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Abstract 

The aim of this theoretical paper is to develop a mathematical model for describing the dissolution process, 
in a finite liquid environment, of an ensemble of poly-dispersed drug particles, in form of sphere, cylinder 
and parallelepiped that can undergo solubility reduction due to phase transition induced by dissolution. The 
main result of this work consists in its simplicity as, whatever the particular particles size distribution, only 
two ordinary differential equations are needed to describe the dissolution process. This, in turn, reflects in a 
very powerful and agile theoretical tool that can be easily implemented in electronic sheets, a widespread 
tool among the research community. Another model advantage lies on the possibility of determining its 
parameters by means of common independent techniques thus enabling the evaluation of the importance 
of solid wettability on the dissolution process. 
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Introduction 

The great variety of controlled drug delivery systems is designed in reason of the drug to be delivered 

and the clinical target that, in turn, determine the choice of administration routes, among which the most 

important are the oral, injectable, inhaled, transmucosal, transdermal and the implantable one [1]. Despite 

the specific delivery system and the administration route considered, the in vivo drug fate is usually 

characterized by some common steps such as the release from the delivery system and the subsequent 

tissue absorption and distribution, metabolism and elimination (L-ADME processes) [2]. Specifically to the 

first step, the release kinetics can be ruled by different phenomena including swelling, erosion, drug 

dissolution, drug transport (due to diffusion and/or convection), drug interaction with the delivery system, 

initial drug distribution inside the delivery system and some delivery system geometrical characteristics 

[3,4]. Independently from the administration route and drug, a key factor for the success and reliability of 

every delivery system is drug bioavailability, defined as the rate and extent to which the active drug is 
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absorbed from a pharmaceutical form thus becoming available at the site of drug action [5,6]. In turn, 

bioavailability depends strongly on drug permeability through cells membrane and drug solubilisation in 

physiological fluids. This is clearly pointed out by the bio-pharmaceutic classification according to which 

drugs can be subdivided into four classes: class I (high solubility and high permeability), class II (low 

solubility, high permeability), class III (high solubility, low permeability) and class IV (low solubility and low 

permeability) [7]. While permeation implies drug partitioning between a polar aqueous phase and an a-

polar phase (cellular membranes), unless active mechanisms rule drug permeation, solubilisation implies 

the drug dissolution process. This phenomenon must not be confused with the release process as 

dissolution is defined as “the mixing of two phases with the formation of a new homogeneous phase (i.e. 

the solution)” [8]. Dissolution, in particular, assumes relevant importance for class II drugs that, 

interestingly, represent about 40 % of the marketed drugs [9,10] and 70-90 % of the new chemical entities 

[9–12]. Indeed, most of the drugs are optimized solely on the basis of their pharmacological activity and not 

for what concerns bioavailability. Examples of commonly marketed drugs that are poorly soluble in water 

(less than 100 g/cm3 [13]) include non-steroidal anti-inflammatory drugs (NSAIDs), anticholesterol, 

antimycotics, antibiotics, anticonvulsants, chemotherapeutics, antivirals, β-blockers, calcium channel 

blockers and immunosuppressants [4,14-18]. 

The above considerations make clear why the drug dissolution process is actively studied in the 

pharmaceutical field from both an experimental and a theoretical viewpoint [4,19]. Experimentalists, 

typically, prefer to perform Dissolution Rate Test (DRT) [20,21], implying the dissolution of an ensemble of 

poly-dispersed drug particles in water or in a physiological fluid. In contrast, theorists propend for Intrinsic 

Dissolution Rate test (IDR), implying the dissolution from the flat surface of a drug tablet fixed to a rotating 

shaft [4]. While DRT is much closer to the in vivo drug performance, IDR is much simpler to be modelled. 

Indeed, IDR takes place in a much more controlled frame as fluid hydrodynamics around the flat rotating 

surface is well understood thanks to the elegant approach of Levich [22]. However, nowadays, the necessity 

of designing more and more sophisticated delivery systems stimulated theorists to move towards 

experimentalists. Therefore, interesting studies about the hydrodynamic conditions taking place in DRT [23-

24] and the direct observation of particles size reduction during DRT [19] have been undertaken. 

Additionally, due to the relevance in the pharmaceutical field, theorists started considering also possible 

variation of solubility occurring upon dissolution, whose kinetics, as later discussed, essentially depends on 

the surface available for dissolution, on mass transport resistance occurring at, and around, the solid/liquid 

interface and on drug solubility in the liquid phase. Indeed, it is well known that the contact between the 

drug and the liquid environment can lead to polymorphic transformations, as in the case of anhydrous 

theophylline that becomes hydrated [25] or nicergoline [26], or to amorphous drugs that recrystallize in the 

most stable crystalline form as it occurs for temazepam [14], nimesulide [27] and posaconazole [28]. 

Typically, phase transformations imply a reduction of solubility that, unavoidably, reflects in a reduction of 

drug bioavailability. Thus, these evidences underline the important role played by solubility on dissolution 

kinetics and increase the complexity of the already complex problem regarding solubility determination 

[29–31]. 

