bank value (�F), Cmax is the maximum capacitor value, Cmin is the minimum capacitor value, � � (Cmax/Cmin), and � is the duty cycle value. Mechanical differential equations d d r b m e r � � � t H T T B� � � 2 ( ), (29) where �r is the rotor speed (rad/sec). P C D vm p 2 w 3� 1 8 � , (30) � � m � 2 60 n , (31) T P m m m � � , (32) C p � � � � � � �( . . ) sin ( ) . . ( )0 44 0 0167 3 15 0 3 0 00184 3� � � � � � , (33) � � � � �m w w R v D n v60 , (34) d d r b m e a r � � � t H T T B� � � 2 ( ), (35) where �m is the mechanical speed (rad/sec), Pm the mechanical power (kW), Tm the mechanical torque (Nm), n the rotor revolution per minute (rpm), Cp the power coefficient of the wind turbine, � the blade pitch angle ( ° ), � the tip speed ratio, vw the wind speed (m/s), R the rotor radius of the wind turbine (m), D the rotor diameter of the wind turbine (m), Ba the friction factor, Te the electrical torque (Nm), � � 3.14, air density (kg/m3). References [1] El-Sousy, F., Orabi, M., Godah, H.: Indirect Field Orienta- tion Control of Self-Excited Induction Generator for Wind Energy Conversion. ICIT, December 2004. [2] Mashaly, A., Sharaf, M. Mansour, M., Abd-Satar, A.A.: A Fuzzy Logic Controller for Wind Energy Utilization Scheme. Proceedings of the 3rd IEEE Conference of Control Application, August 24-26, 1994, Glasgow, Scotland, UK. [3] Li, Wang, Yi-Su, Jian: Dynamic Performance of An Iso- lated Self Excited Induction Generator Under Various Loading Conditions. IEEE Transactions on Energy Con- version, Vol. 15 (1999), No. 1, March 1999, p. 93–100. [4] Li, Wang, Ching- Huei, Lee: Long- Shunt and Short- Shunt Connections on Dynamic Performance of a SEIG Feeding an Induction Motor Load. IEEE Transactions on Energy Conversion, Vol. 14 (2000), No. 1, p. 1–7. [5] Atallah, A. M., Adel, A.: Terminal Voltage Control of Slef Excited Induction Generators. Sixth Middle-East Power Systems Conference MEPCON’98, Mansoura, Egypt, December 15–17,1998, p. 110–118. [6] Marduchus, C.: Switched Capacitor Circuits for Reactive Power Generation. Ph.D. Thesis, Brunuel University, 1983. [7] Soliman, H. F., Attia, A. F., Mokhymar, S. M., Badr, M.A.L., Ahmed, A. E. M. S.: Dynamic Performance En- hancement of Self Excited Induction Generator Driven by Wind Energy Using ANN Controllers. Sci. Bull. Fac. Eng. Ain Shams University, Part II. Vol. 39, No. 2, June 30, 2004, p. 631–651, ISSN 1110-1385. [8] Mokhymar S. M: Enhancement of The Performance of Wind Driven Induction Generators Using Artificial In- telligence Control. Ph.D. thesis Fac. Eng. Ain Shams University, March. 10, 2005. © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 47 Acta Polytechnica Vol. 46 No. 6/2006 [9] Ezzeldin, S. A., Xu, W.: Control Design and Dynamic Performance Analysis of a Wind Turbine- Induction Generator Unit. IEEE Transaction on Energy Conversion, Vol. 15 (2000), No. 1, March 2000, p. 91–96. [10] Passino, K. M., Yurkovich, S.: Fuzzy Control, Library of Congress Cataloging-in-Publication Data. (Includes biblio- graphical references and index). Addison Wesley Longman, Inc., 1998, ISBN 0-201-18074-X. Associate Prof. Dr. Ing. Hussein F. Soliman e-mail: hfaridsoliman@yahoo.com Currently Elect. & Computer Department King Abdulaziz University Faculty of Engineering Jeddah, Saudi Arabia Dr. Ing. Abdel-Fattah Attia e-mail: attiaa1@yahoo.com National Research Inst. of Astronomy and Geophysics P.O. 11421 Helwan Cairo, Egypt Dr. Ing. Mokhymar M. Sabry e-mail: sabry40@hotmail.com Electricity & Energy Ministry New & Renewable Energy Authority, Wind Management Cairo, Egypt Prof. Dr. Ing. M. A. L. Badr Elect. Power and Machines Department Ain Shams University Faculty of Engineering Abbasia Cairo, Egypt 48 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/ Acta Polytechnica Vol. 46 No. 6/2006