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A score test for the agronomical overlap effect 
in a two-way classification model

Test score para el efecto del solapamiento agronómico 
en un modelo de clasificación de dos vías
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ABSTRACT RESUMEN

In some agricultural research, a treatment applied to an ex-
perimental unit may affect the response in the neighboring 
experimental units. This phenomenon is known as overlap. 
In this article, a test to evaluate this effect in the Draper and 
Guttman model was developed by imposing side conditions on 
the parameters of a two-way classification model to obtain a 
re-parameterized model which can be used in different neigh-
boring patterns of experimental units, usually plants within a 
crop, whenever the nearest neighbor is considered a directly af-
fected experimental unit and the two-way model is used. Three 
methods, namely maximum likelihood, least squares with side 
conditions and generalized inverse, were used to estimate the 
parameters of the original model in order to calculate the value 
of the test statistics for the null hypothesis associated with the 
absence of the overlapping effect. The three alternatives were 
invariant with respect to the use of test. The proposed test is 
simple to adopt and can be implemented in agronomy since 
its asymptotic nature is in agreement with the large number 
of experimental units which generally exist in this type of 
research, where each plant represents the experimental unit 
being assessed.

En algunas investigaciones agrícolas, un tratamiento aplicado 
sobre una unidad experimental puede afectar la respuesta de 
unidades experimentales vecinas. Este fenómeno es conocido 
como solapamiento. En este artículo se desarrolló un test para 
evaluar este efecto, sobre el modelo de Draper y Guttman, 
mediante la imposición de condiciones laterales sobre los pa-
rámetros del modelo de clasificación de dos vías para obtener 
un modelo reparametrizado, el cual puede usarse bajo dife-
rentes patrones de vecindad de las unidades experimentales, 
usualmente plantas dentro de un cultivo, siempre y cuando 
sea considerado el vecino más cercano como la unidad expe-
rimental directamente afectada y el modelo sea de dos vías. 
Fueron usados tres métodos para estimar los parámetros del 
modelo original, a saber, el método de máxima verosimilitud, el 
método de mínimos cuadrados con imposición de condiciones 
laterales y el uso de una inversa generalizada para calcular el 
valor del estadístico de prueba para la hipótesis nula asociada 
a la ausencia del efecto de solapamiento. Las tres alternativas 
resultaron invariantes con respecto al uso del test. La prueba 
propuesta es sencilla de adoptar y se puede implementar en el 
campo de la agronomía, ya que su naturaleza asintótica está de 
acuerdo con el gran número de unidades experimentales que 
generalmente existen en este tipo de investigaciones, donde 
cada planta representa la unidad experimental evaluada.
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Introduction

In some agricultural tests, a treatment that is applied to an 
experimental unit may affect the response in the neigh-
boring experimental units. This phenomenon is known 
as overlap. For example, in variety testing, the effect of a 
neighbor can be attributed to differences in height between 
plants, strength of roots, and date of germination, among 
others. Hide and Read (1990) discussed this situation in 
potato cultivation. The treatments applied to crops for 

fertilization plans, irrigation and pesticide applications can 
be dispersed to other plots or adjacent experimental units, 
which can affect the response in the neighboring units. 
An example of this situation for an irrigation experiment 
can be found with Bhalli et al. (1964). This overlapping 
phenomenon has been modeled by several researches; for 
example, Pearce (1957) considered a model in which each 
treatment had a direct influence on the plot in which they 
were applied and an overlap effect on the neighboring 
plots. Draper and Guttman (1980) also considered such a 
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model, discussing some approximate testing methods as 
well as a confidence interval for the overlap effect. Draper 
and Guttman (1980) used a nonlinear model in which the 
overlapping was attributed to all the effects considered in 
the model. Such a model is written as:

Y = Xβ + αWXβ + ε	  (1)

where the random vector Y denotes the response of nex-
perimental units, X is a known design matrix of dimen-
sion n × p with rank q > p, β is a p-dimensional vector of 
unknown parameters consisting of the effects of blocks and 
treatments, a is the overlapping coefficient, and W = (wij) 
is a matrix of known weights of dimension n × n, where wij 
denotes the effect of unit j on unit i; such that 