Historically, the first fundamental approach aimed at the description of DRT was that of Hixson and 

Crowell [32-34]. For the first time, they accounted for surface reduction upon dissolution of spherical 

particles and build up the famous cubic law. Then, the elegant model of Pedersen and co-workers 

accounted also for spherical particles poly-dispersion [35-38]. Interestingly, this model reduces to the 

Hixson-Crowell one in the case of monodispersed spherical particles. Since then, many other models were 

built up. Among others, we can remember the one of Thormann and co-workers that considers also the 
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possible drug degradation after dissolution [39], the model of Hirai and co-workers that does not account 

explicitly for the shape of particles but focuses the attention on a law able to describe the time dependence 

of the dissolution surface [40] and the model of Guo and co-workers focusing on polymorphic 

transformation induced by dissolution (rifampicin, from form II to I) [41]. 

The aim of this paper is to build up a mathematical model able to merge a reasonably accurate 

description of the physical phenomena occurring in DRT with the practical need of experimentalists who 

demand theoretical tools able to guide experiments design and to allow a reliable data interpretation. In 

particular, the model will account for drug solubility reduction upon dissolution, particle poly-dispersion, 

particle geometry (spherical, cylindrical and parallelepiped) and the presence of a finite release 

environment. 

Mathematical Modelling  

Dissolution can be considered as a consecutive process made up by five steps [8,42,43]: 1) contact of the 

solvent with the solid surface (wetting), which implies the production of a solid/liquid interface starting 

from solid/vapor one, 2) breakdown of intermolecular bonds in the solid phase (fusion), 3) molecules 

transfer from the solid phase to the solid/liquid interface (solvation), 4) diffusion of the solvated molecules 

through the unstirred boundary layer surrounding the solid surface (diffusion), 5) convective transport of 

solvated drug molecules into the well stirred bulk solution (convection). The first four steps, that can be 

viewed as the sum of four energy steps, represent the total resistance that the drug molecules have to 

overcome in order to move from the solid phase to the solution one (dissolution). Obviously, the higher the 

dissolution energy required (i.e. the higher the mass transfer resistance) the lower the dissolution kinetics 

is. 

In order to connect the four steps, we need to know the time evolution of the drug concentration profile 

in the unstirred boundary layer surrounding the solid surface, whose presence is unavoidable and whose 

thickness depends on the relative velocity among particles and external fluid, on fluid kinematic viscosity, 

on particles dimension and on drug diffusion coefficient in the unstirred layer [24]. For this purpose, 

recourse can be made to the Fick’s second equation: 

 
C

D C
t


 


 (1) 

where C is drug concentration, t is time, D is the drug diffusion coefficient in the unstirred layer and  is the 

gradient vector whose components analytical expression depends on the particular reference system 

chosen (Cartesian, spherical, cylindrical). The first model assumption relies on the hypothesis that mass 

transport inside the unstirred layer is one dimensional (the direction is that perpendicular to the solid 

surface) while the second one consists of the rapid attainment of pseudo-stationary conditions in the 

unstirred layer (this hypothesis is supported by the numerical solution of Eq. (1) assuming usual values for D 

(~ 10–10 m2 s–1) [4] and stagnant layer thickness ≤ 20 m). Thus, Eq. (1) becomes: 

  0D C    (2) 

Eq. (2) has to be solved considering the following initial and boundary conditions: 

Initial: C(ξ) = 0 ξmin < ξ ≤  ξmax   (3) 

Boundary:     
min

min( )m sD C k C C
 




    n  (4) 

 C(ξmax) = Cb (5) 
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where  is the one dimensional spatial coordinate, (max -min) is the thickness of the unstirred layer (), n is 

the surface normal versor, Cs is drug solubility in the dissolution liquid while km is the interface mass 

transfer coefficient mainly depending on the dissolution surface wetting properties and representing 

dissolution step 1. Eq. (3) affirms that, at the beginning, the unstirred layer does not contain drug molecules 

while Eq. (4) states that the drug flux leaving the solid surface depends on km and on the difference 

between drug solubility and drug concentration at the solid-liquid interface on the liquid side. Finally, Eq. 

(5) imposes that drug concentration equates Cb at the unstirred layer – bulk liquid interface. Eq. (2) 

solution, in Cartesian, cylindrical and spherical coordinates reads, respectively: 

 s b
b

d

m

( ) 1

1

C C
C C

k

k






  
   

 

 Cartesian (6) 

  max maxm m
b s b

d min d min
( )    ln / ln

k k
C C C C

k k

 


  

   
        

    

   cylindrical (7) 

  2 maxm m
b s b min max min

d d
C( ) =  1 /

k k
C C C

k k


    



   
        

    

       spherical (8) 

where Cb is the drug concentration in the bulk liquid at time t, Cs is drug solubility in the liquid phase and kd 

is the mass transport coefficient (= D/) accounting for the fourth dissolution step (drug diffusion through 

the unstirred liquid layer). Eqs. (6) – (8) make clear that while in the Cartesian case (flat dissolution surface) 

a linear concentration profile develops in the unstirred layer, not linear concentration profiles take place 

when the dissolution surface is not flat. In addition, Eqs. (6) – (8) allow to evaluate the drug concentration 

C0 in  = min, i.e., at the solid-liquid interface (liquid side): 

m m
0 s b s

d d
   ( ) / (1 )

k k
C C C C

k k
                Cartesian (9) 

  max maxm m
0 b s b

d min min d min
      ln / ln

k k
C C C C

k k

 
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    
        

    
 cylindrical (10) 

  m m
0 b s b min max min

d d
C  =  /

k k
C C C

k k
  

 
   

 
 spherical (11) 

Eqs. (9) – (11) affirm that at t = 0, when Cb = 0, C0 is a fraction of Cs, while C0 = Cs after a very long time 

when Cb = Cs, i.e. C0 increases with time up to Cs. When no wettability problems occur (km → ∞), C0 is always 

equal to Cs while it is equal to Cb = 0 when km → 0 (very poorly wettable solids). 

By means of Eqs. (6) – (8), it is possible writing the ordinary differential equation accounting for drug 

concentration increase in the liquid phase: 

 V 
dCb

dt
=-S (D

∂C

∂ξ
 )|

ξ=ξmax

= SK(Cs-Cb)  , (12) 

where V is the liquid volume and K is an overall mass transport coefficient assuming different analytical 

expressions depending on the particular coordinate system considered: 

 Cartesian cylindrical spherical 

m d

1
K = 

1 / 1 /k k
 min max

max min

m d max min

/
K = 

ln( / )1 1
 
( / 1)k k

 

 

 




 in ax

max

d m min

/
K = 

1 1
( ( ))

m m

k k

 






 (13) 
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Eq. (12) states that the increase of the drug mass in the fluid phase is equal to the drug flow leaving the 

solid surface available for dissolution. In addition, Eq. (13) says that when no wettability problems arise  

(km → ∞) K coincides with kd, provided that the thickness of the unstirred layer  is very small (max ≈ min) in 

the case of cylindrical and spherical geometry (obviously, when km → 0, K → 0). Although K varies with 

particle dimension as kd depends on particle dimension [24], in order to simplify the scenario, the third 

hypothesis of the present model considers the K independence on particle dimensions so that an average 

value has to be considered. As a matter of fact, the great advantage of this usual hypothesis consists in an 

easy description of the dissolution process characterizing an ensemble of poly-dispersed particles of 

different shape (parallelepiped, cylinder, sphere). Indeed, it allows assuming that the solid amount 

dissolved per unit time and surface is the same whatever the surface delimiting the solid particle. 

Accordingly, in the case of a parallelepiped of dimensions Xi, Yi, Zi, we have: 

P
i i i i i i i

i i i i i i
d d( ) d( ) d( ) d( )

       
d d d d d

M XYZ X Y Z
Y Z X Z XY

t t t t t
         , (14) 

   i i i i
i i i i s b s b

d( ) d( ) d( ) d( )
 ρY    -2     ---       -2  =      

d d d d

X X Y ZK
Z Y Z K C C C C

t t t t



      , (15) 

where Mi
P and  are the parallelepiped mass and density, respectively. As the displacement  of the 

dissolution front is the same for each one of the parallelepiped surface, from Eq. (15) we have: 

 i i i
0i s b

d( ) d( ) d( )d( ) 1 1 1
    -2         ---                 

d 2 d 2 d 2 d  
i

X Y Z K
X X C C

t t t t





        (16) 

In the case of a cylinder of dimensions Ri, Li, we have: 

c 2
2i i i i i

i i i
d d( ) d( ) d( )

        2π π
d d d d

M R L R L
LR R

t t t t


      (17) 

   i i
i i i i s b s b

d( ) d( )
2π  -2π      ---      

d d

R R K
LR RLK C C C C

t t
 


     (18) 

   2 2i i
i i s b s b

d( ) d( )
π    -2π           ---       2

d d

L L K
R R K C C C C

t t
 


     (19) 

where Mi
c is the cylinder mass. Consequently, it follows: 

 i i
i 0i i 0i s b

d( ) d( )d( ) 1
    - ;       -2    ---            = 

d d 2 d

R L K
R R L L C C

t t t





        (20) 

Finally, for a sphere of radius Ri, we have: 

   

3
s i

2 2i i i
i i s b s b

4
d π

d   d( ) d( )3
      4π    -4π  --     -

d d d d

R
M R R

K
K

R R C C C C
t t t t

  


 
 
 

       (21) 

where Mi
s is the sphere mass. Consequently, it follows: 

 i
i 0i s b

d( )d( )
    -   ---        = 

d d

R K
R R C C

t t





     . (22) 

The most important message of Eqs. (14) – (22) relies on the possibility of determining particles 

dimensions upon dissolution, regardless of the geometry, by the evaluation of just the dissolution front 

displacement . 
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In order to complete the model, it is necessary evaluating both Cs and Cb. Indeed, as discussed in the 

introduction, it is quite common that, upon dissolution, the drug undergoes a phase transformation 

(polymorphic or amorphous – crystalline) implying a solubility reduction. Typically, this phenomenon is 

described by a first order reaction [44] occurring at the solid-liquid interface and leading to the following 

expression for the Cs temporal reduction: 

Cs = Csf+(Cs-in-Csf)e
(-krt)   ,  (23) 

where Csf and Cs-in are, respectively, the final and initial values of solubility while kr is the recrystallization 

constant and t is time. As a matter of fact, Eq. (23) accounts for the dissolution step 2 as solubility is directly 

connected with the crystal network breakdown attitude that is quantified by its melting temperature and 

enthalpy [45]. In order to account also for a possible recrystallization in the bulk phase (occurring when 

Cb(t) > Cs(t)), it is necessary considering the following equation: 

dMc

dt
= krb V(Cs(t) - Cb(t))   ,  (24) 

where Mc is the amount of recrystallized solid and krb is the bulk recrystallization constant that can differ 

from kr. Obviously, while Eq. (24) works only when Cb(t) exceeds Cs(t), the initial value for Mc is set to zero. 