1
1n

ijj
w

=
=

for all i; and wii = 0, wij ≥ 0 for all i and j. The fact that the 
X matrix is of an incomplete rank generates the possibility 
of imposing side conditions on the parameters so that an 
estimator for the β vector can be obtained. Finally, it is as-
sumed that the distribution of the error vector ε is normal 
and independent with an expected value of zero (E(ε) = 0) 
and variance of s2I, where I is an identity matrix. Shukla 
and Subrahmanyan (1999) considered a generalization of 
the first model represented by (1), which only included a 
subset of all the direct effects influencing the neighboring 
plots. In the following sections of the article, some impor-
tant results which allowed the construction of Rao’s score 
test for a of model (1) are presented; in the methods section, 
we explain the side condition technique, the obtainment of 
several matrices associated with the model of Draper and 
Guttman (1980) and, finally, we present Rao’s score test 
under the imposition of side conditions.

Methods

Side conditions and associated matrices 
in the Draper and Guttman model
The technique to impose side conditions is very well-known 
in the area of experimental design since it provides the 
necessary (linear) restrictions which can assure that the 
estimation of the parameters is unique. Another use of side 
conditions is the imposition of arbitrary restrictions on the 
estimators so that the normal equations can be simplified. 
In this case, the estimators have exactly the same beha-
vior when a generalized inverse of XTX is used to obtain 
the vector of parameters. Let q be the rank of the design 
matrix X where q<p<n in (1), then XTXβ represents a set 
of p estimable functions of β. The side conditions must be 
non-estimable functions of β. Since the rank of X is q and, 
hence, the deficiency of this rank is p-q; conditions such as 
Lβ = 0 or Lβ̂ = 0 to obtain a unique solution for β̂ should 

be defined where L is a matrix of dimension (p-q) × p with 
a rank of L being p-q such that Lβ is a set of non-estimable 
functions. The (1) model under the null hypothesis a = a0 
along with the side conditions is written as:

11
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++=
XXY W 0
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or

= + +0A A AY U W U  	 (2)

where UT = [XT LT] has rank p, WA is a matrix of weights 
with l additional rows, and where l represents the number 
of imposed linear restrictions. The UTU matrix is of a p × p 
dimension and rank p, which generate the system of nor-
mal equations UT Uβ̂ = UT YA, where YA is the vector of 
responses expanded with zeros and has a unique solution 
for β̂ (Graybill, 1976). In order to illustrate the above de-
scribed procedure, let us suppose that we have a two-way 
classification model (treatments and blocks) which will be 
written as Yij = μ + τi + δj + εij; (i = 1, 2,..., t >1); (j = 1, 2,..., 
b >1) with τi as the effect of the ith treatment and δj as the 
effect of the jth block, which in matrix form is written as 
Y = Xβ + ε. In this model, there is a deficiency in rank 
p-q = 2, with p = t + b + 1 and q = t + b-1. In order to solve 
this problem of rank deficiency in this design model, the 
usual non-estimable functions 1

0t
ii=
=  and 1

0b
jj=
=  

can be used, which can be expressed in the matrix form as 
the following set of non-estimable functions:

00 0
00 0

T
t

T
b

= =
J

L
J

denoting Jt and Jb as the vectors of ones of the t and b 
elements, respectively. The matrices UTU, (UTU)-1, (UTU)-

1XT and X(UTU)-1XT are needed in the estimation of the 
vector of parameters β, error variance and, therefore, for 
obtaining Rao’s score test for overlapping. However, here, 
we only present the final expression (Darghan, 2010); it is 
the comprehensive development of related matrix calcula-
tions), namely:

( ) 1 1 1 1T T T T T
Jb t n= + = +X U U X X X X X JJ M M M  	  (3)

with n=bt, X = (J Xτ Xδ), where Xτ and Xδ are the sub-
matrices of the design matrix associated with the effects 
of the treatments and blocks respectively, 1 Tb=M X X , 

1 Tt=M X X and M JJ1 T
J n= , which are all perpendicu-

lar projection matrices onto the column spaces of Xτ, Xδ 

β̂
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and J, respectively, denoted with C(Xt), C(Xd) and C(J). 
This last statement is shown in a later theorem. The space 
spanned by the columns of a vector or matrix called a 
column space is written as C(  ), placing in the brackets 
the vector or matrix of interest. Another interesting use of 
side conditions for obtaining the re-parameterization of a 
model can be described as follows: Let Lβ = 0 define the 
side conditions in the model (1). If Lβ = 0 holds, then β 
belongs to the orthogonal (⊥) complement of C(LT), namely 
β∈C(LT)⊥. Let Z be such that C(LT) = C(Z), then β = Zγ 
for some γ; then, by substituting β with Zγ and defining 
X0 = XZ in model (1), we get

0 0= + +Y X WX 	 (4)

Besides, if Lβ is not estimable, then C(X) = C(X0) and the 
third model represented by (4) is a re-parameterization of 
model (1) (Christensen, 2011).

Rao’s score test
This section summarizes the theory of likelihood for the 
score test. Further information about score tests can be 
found in (Rao, 1973) and (Cox and Hinkley, 2000). The 
article published by (Rao, 1948) introduced the funda-
mental principle of a test based on the score function as 
an alternative method to the likelihood ratio test and to 
Wald’s method. Several authors have described the at-
tractive properties of the method; among them, Chandra 
and Joshi (1985), Bera and Mckenzie (1986) and Bera and 
Bilias (2001). For a better understanding of the test, we 
introduce its notation, which is maintained until the deve-
lopment of the test for a. Suppose there are n independent 
observations Y1,..., Yn identically distributed with a density 
function of f(y; θ) that satisfies the conditions of a regularity 
given by (Rao, 1973), where θ is a vector of parameters of 
dimension p × 1, with p. The log-likelihood 
function, the score function and the expected information 
matrix are defined respectively as  ( ) ( )( )1

log ;n
ii

l f y
=

=
, ( ) ( ) /s l= , F( ) ( )( )2 / TE l= .

The hypothesis to test is H0: h(θ) = c, where h(θ) is a r-
dimensional vector function of θ with r ≤ p and c is a 
vector of known constants. In addition, it is assumed that 
H(θ) = дh(θ)/дθ is a full column rank matrix. In the one-
dimensional case of c, when p = 1 with H0: θ = θ0 and using 
the Neyman-Pearson lemma, (Rao and Poty, 1946) proved 
that the most powerful local test for H0 is ks(θ0)>λ, where 
λ is determined such that the size of the test is equal to a 
pre-assigned value of the significance level, with k as +1 or 
-1, respectively for alternatives θ > θ0 or θ < θ0 (Wald, 1941), 
and as the result of which under H0, s(θ0) has asymptotically 

normal distribution with a mean of zero and a variance of 
F(θ). This result led (Rao, 1948) to suggest a test based on 
s2(θ0) / F(θ)-1 as a χ2

1
 variable when n is large. The generaliza-

tion of the test when p ≥ 2 was developed by (Rao, 1948), 
which led him to the statistical test based on s(θ0)T F(θ)-1 

s(θ0), which has a χ2
g
 distribution with g degrees of freedom.

Results

Here, the results obtained by applying Rao’s test score to 
the overlap model are presented as well as some theorems 
generated as a result of the partition of the design matrix 
to solve the problem of incomplete rank in the estima-
tion process and the statistic test to evaluate the effect of 
overlapping.