The determination of Cb relies on a global mass balance ensuring that the initial solid mass (M0) must be 

equal, at any time, to the sum of the undissolved mass, the solubilized drug present in the bulk solution and 

Mc (the very small thickness of the boundary layer renders negligible the drug amount contained in it): 

   

i=N
i=N

0 pi i ci=1
0 pi pi b c b

i=1

( )
 =   ( )  --   

M N V M t
M N V C t V M t C t

V
 

 
  


  , (25) 

where Npi represents the number of particles characterized by a volume Vpi and N is the number of classes 

into which the particle size distribution is subdivided in. It is interesting to notice that Eq. (25), de facto, 

accounts for the presence of a finite volume of the liquid phase (V). Indeed, when V → ∞, Cb will be always 

zero. For its mathematical attitude in describing particle size distributions, the Weibull equation was 

considered to describe the initial particles size distribution [46]: 

i min(-(2 ) )
i

i
0

 
=1-

V
W e

V

 





 , (26) 

where V0 is the total volume of the solid drug, Vi is the volume occupied by all the particles sharing the 

same characteristic dimension i (radius in the case of spheres and cylinders, X dimension in the case of 

parallelepipeds), min is the minimum value of i while  and  are two model parameters. Once particle 

geometry is fixed, Vi enables the determination of Npi by a simple geometric relation. Obviously, when the 

generic i goes to zero due to dissolution, Npi is set to zero as this particle class has disappeared and it no 

longer contributes to the dissolution phenomenon. Thus, Eq. (26) serves only to evaluate the initial number 

of particles belonging to class ith. 

In conclusion, the proposed model, establishing a connection among the dissolution steps, assumes that 

the dissolution kinetics can be essentially affected by steps 1, 2 and 4, attributing to step 3 a negligible role. 

In addition, whatever the number of classes constituting the particles size distribution, this model needs 

only two differential equations: one among the differential equations appearing in Eq. (16), (20) and (22), 

aimed at the prediction of the time evolution of the dissolution front position (), plus Eq. (24) accounting 

for the time evolution of the recrystallized drug amount from the solution. Indeed, once  is known, it is 
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possible evaluating the dimension i for all the particle class particles resorting to the algebraic relation 

linking i to  for the different geometries (see the first relation appearing in Eqs. (16), (20) and (22)). Of 

course, when i ~ 0 due to the dissolution process, the particle class particles is no longer considered letting 

i = Npi = 0. As this model does not lead to an analytical solution, its iterative numerical solution (relaxation 

method, relaxation parameter  = 1, relative tolerance = 10-3 [47]) was performed discretizing the two 

differential equations by means of the implicit Euler method. In order to ensure the numerical solution 

accuracy and stability, the time step was set to 0.25 s and the particles size distribution was subdivided into 

N = 200 classes. 

Results and Discussion 

As many parameters affect model output, it would be impossible discussing the effects of all of them 

and how they interact to affect the dissolution kinetics. Accordingly, we decided to focus on three aspects, 

namely particle shape (parallelepiped, cylinder, sphere), particle size distribution and the ratio (V+) between 

the liquid phase volume (V) and the initial solid drug volume (M0/). Indeed, especially the last two, 

represent the most important parameters available for the designing of the experimental set up. 

In order to properly evaluate the effect of particles shape on dissolution kinetics, the parameters of the 

Weibull distribution, whose differential expression is: 

i min(-(2 ) )
(α-1)i 0 i min

di
d( / )

= (2 )(2 )
d

V V
W e

 

 

  




 , (27) 

were fixed to get similar profile of Eq. (27) for parallelepiped, cylinder and sphere when plotted versus the 

volume competing to particles identified by the characteristic dimension i. In the case of sphere i = Ri and 

the corresponding volume is (4/3)Ri
3, in the case of cylinder i = Ri and the corresponding volume is Ri

3FR, 

while, in the case of parallelepiped, i = Xi so that the corresponding volume is Xi
3FyxFzx. For the sake of 

simplicity, in the case of cylinders and parallelepipeds, it was assumed that the ratio FR between cylinder 

radius and length, and the ratios Fyx = Yi/Xi and Fzx = Zi/Xi for parallelepiped were the same for all particles. 

Accordingly, FR, Fyx and Fzx can be considered as shape factors characterizing, respectively, cylinders and 

parallelepipeds. Figure 1a shows the trend of Wdi for spheres, parallelepipeds and cylinders vs Vi assuming 

FR = 2 and Fyx = Fzx = 1 (cubical cylinder and cube). 