Suppose we want to test the hypothesis H0: a=0 against 
H0: a≠0 in model (1), under H0, this model is the usual 
linear model Y= Xβ+ε; however, X is not of a full column 
rank; in this sense, the p parameters in β are not unique. 
We then ascertained whether β could be estimated. Using 
least-squares in (1), we obtained the normal equations XTXβ̂
=XTY. However, since X was not of a full column rank, XTX 
had no inverse; as a consequence, the normal equations did 
not have a unique solution, despite the fact that this system 
was consistent if and only if XTX(XTX)-XTY( XTY), where 
(XTX)- is a generalized inverse of (XTX). Since the normal 
equations were consistent, a solution is:

β̂ = (XTX)-XTY	  (5)

For a particular generalized inverse (XTX)-, the expected 
value of β̂ in (1) under H0 is E(β̂) = (XTX)-XTYβ, thus β̂ is 
not an unbiased estimator of β; furthermore, the expression 
(XTX)-XTYβ is not invariant to the choice of (XTX)-, thus, 
β̂ in (5) does not estimate β. With respect to the estimation 
of σ2, in model (1), we define:

( ) ( )2ˆ /T T T
n n q=

_
Y I X X X X Y 	 (6)

where n is the number of rows of X which has rank q. The 
estimator in (6) is unbiased for σ2 and invariant to the 
choice of β̂ and to the choice of generalized inverse (XTX)-. 
For the non-full column rank model (1), under H0, we now 
assume that ε is distributed as Nn(0; σ2I). With the nor-
mality assumption we can obtain a maximum likelihood 
estimator for (1) under H0. In this case, we have the same 
estimator for β which is given by the least square estimation 
but a biased estimator for σ2 is obtained, which can be writ-
ten as σ2ˆ  =[n–1YTIn–X(XTX)–XT]Y. The lack of uniqueness in 
the estimate for β using two different estimation methods 
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in (1) leads us to the use of (2). In this model, the problem 
of the rank of X is solved with the imposition of side condi-
tions to proceed with the estimation of the parameters using 
least squares. Using model (2) restricted by H0 we obtain 
β̂ = (UTU)–1 UTYA = (UTU)–1 UTY and σ2ˆ  = YT[In–X(UTU)–XT]
Y / (n – q), which are unique and unbiased. Also the error 
vector has two interesting features: it has singular normal 
distribution and, therefore, the log-likelihood function 
doesn’t exist and contains the matrix given in (3), which 
is very important in the development of the theorems pre-
sented below and can be extended in the balanced two-way 
classification model with more than one observation per 
cell by just modifying the design and weight matrices in 
order to adjust for the replications of each treatment.

Theorem 1. Let Mt = b–1 Xt XT
t , Md = t–1 Xd XT

d  and MJ = n–1JJT  
be perpendicular projection matrices onto the respective 
column spaces of Xt, Xd and J, such that C(Mt) = C(Xt), 
C(Md) = C(Xd), and C(MJ) = C(J).

Proof. An inspection of the matrices Mt, Md and MJ al-
lows for a verification of the symmetry and idempotent 
properties, which is enough to prove that these matrices 
are all perpendicular projection matrices onto the respec-
tive column spaces of Xt, Xd and J. To prove that C(Mt) = 
C(Xt), we can refer to the B.51 proposition in (Christensen, 
2011). In the cases where C(Md) = C(Xd) and C(MJ) = C(J), 
the same procedure can be followed.

Theorem 2. For matrices Mt, Md and MJ, it holds that if 
MtMd = MJ, Mt MJ = MJ and Md MJ = MJ, then C(I–X(UTU)–

XT      )     = C(I–M)⊂C(MJ)⊥.

Proof. The proof is obvious by the very definition of the 
matrices Mt, Md, and MJ in the two-way classification de-
sign without interaction. To prove that C(I–M)⊂C(MJ)⊥, 
it is sufficient to multiply I–M with MJ and observe that 
their product is zero. In addition, the rank of C(MJ)⊥ as 
n – 1 is greater than the rank of C(I–M), whose value is 
n – q, whenever q > 1 in the two-way classification model 
without interaction.

Theorem 3. M is the perpendicular projection matrix on 
C(X), where M = X(UTU)–1XT.

Proof. In order to prove that M is the perpendicular pro-
jection matrix on C(X), it is necessary to verify that M 
is symmetric and idempotent. The symmetry obviously 
results from equation (3) when verifying that M = MT. 
So we only have to prove idempotence (M = M2). Since 

M = Mt + Md – MJ, therefore M2 = (Mt + Md – MJ)2, and 
using the previous theorems, we have M = M2.