Although the three Wdi do not share exactly the same wideness in Vi, they are characterized by the same 

peak amplitude and position. In addition, as all of them are very narrow (10 m ≤ Ri ≤ 11 m, 16 m ≤ Xi ≤ 

17 m and 9 m ≤ Ri ≤ 10 m for spheres, parallelepipeds and cylinders, respectively) they can be thought 

to be representative of approximately mono-dispersed size distributions. Relaying on these particle size 

distributions and assuming typical values for the other model parameters [4], Figure 1b shows model 

predictions considering different values of the ratio V+ between liquid volume (V) and initial particles 

volume (V0=M0/) in the case of a drug undergoing recrystallization upon dissolution. It is clear that 

whatever V+, particle shape does not seem important as the dimensionless drug concentration in the liquid 

phase Cb
+ (= Cb/Cf; left vertical axis) is very similar for spheres (thick line), parallelepiped-cubes (thin line) 

and cubical cylinders (dashed line). In addition, when V+ is high (≥ 1500), the classical oversaturation peak 

does not appear (the over saturation condition is never met as Cb
+(t) is always lower that than Cs

+(t)) and 

only for smaller V+ it occurs, becoming evident for V+ ≤ 270. Finally, it is interesting to underline that the Cb
+ 

peak always occurs when the time dependent dimensionless drug solubility Cs
+ (= Cs(t)/Cf; right vertical axis) 

crosses the Cb
+ trend. Indeed, from now on, the solution is in over saturation conditions and only after a 

very long time Cb
+ equates Cs

+. 
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Figure 1. (a) Weibull differential distribution Wdi vs particles volume Vi for spheres, parallelepipeds and cylinders. Wdi 

parameters read: sphere –  = 2,  = 0.8 m, Rmin = 10 m -, parallelepiped -  = 2.35,  = 0.9 m, Xmin = 16 m, Fyx = 

Fzx = 1 (cubes) -, cylinder -  = 2,  = 0.8 m, Rmin = 9 m, FR = 2 (cubical cylinders). (b) Model predictions relative to 
the particle size distribution shown in Figure 1a. Cb

+
 (left vertical axis) and Cs

+
 (right vertical axis) are, respectively, the 

dimensionless drug concentration and solubility in the liquid phase (normalized with respect of the drug final solubility 

Cf) while t
+
 is a dimensionless time defined by t+= (tK) √V0

3⁄ , being K the dissolution constant and V0 the particles 

volume before dissolution. V
+
 is the ratio between liquid volume (V) and V0. Other model parameters, set according to 

[4], read:  = 1.5 g/cm
3
, Cs-in = 2*10

-2
 g/cm

3
, Csf = 10

-3
 g/cm

3
, kr = krb = 10

-2
 s

-1
, K = 10

-3
 cm/s. 

In order to appreciate the effect of particle shape factor on dissolution kinetics, we considered 

parallelepipeds characterized by three different values of the shape factor Fzx (0.25, 1 and 10), the same 

value for Fyx = 1 (parallelepipeds with square basis and different heights) and the same Xi size distribution 

adopted in Figure 1a (parallelepiped case). The three distributions considered, depicted in Figure 2a, clearly 

show that all other parameters being equal, the decrease of Fzx implies smaller particles and this, in turn, 

reflects in an increased dissolution surface. Practically speaking, we are comparing almost monodispersed 

particles size distributions composed by thin platelets (Fzx = 0.25), cubes (Fzx = 1) and long rods (Fzx = 10). 

  

Figure 2. (a) Weibull differential distribution Wdi vs. particles volume Vi for parallelepipeds characterized by three 
values of the Fzx shape factor (0.25, 1, 10), the same shape factor Fyx = 1 and the parameters adopted in Figure 1a 

(parallelepiped case):  = 2.35,  = 0.9 m, Xmin = 16 m. (b) Model predictions relative to the particle size distribution 
shown in Figure 2a. Cb

+
 is the dimensionless drug concentration in the liquid phase (normalized with respect of the 

drug final solubility Cf) while t
+
 is a dimensionless time defined by t+= (tK) √V0

3⁄ , being K the dissolution constant and V0 

the particles volume before dissolution. V
+
 (= 150) is the ratio between liquid volume (V) and V0. Other model 

parameters, set according to [4], read:  = 1.5 g/cm
3
, Cs-in = 2*10

-2
 g/cm

3
, Csf = 10

-3
 g/cm

3
, kr = krb = 10

-2
 s

-1
, K = 10

-3
 

cm/s. 
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Assuming V+ = 150 and the same model parameters adopted in Figure 1b, model output is shown in Figure 

2b. It is clear that, in this case, the effect of particle shape is no longer negligible as Cb
+ profile is 

undoubtedly affected by the increasing surface area available for dissolution induced by the different 

values of the shape factor Fzx. Thus, particle shape factor becomes important as soon as it reflects in a 

significant variation of the area available for dissolution. In addition, it turns out that, in the case of drugs 

undergoing recrystallization, the characteristics of the oversaturation peak can also depend on particles 

shape factor. 

With the aim of exploring also the effect of particles poly-dispersion, Figure 3a considers parallelepipeds 

in form of platelets (Fzx = 0.25, Fyx = 1), cubes (Fzx = 1, Fyx = 1) and rods (Fzx = 10, Fyx = 1) characterized by the 

same poly-dispersion of the Xi dimension. With respect to the distributions shown in Figure 2a, the 

wideness of the three distributions is now increased as Xi spans from about 1 m up to 100 m while in 

Figure 2a we have 16 m ≤ Xi ≤ 17 m. Figure 3b witnesses that also in this case, despite poly-dispersion, a 

clear difference in the Cb
+ kinetics emerges as, again, platelets are characterized by the smallest particles 

and rods correspond to the biggest one while cubes put in the middle as shown by the position of each 

distribution peak. Obviously, the Cb
+ temporal evolution is a little bit depressed with respect to that 

reported in Figure 2b as poly-dispersion implies a reduction of the surface area available for dissolution. 

Again, the importance of poly-dispersion is strictly related to the effects it implies on the surface area 

available for dissolution. 

  
Figure 3. (a) Weibull differential distribution Wdi vs particles volume Vi for parallelepipeds characterized by three 

values of the Fzx shape factor (0.25, 1, 10), the same shape factor Fyx = 1 and the following parameters:  = 2.35,  = 90 

m, Xmin = 1 m. (b) Model predictions relative to the particle size distribution shown in Figure 3a. Cb
+
 is the 

dimensionless drug concentration in the liquid phase (normalized with respect of the drug final solubility Cf) while t
+
 is 

a dimensionless time defined by t+= (tK) √V0
3⁄ , being K the dissolution constant and V0 the particles volume before 

dissolution. V
+
 (= 150) is the ratio between liquid volume (V) and V0. Other model parameters, set according to [4], 

read:  = 1.5 g/cm
3
, Cs-in = 2*10

-2
 g/cm

3
, Csf = 10

-3
 g/cm

3
, kr = krb = 10

-2
 s

-1
, K = 10

-3
 cm/s. 

Case studies 

After having explored some important model characteristics, with the aim to come closer to 

experimentalist need, in the following sections the attention will be focused on three different drugs 

undergoing solubility reduction upon dissolution. 

The first drug considered is anhydrous theophylline (C7H8N4O2, Mw = 180.2; essentially neutral 

compound; it is a bronco-dilatator indicated mainly for asthma, bronchospasm, and COPD) that, upon 

dissolution in water, transforms into the more stable monohydrate form (C7H8N4O2
●H2O, Mw = 198.2,  = 

1.49 g/cm3 helium pycnometry) [25]. This polymorphic transformation implies a solubility reduction (T = 

25 °C and pH = 7) from Cs-in = 11.6 mg/cm3 (anhydrous) to Csf = 6.1 mg/cm3 (monohydrate). In addition, the 
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analysis of IDR experiments reveals that K = 3.4*10-3 cm/s and kr = 6*10-3 s-1 [4]. As one of the key factors 

ruling dissolution kinetics is the surface area of theophylline particles, particular care has to be devoted to 

the determination of this parameter. First of all, the inspection of Figure 4a suggests that rods (~ Fyx = Fzx = 

0.25) could approximate the shape of anhydrous theophylline particles. Then, on the basis of this 

consideration, the parameters ruling the Weibull distribution, Eq. (27), are chosen in order to meet the 

experimentally determined theophylline specific area (0.331 m2/g, mercury porosimetry, unpublished 

data). The following values come out from this procedure:  = 2,  = 115 m and 1 m ≤ Xi ≤ 150 m. 

Although this is not the unique choice of Eq. (27) parameters leading to the experimentally determined 

specific surface area, it surely represents a physically sound choice. Relying on this set of parameters, and 

assuming that the recrystallisation constant in the bulk liquid, krb, equates that on particles surface (kr), 

model predictions about anhydrous theophylline dissolution are performed assuming different values of V+ 

as this is one of the most important and easy parameter to act on in order to properly design the 

experimental set up. Figure 4b indicates that the over saturation peak appears for V+ ≤ 194 and its 

amplitude increases with V+ reduction up to about 2, i.e. the value of the ratio Cs-in/Csf. The decrease of the 

dimensionless solubility Cs
+, indicated by the dotted line in Figure 4b, always intersects the Cb

+ trend in its 

maximum and it is a measure of how fast the polymorphic transition takes place. In addition, Figure 4c 

allows to evaluate, for different V+ values, the temporal evolution of the dimensionless recrystallized drug 

amount (Mc
+) jointly with the dimensionless drug amount that has not yet undergone dissolution (Ms

+). 

While Ms
+ shows a faster decrease for increasing V+, less regular is the behaviour of Mc

+ due to its sigmoidal 

shape. 