Theorem 4. The matrix (UTU)–1 = (XTX + LTL)–1 is a g-
inverse of XTX.

Proof . A generalized inverse of XTX is any G matrix such that 
XTXGXTxX = XTX. Let G = (XTX + LTL)–1, then XTXGXTX 
= XTX(XTX + LTL)–1, but replacing M with theorem 3, we 
have XTXGXTX = XTMX and as MX = X for the same 
theorem, we have XTXGXTX = XTX.

Theorem 5. The matrices Ma = Mt– MJ and Mh = Md – MJ are 
perpendicular projection operators; additionally, C(Ma)⊥ 
C(Mh), C(Ma)⊥ C(Md) and C(Mh)⊥ C(Mt).

Proof . To start, we will prove that Maand Mh are idempo-
tent matrices, which we obtain by verifying that (Mt– MJ)2 

= M2
t + M2

J –MtMJ– MJMt = Mt–MJ . The symmetry of Mt– 

MJ, obviously results when we substitute Mt with b–1 Xt XT
J 

and MJ with n–1 JJT, from which we obtain MT
a = Ma. The 

same procedure may be used in the case of Mh. In order 
to prove that C(Ma) ⊥ C(Md) or, in other words, to prove 
that C(Ma) is contained in the orthogonal complement of 
C(Mη), it should be sufficient to verify that the product of 
the matrices associated with these spaces is null. In the first 
case, we have (Mt– MJ) (Md– MJ) = Mt Md – MtMJ – MJ Md 

+ M2
J = 0; for the cases C(Ma) ⊥ C(Md) and C(Mh) ⊥ C(Mt) 

the same procedure is followed.

To develop Rao’s score test for overlapping, we need the 
expected information matrix which is constructed from the 
log-likelihood function. In the (1) model, the log-likelihood 
is singular due to the deficiency in the rank of X. Thus, 
models (1) and (2) are not used in the construction of the 
test, but we still use their estimates for β and σ2. The log-
likelihood function for (4) is:

( ) ( ) ( ) ( )
222

0 0, , log 2 / 2 log / 2 / / 2l n n= +Y X WX

from which, under H0, we obtain: ( ) 1

0 0 0ˆ T T= X X X Y  and 
[ ]2 1

0ˆ T
nn= Y I M Y  as the perpendicular projection matrix 

on C(X0). The score vector is:

( )
( ) ( )

( )

( )

0
2

02
2

1, ,

/ 2 / / 2

T

Ts

n

=

+

WX Y Q
X Y Q

Y Q

with Q = (In + aW)X0. If we denote sa(a, γ, s2) the compo-
nent of the score vector corresponding to the parameter of 
interest (a), the score statistic to test H0: a = 0 is:
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matrix or singular normal distribution. Thus, the test was 
developed by re-parameterization of the original model. 
The natural maximum likelihood estimators were obtained 
for the parameters γ and σ2 under H0 and, with these same 
estimators, the score test for overlapping was evaluated. 
The dependence of the statistical test on the parameters 
allows for replacing the two sets of estimators obtained by 
least square estimation: one for β and another for σ2 in each 
studied model. The statistical test was invariant, which was 
expected because models (1) and (4) were equivalent and 
model (2) provided an estimate for β, belonging to the same 
estimation space of models 1 and 4. The statistical test for 
overlapping should be of wide application in agronomical 
research and has extensive practical value because the 
application of a variance analysis on a data set that was 
collected in the field has experienced the effect of overlap, 
generating spurious results as the effect of the treatments is 
confused since the same experimental unit could be receiv-
ing more than one treatment at a time. This test is easy to 
adopt as long as the layout of the used experimental design 
involves a model similar to that of Draper and Guttman 
whenever the nearest neighbor is considered a possible 
source of overlapping. Although the used example involved 
a test of overlapping by means of only the effects included 
in the two-way model, it can also be tested for any number 
of factors and their interactions as well as for a subgroup of 
effects and not only the use of the nearest neighbor by just 
modifying the design matrix and the matrix of the weights 
in the re-parameterized model. Statistics have been tested 
in various agricultural applications (Darghan et al., 2012) 
as well as in the area of education (Darghan et al., 2014) not 
only in design models, but also in the context of response 
surface modeling (Darghan et al., 2011), obtaining similar 
results as observed in the field (Darghan, 2010).

Conclusions and recommendations

The developed overlap test can be used in the field of 
agronomy where it is increasingly suspected that applied 
treatments can move from one experimental unit to that of 
the nearest neighbor and that the presence of overlap may 
invalidate the comparison of treatments when using the 
analysis of variance associated with a linear model, in this 
case, a two-way classification model. The asymptotic nature 
of the test requires a large amount of experimental units 
for it to be valid. The results obtained in applications using 
linear models have been similar to those observed in field 
results. Once the overlap coefficient has been estimated, 
the analysis of variance can be corrected by the overlap 
effect. Monte Carlo simulation studies as well as agricul-
tural applications in the field of information technology 

( )2ˆ ˆ0, ,
T

ovpS s= 11F̂ ( ) ( )2 2ˆ ˆˆ ˆ0, , 0, ,s  

where γ̂ and σ2ˆ  are the maximum likelihood estimators of 
γ, σ2 in (4) and F11 (0, γ̂, σ2ˆ ) is the component in the ex-
pected information matrix evaluated at a = 0. The expected 
information inverse matrix is:

1F̂ ( )

2222

000

22 2
0

2

ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆˆ ˆˆ ˆ ˆ0, ,

ˆ /20

TTT

T

n

+

=

H H H X GX H H H H X G

H GX H G 0

0

 

where Ĥ = WX0γ and Ĝ = (XT
0 (In–MH)X0)–1 with

MH = Ĥ||Ĥ||-2ĤT (MH as the perpendicular projection opera-
tor on C(Ĥ)). Now, when evaluating sa(a, γ, σ2) in sa(0, γ̂, 
σ2ˆ ) and grouping terms, we obtain:

H H H I X GX H M I M Y( ) ( ) ( )
1 22

ˆ 000
ˆˆ ˆ ˆ ˆˆ T T T

nnpvo HS = +  	(7)

The score statistic test for overlap has a χ2 distribution with 
a g =1 degree of freedom, which tests a in the Draper and 
Guttman model. The statistic in (7) depends on β̂ only 
through Ĥ (and hence Ĝ). The estimates for β and σ2 in 
models (1) and (4) can be substituted in (7), verifying that 
the same value of the statistic is obtained. Such a result is 
not surprising given that models (1) and (4) have the same 
estimation space C(X). Darghan (2010) showed the invari-
ance property of Sovp using (XTX + LTL)–1 or (XTX)–.

Discussion

A statistical test based on Rao’s score test has been devel-
oped for the overlapping effect in a re-parameterization 
of the Draper and Guttman model (Draper and Guttman, 
1980). Although the phenomenon of overlap is not new in 
agricultural sciences, evaluation by means of a model is 
relatively new. Few authors have modeled this phenomenon. 
In 1999, Shukla and Subrahmanyam (1999) proposed an 
exact test and confidence intervals to assess the overlap 
coefficient using the model of Draper and Gutman, but 
using the Likelihood ratio rest. Despite the side conditions 
imposed in the original model to resolve the no-full-rank 
restriction in the design matrix and obtain unique and 
unbiased estimated parameters in (2), the error vector in-
troduced the singular normal distribution; so, in this case, 
it is not defined as a log-likelihood function and, hence, 
it was impossible to obtain the estimators by maximum 
likelihood as it was not possible to apply the methodology 
of Rao to build the hypothesis testing. So far, we can say that 
the original model and the extended model by side condi-
tions presented the respective restrictions of not being able 
to obtain the inverse of the expected Fisher information 
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and communication will complement the properties of the 
test, which can be extended to more complex experimental 
designs using neighboring patterns that cover all of the 
experimental units that are being studied.
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