The second drug considered is griseofulvin (C17H17ClO6, Mw = 352.8;  = 1.49 g/cm3 helium pycnometry; 

neutral compound; it is an antifungal drug used to treat a number of types of dermatophytoses), a typical 

class II drug that, upon milling, rapidly transforms in its amorphous state. The analysis of IDR tests reveals 

that, at 37 °C and pH = 7.5, the solubility of amorphous griseofulvin in water is 235 g/cm3 while crystalline 

solubility is 60 g/cm3. It is worth mentioning that 60 g/cm3 exceeds the true griseofulvin solubility, i.e. 

that competing to griseofulvin crystals obtained by double recrystallization of native drug from acetonitrile, 

that is 12 g/cm3. The reason for this discrepancy is due to the presence of many defects in the crystal 

structure of the commercially available griseofulvin so that it results to be a mixture of macrocrystals, 

nanocrystals and amorphous phase [4]. As it is well known that solubility increases with the reduction of 

crystal dimension [45], this discrepancy is not surprising. However, as, typically, DRT tests are performed on 

commercially available drugs, the solubility value of 60 g/cm3 will be adopted for the following model 

simulations. Furtherly, the analysis of IDR test provides the following values for the dissolution K = 3.4*10-3 

cm/s and the recrystallization kr = 9*10-4 s-1 constants [4]. Again, the determination of the griseofulvin size 

distribution is performed by looking at the morphology of griseofulvin particles (Figure 5a) and, then, by 

choosing a reasonable set of Weibull parameters able to lead to the experimentally measured specific 

surface area (0.954 m2/g [48]). 

Looking at Figure 5a, we can roughly assume that griseofulvin particles are cubes (Fyx = Fzx = 1) while a 

reasonable choice for the Weibull parameters is:  = 1.49,  = 13.6 m and 0.1 m ≤ Xi ≤ 100 m. Relaying 

on this set of parameters, and assuming that the recrystallisation constant in the bulk liquid, krb, equates 

that on particles surface (kr), model predictions about griseofulvin dissolution are performed assuming 

different values of V+ as this is one of the most useful parameters aimed at the proper experimental set up 

design. Figure 5b underlines that, due to relatively small kr (= krb) value (at least in comparison with that 

competing to anhydrous theophylline), the over saturation peak is scarcely visible, although present (see in 

Figure 5a the intersection of the various Cb
+ trends with Cs

+ trend), whatever V+. In this case, indeed, we 
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should more properly speak about an “over saturation plateau” whose entity, obviously, increases with V+ 

decrease. A direct consequence of this behaviour is 1) the fast reduction of the drug amount that has not 

yet undergone dissolution (Ms
+) at time t, whose reduction kinetics increases with V+ (Figure 5c) and 2) the 

limited amount of the dimensionless recrystallized drug amount (Mc
+) that never exceeds the 10 % of M0 

even for the smallest V+ considered (Figure 5c). 

The last drug studied is nimesulide (C13H12N2O5S, Mw = 308.5;  = 1.49 g/cm3 helium pycnometry; weak 

acid compound characterized by pKa = 6.5 [49]; it is a non-steroidal anti-inflammatory drug), a typical class 

II drug that, upon milling, can be transformed in nanocrystals and amorphous state. 

 

  

Figure 4. (a) Picture of anhydrous theophylline particles. (b) Model predictions about theophylline DRT assuming 
different values of the ratio V

+
 between liquid (V) and particles (V0) volume. Cb

+
 (left vertical axis) and Cs

+
 (right vertical 

axis) are, respectively, the dimensionless drug concentration and solubility in the liquid phase (normalized with 
respect to the drug final solubility Cf). (c) Dimensionless amount of drug (Ms

+
) still solid after time t and amount of 

recrystallized drug (Mc
+
) in the liquid phase. Both amounts are normalized with respect of the initial drug particles 

mass M0. 

Nimesulide is, among the three drugs considered, the less soluble in water being its solubility at 37 °C 

and pH ≤ 6 equal to 9 g/cm3 and around 100 g/cm3 at the same temperature but pH = 7.5 [50]. Fixing the 

attention on the pH ≤ 6 range, nimesulide solubility increases after co-grinding (in presence of a stabilizer) 

due to the transformation of macrocrystals into nanocrystals. Although solubility depends on nanocrystals 

dimension [45], we can set for nanocrystals solubility the value of 28 g/cm3 that corresponds to four hours 

co-grinding as described in [27]. Figure 6a inspection reveals that nimesulide crystals look like needles so 

that their approximation by long cylinder (FR ~ 15) seems the best choice. In order to match the 
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experimentally determined specific area of nimesulide powder after grinding (2.7 m2/g, mercury 

porosimetry; unpublished data), a reasonable choice for the Weibull distribution is:  = 4,  = 0.54 m and 

0.3 m ≤ Ri ≤ 0.8 m. Finally, the analysis of the release test performed in [27] let to conclude that the 

dissolution K is equal to 1.8*10-5 cm/s and that the recrystallization constant kr is equal to 1.3*10-2 s-1. If the 

small K value witnesses the very low nimesulide propensity to dissolve, this being due to its low wettability 

(static water contact angle ~ 70° [51]), the high kr value indicates that nanocrystals and the amorphous 

phase are very instable and tend to rapidly recrystallize in the more stable crystalline form (this is the 

reason why nimesulide has to be co-ground together with a stabilizer, typically polyvinylpyrrolidone). 

Relaying on the above parameters set, and assuming that the re-crystallisation constant in the bulk liquid, 

krb, equates that on particles surface (kr), model predictions about nimesulide dissolution are performed 

assuming different values of V+. Figure 6b shows the appearance of more and more pronounced 

oversaturation peak for reducing V+. In addition, the high kr value (in comparison to those competing to 

theophylline and griseofulvin), makes peak shape very evident as the re-crystallization process is fast. 

Clearly, when V+ is sufficiently high, the peak disappears. The presence of a clearly identifiable peak, 

however, does not mean that a considerable amount of nimesulide goes in solution, as shown in Figure 6c. 

Indeed, dimensionless undissolved drug amount (Ms
+) is always close to 100 % M0 and the dimensionless 

re-crystallized drug amount (Mc
+) is always lower that 0.025% M0, whatever V+ considered in the 

simulations. 

 

  

Figure 5. (a) SEM picture of griseofulvin particles. (b) Model predictions about griseofulvin DRT assuming different 
values of the ratio V

+
 between liquid (V) and particles (V0) volume. Cb

+
 (left vertical axis) and Cs

+
 (right vertical axis) are, 

respectively, the dimensionless drug concentration and solubility in the liquid phase (normalized with respect to the 
drug final solubility Cf). (c) Dimensionless amount of drug (Ms

+
) still solid after time t and amount of recrystallized drug 

(Mc
+
) in the liquid phase. Both amounts are normalized with respect of the initial drug particles mass M0. 
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Figure 6. (a) SEM picture of nimesulide particles (needles) co-ground with polyvinylpyrrolidone (bigger particles). (b) 
Model predictions about nimesulide DRT assuming different values of the ratio V

+
 between liquid (V) and particles (V0) 

volume. Cb
+
 (left vertical axis) and Cs

+
 (right vertical axis) are, respectively, the dimensionless drug concentration and 

solubility in the liquid phase (normalized with respect to the drug final solubility Cf). (c) Dimensionless amount of drug 
(Ms

+
) still solid after time t and amount of recrystallized drug (Mc

+
) in the liquid phase. Both amounts are normalized 

with respect of the initial drug particles mass M0. 

Conclusions 

Assuming that:  

1) mass transport inside the unstirred layer surrounding each particle is one dimensional,  

2) that a rapid attainment of pseudo-stationary conditions in it takes place and that  

3) the dissolution constant K is independent on particle dimensions,  

the proposed model provides a description of the dissolution kinetics (DRT) from an ensemble of solid drug 

particles, eventually undergoing re-crystallization in a finite release environment, by means of only two 

differential equations, regardless of the number of the classes into which the continuous particle size 

distribution is subdivided. Obviously, this represents a considerable advantage in computational and 

practical terms as it allows to easily implement the model also by means of electronic sheets that are 

widespread in the research community. In addition, this model allows to select particle shape among 

spheres, cylinder (characterized by different length/radius ratios) and parallelepiped (characterized by 

different Y/X and Z/X ratios), this driving the model close to the real situation. 

Despite this model requires a considerable number of parameters, the majority of them can be properly 

determined by means of common independent experiments (typically IDR test, mercury porosimetry, gas 

adsorption analysis (B.E.T.) and helium pycnometry) and only the dissolution constant K should be 

a

1 m

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Cs
+

Cb
+

t(s)

Cs
+

b

0

20

40

60

80

100

0

0.005

0.01

0.015

0.02

0.025

0 100 200 300 400 500

1
0

0
 M

s+

1
0

0
 M

c+

t(s)

Ms
+, V+ = 30, 60, 150, 745 c

http://dx.doi.org/10.5599/admet.841


Mario Grassi et al.  ADMET & DMPK 8(3) (2020) 297-313 

310  

determined by data fitting. Indeed, as it depends on the relative velocity among particles and the 

surrounding liquid phase, its theoretical determination would require a complex analysis of the 

hydrodynamic conditions taking place in the liquid phase. In addition, we have to remember that K depends 

also on the mass transfer coefficient connected to the wettability of the solid surface (km) (1/K is equal to 

the sum of the mass transfer resistances due to poor wettability (1/km) and due to the presence of the 

unstirred layer surrounding each particle (1/kd)). Consequently, the K experimental determination is, in our 

opinion, the simplest way to proceed also because a proper experimental set up, implying DRT tests 

performed at increasing values of the Reynolds number (Re) (increasing with the stirring velocity imposed 

in the liquid phase), allows to separately evaluate kd and km. Indeed, for high Re, K should be almost 

independent on Re as kd is proportional to Re0.5 [24] and, thus, dkd/dRe → 0 for high Re. Consequently, K 

should be mainly dependent on solid wettability (lim𝑅𝑒→∞(1 𝐾⁄ ) = lim
𝑅𝑒→∞

(1 𝑘𝑑⁄ + 1 𝑘𝑚⁄ ) ≈ 1 𝑘𝑚⁄  ). Once km is 

known, kd could be determined in correspondence of the different Re considered in order to know the 

function kd(Re) as km is Re independent. Finally, km could be related to the work of solid immersion in the 

liquid phase. 

In conclusion, this model allows to study and design DRT experiments permitting to enucleate the rate-

determining steps ruling the entire phenomenon. 
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